月壤的物理和机械性质

郑永春^{1.2}, 欧阳自远¹, 王世杰¹, 邹永廖³ [1.中国科学院地球化学研究所,贵州贵阳 550002;]

2. 中国科学院研究生院,北京 100039;

3. 中国科学院国家天文台,北京 100012

【摘 要】月壤是在 O₂、水、风和生命活动都不存在的情况下,由陨石和微陨石撞击、宇宙 射线和太阳风轰击、月表温差导致岩石热胀冷缩破碎等因素的共同作用下形成的。月壤独 特的形成过程,加上独特的月表环境,使月壤在粒度分布、颗粒形态、颗粒比重、孔隙比和 孔隙率、电性和电磁性质、压缩性、抗剪性、承载力等方面均与地球土壤存在较大差异,这 些参数的平均值和最佳估计值,可以作为月表机械设计和操作、宇航员装备设计、月球着 陆场选址的主要依据,对月球资源开发和利用以及月球基地建设具有极其重要的意义。

【关键词】 月壞;物理性质:机械性质;最佳估计值 中图分类号:P185.15 文献标识码:A 文章编号:1001-6872(2004)04-0014-06

0 引 言

迄今以来,人类利用地基天文望远镜对月观测、 太空望远镜和环月卫星的遥感探测、无人驾驶月球 车以及 Apollo 宇航员的月表巡视获得大量的图像 和数据资料,所有结果都显示,整个月球表面除了极 少数非常陡峭的山脉、撞击坑和火山通道的峭壁(这 些区域可能有基岩出露)外,都覆盖着一层厚度不等 的月壤。月海区月壤平均厚约4m~5m,高地区平 均厚约10m~20m。

与地球土壤的形成过程相反,月壤的形成是在 O₂、水、风和生命活动都不存在的情况下,由大大小 小的陨石和微陨石撞击、宇宙射线和太阳风持续不 断轰击、月表大幅度温差变化导致月球岩石热胀冷 缩破碎等因素的共同作用下形成的。因此,月壤的形 成基本上是机械破碎作用主导的。

月壤的基本组成颗粒包括:矿物碎屑(这里定义 为含某种矿物 80%以上的颗粒,主要为橄榄石、斜 长石、辉石、钛铁矿、尖晶石等)、原始结晶岩碎屑(玄 武岩、斜长岩、橄榄岩、苏长岩等)、角砾岩碎屑、各种 玻璃(熔融岩、微角砾岩、撞击玻璃、黄色或黑色火成 碎屑玻璃)、独特的月壤组分——粘合集块岩、陨石 碎片等。因此,月壤的化学成分、岩石类型和矿物组 成非常复杂,几乎每个月壤样品都包括多种岩石和 矿物,仅月海玄武岩的就包括极低钛、低钛、高钛、极 高钛四种,w(TiO₂)从 0.5%~13%不等。

月球遥感探测的目的除了回答有关月球整体的

收稿日期:2004-09-10: 改回日期:2004-12-12

基金项目:国家自然科学基金(No.40473036);中国科学知识创新工程项目(编号:KZCX2-115);863-703项目(No.2004AA735020) 作者简介:郑永春,男、27岁,博士生、天体化学专业,研究方向:地球物理、月球与行星科学.

15

科学问题外,还包括选择合适的月表着陆场,为机器 人和宇航员登陆月表创造条件,其最终目的是建立 月球基地,并以月球为跳板,再载人登陆火星。在机 器人和月球车月表巡视、载人登月和宇航员月表行 走阶段,对月表月壤物理和机械性质的详细了解可 以避免不必要的风险,保障航天任务的安全性,意义 十分重要^[1]。在开发和利用月球资源、建立月球基地 阶段,需要在月球上进行规模宏大的资源开发和工 程建设,结构松散、易于开采的月壤层就成为首选目 标,而这些工作的顺利开展必须建立在对月壤的物 理和机械性质的详细研究的基础上。

1 月壤的物理和机械性质研究历 史

对月壤的物理和机械性质研究最早始于第一次 近月飞行之前,研究手段包括地基对月射电望远镜 观测^[2],利用与月壤具有相似光学、热学和电学性质 的地球物质进行物理和机械性质的测试与研究,这 些数据后来被作为无人月球探测器设计的基础。此 后,无人月球探测器在月球表面的安全着陆,使人类 第一次得到了关于月壤的物理和机械性质的第一手 资料。结果发现,强烈火山活动带附近的新鲜火山沉 积物与月表月壤十分相似^[3]。根据这些资料,研制出 化学成分、矿物组成、粒度分布等许多方面与月壤十 分接近的模拟月壤^{[4],1}。

月壞的物理和机械性质研究最重要的阶段是在 月球样品返回地面后,对实际月壤样品进行全面细 致研究的基础上得到的;Lunokhod 1、Lunokhod 2 无人驾驶月球车和 Apollo 宇航员驾驶月球车的月 表巡视也对月壤的物理和机械性质进行了大量研 究。这些研究主要包括:(1)月壤性质的实验室测试, 以揭示月壤的物理和机械性质的变化规律以及与月 壤密度的关系^[5~7];(2)研究月表原位月壤的物理和 机械性质以及与地形、地貌条件的关系^[8,9];(3)利用 模拟月壤进行月表月壤物理和机械性质的研究和测 试^[2,10,11]。

2 月壤的颗粒组成

月壤的颗粒组成,包括颗粒形态和粒度分布,是 决定月壤的物理和机械性质的主要参数之一。

2.1 粒度分布特征

月壤的分选性普遍较差,粒度与淤沙相似,但分 布范围很宽,颗粒直径以小于1mm为主,绝大部分 颗粒直径在30 μ m~1mm之间,中值粒径在40 μ m ~130 μ m之间,平均为70 μ m。也就是说,近半数月 壤颗粒的直径小于肉眼的分辨能力,约10%~20% 的颗粒直径小于20 μ m,因此易于漂浮,并附着在宇 航服、机械设备或望远镜和摄像机镜头上。

月球不同单元的月壤暴露于月表的时间有长有 短,遭受空间风化(space weathering,主要是陨石和 微陨石撞击、太阳风和高能宇宙射线轰击)的程度和 成熟度也各不相同,成熟度的差异导致月壤粒度各 异。月壤成熟度越高,平均粒度越细,一定体积月壤 中大块岩石的含量就越少。这些岩石有平卧出露月 表的,也有半埋或隐伏于浮土中的,甚至于直径大于 1 m 的转石在登月舱附近也常可见到。考虑到月球 基地建设和资源提取工艺的复杂性,成熟月壤区是 登月舱着陆场和月球基地的理想选址。

表 1 为 Apollo 11~17 各次登月点典型月壤样 品中>1 cm,4 mm~10 mm,2 mm~4 mm,1 mm~ 2 mm,<1 mm 部分的颗粒重量,以及颗粒直径<1 cm 部分和<1 mm 部分的平均粒径。

- 表 1 代表性月壤样品各粒径范围内的颗粒重量与平均粒 径⁻¹²
- Table 1Weight of lunar regolith grain in different particle
size range for representative lunar regolith sample
and their average particle size

样品	各	粒径/mm	范围内的	颗粒重量	₫′g	平均粒	ī径/μm
编号	>10	$4 \sim 10$	2~4	1~2	<1	<1 cm	< 1 mm
10002	18.5	7.6	11.0	11.7	424.5	—	52
12001	—	_	-	_		_	60
14003	23.0	33.0	31.8	12.1	947.9	129	99
14141	0.0	7.4	6.7	5.4	28.5	616	123
14163	0.0	196.5	197.1	288.7	41444.0	76	56
15220	0.0	7.0	5.8	2.4	290.0	—	43
15270	0.0	4、1	13.7	20.7	798.3	—	94
15400	513.1	7.9	6.1	4.8	86.4	330	61
61180	0.0	6.1	6.2	9.4	156.2	94	64
61220	5.1	10.6	9.6	6.4	61.0	216	68
62280	12.0	14.3	13.1	21.7	218.5	134	70
64500	31.2	24.2	24.1	28.4	495.7	104	65
68500	1.3	17.3	25.1	37.8	521.1	106	68
70180	466.6	1.7	3.1	4.6	157.1	67	58
71500	52.3	13.1	17.6	22.7	600.9	83	65
72140	1.3	2.7	1.9	5.3	225.9	57	50
72500	3.I	8.0	12.9	24.1	687.2	67	57
73240	1.6	22.3	14.4	14.9	192.7	127	51
74220	0.0	0.98	0.17	0.68	7.7	7 —	· 4 1
78220	0.0	1.5	2.7	5.2	227.1	50	45
78500	109.3	19.2	16.1	21.4	718.7	46	41

注:74220 号样品的为桔黄色月壤,这虽然不是典型月壤,但可能代 表由熔岩喷出形成的月壤

多个研究者按不同分析样品数统计得到的 Apollo 11~17 和 Luna 16,20 采集的月壤样品的平

①郑永春,王世杰,刘建忠等,模拟月壤研制的初步设想,空间科学 学报,待刊.

均粒径和中值粒径(表 2);Gromov 也估算了 Apollo 和 Luna 月壤样品的各种粒度参数的平均值(表 3)。 两者基本一致,因而这些参数可以作为 Apollo 和 Luna 计划采样区月壤粒度分布的典型值,作为月表 机械设计和操作的参考依据。

表 2 Apollo 和 Luna 计划采样区月壤中值粒径的和平均粒径

Table 2Medium and average particle size of lunar regolith
at Apollo and Luna landing sites

样号	样品数	中值粒径	资料来源
A11	13	4. $40 \emptyset$ (48 µm)~3. $25 \emptyset$ (105 µm)	[14]
A12	55	4. 58 \emptyset (42 μ m) \sim 3. 40 \emptyset (94 μ m)	[14]
A14	8	3. $74 \emptyset$ (75 µm) ~0. $32 \emptyset$ (802 µm)	[15]
A15	19	4. $3\emptyset(51 \ \mu m) \sim 3.22\emptyset(108 \ \mu m)$	[14]
A16	14	3. 29 \emptyset (101 μ m)~1. 89 \emptyset (268 μ m)	[18]
A17	42	4.59 \emptyset (41.5 μ m) ~2.59 \emptyset (166 μ m)	[19]
L16	4	3. $8\emptyset$ (70 μ m) ~ 3. $05\emptyset$ (120 μ m)	[16]
L 20		约 3.8Ø(70 µm)~3.62Ø(80 µm)	[17]

注:A16,A17 为平均粒径

表 3 Apollo 和 Luna 计划采样区月壤的平均粒度参数¹¹ Table 3 Average particle size parameters of lunar regolith at Apollo and Luna landing sites

样旦疤旦	平均粒径		粒径标准偏差	有效粒径	不均一性
11+00 % 17	da∕µm	$\log d$	(对数单位)	de∕µm	K = da/de
Luna 16	85	-1.071	0.623	30.3	2, 81
Luna 20	77	-1.113	0.816	13.2	5.83
Apollo 11	98	-1.008	0.620	35.4	2.77
Apollo 12	118	-0.928	0.586	47.4	2.49
Apollo 14	138	-0.860	0.677	40.9	3.38
Apollo 15	61	-1.215	0.536	28.4	2.15
Apollo 16	153	-0.815	0.885	19.2	7.97
Apollo 17	79	-1.102	0.747	17.9	4.41

注:有效粒径的定义见参考文献[19]

研究表明,月壤平均粒径随采样深度的增加似 乎有所增加(表 4),但规律性并不明显,这与月壤的 月表暴露时间有关。由于陨石撞击造成月壤翻腾,表 层月壤的月表暴露时间并不一定大于次表层月壤。

表 4 Apollo 16 岩心样品中不同深度的月壤颗粒分布

Table 4 Particle size distribution of lunar regolith at dif-

ferent depth of Apollo 16 cores sample

	不同深度/cm 颗粒的重量百分含量/%						
秋位且1 r / μ III	33.5	41.2	43.0	48.5	54.5	61.5	
>1 000	6.7	7.9	9.3	3.5	14.7	11.3	
$500 \sim 1\ 000$	8.1	7.5	6.6	5.4	5.4	7.1	
$250 \sim 500$	10.4	9.5	8.6	8.1	8.1	11.3	
$150 \sim 250$	9.3	9.4	8.3	7.4	6.8	8.3	
90~150	10.8	9.8	9.9	9.2	8.1	9.4	
<90	54.2	56.6	57.1	66.3	56.8	52.7	

2.2 月壤颗粒形态

月壤的颗粒形态是高度变化的,从球形到极端 棱角状都有出现(表 5)。但长条状、次棱角状和棱角 状的颗粒形态相对更为常见。锯齿状粒形使得月壤 颗粒之间互锁,相互滑行困难,这导致月表月壤在抵 抗外物锲入方面几乎类似于固体岩石,岩心取样器 和采样铲需要更大的压力才能顺利取样。

表 5 月壤的颗粒形态

Table 5 Particle shape of lunar regolith

参数	平均值		参考文献
延性	1.35	稍长条状	[20]
长度直径比	0.55	稍长条状至中等长条状	[21]
圆度轮廓	0.21	次棱角状	[21]
平行光	0.22	棱角状	
体积系数	0.3	长条状	[20]
比表面积	$0.5 \text{ m}^2/\text{g}$	不规则、凹角状	[22]

3 月壤的容重、比重、孔隙比和孔 隙率

3.1 容重

容重(bulk density,又称堆积密度)是指土壤的 自然结构没有遭到破坏的前提下,单位体积内的土 壤重量,以g/cm³表示。

Apollo 岩心样品是研究月壤容重随深度变化 的最佳实物。研究表明,Apollo 各采样点的月壤容 重略有差异(表 6),决定月壤容重的因素包括采样 深度、物质成分、颗粒形态、颗粒直径等等。对同一采 样点月壤而言,采样越深,容重越大(表 7),不同采 样点的月壤容重则没有可比性。

表 6 Apollo 岩心样品容重^[9]

Table 6 Bulk density of Apollo core sample

Apollo	样品 编号	样品重 量/g	样品长度 /cm	样品容重 ′(g・cm ⁻³)	钻孔深 度/cm
	10005	52	10	1.71	>25
	10004	65.1	13.5	1.59	<32
	12027		17.4		~ 37
12	12025	56.1	9.3	1.98	69
10	12028	189.6	31.8	1.96	69
	12026	102.9	19.4	1.74	37
	14211	39.5	7.5	1.73	64 1
14	14210	169.7	31.9	1.75	
	14220	80.7	16.5	1.6	$<36^{1}$
	14230	76	~ 12.5		$23/45^{2}$
	15008	510.1	28 ± 1	1.36 ± 0.05	70.1
	15007	768.7	33.9	1.69	70.1
15	15009	622	36.2	1.3	34.6
	15011	660.7	29.5 ± 0.5	1.69 ± 0.03	67.6
	15010	740.4	32.9	1.91	67.6
	64002	584.1	31.7	1.4	65±6
	64001	752.3	33.9	1.66	65±6
	68002	583.5	27.4	1.59	68.6±0.5
	68001	840.7	34.9	1.8	68.6±0.5
16	69001	558.4			27.5 ± 2
	60010	635.3	32.3	1.47	71 ± 2
	60009	759.8	33.1	1.72	71 ± 2
	60014	570.3	28.8	1.48	70.5 ± 1
	60013	757.2	34.7	1.63	70.5 ± 1
	73002	429 ± 4	21.8	1.60 ± 0.10	70.6±5
	73001	809 ± 4	34.9	1.73 ± 0.01	70.6 ± 5
	74002	910 ± 4	33.3	2.04 ± 0.01	71 ± 2
17	74001	1 071.4	34.9	2.29	71 ± 2
	76001	711.6	34.5	1.57	37.1 ± 0.5
	79002	109.4	19.4	1.67	71 ± 2
	79001	743.3	31.9	1.74	71 ± 2
	70012	434.8	18.4	1.77	$_{28 \pm 3}$

注: ①为字航员估计的钻孔深度: ②该钻孔共钻取两次; Apollo 11, 12.14 的钻孔直径为 1.97 cm; Apollo 15, 16, 17 的钻孔直径为 4.13 cm

若采用简化函数关系来表达月壤容重随深度的 变化,可用双曲线关系和指数关系两种表达式表

17

表 7 撞击坑内不同深度月壤平均容重的最佳估计值^[10] Table 7 Best estimates of bulk density for lunar regolith at different depth in the crater

1	深度/cm	0~15	0~30	0~60	30~60	300
	平均容重 /(g・cm ^{…3})	1.45~1.55	1.53~1.63	1.61~1.71	1.69~1.79	1.9

ρ=1.92[(z+12.2)/(z+18)](月壤容重与深 度成双曲线关系)

=1.39z^{0.056}(月壤容重与深度成指数关系) 式中:p.一定深度的月壤容重/(g•cm⁻³),z.该点所 处的月壤深度/cm。

3.2 颗粒比重

颗粒比重是指颗粒质量与同体积的 4 C 时纯水 的质量之比,一般用 G 表示。实际上,月壤颗粒比重 在数值上等于颗粒密度,但前者无量纲。

月壤颗粒的平均比重与其中不同颗粒类型(如 玄武岩、矿物碎片、角砾岩、粘合集块岩、玻璃等)的 相对含量有关。如,粘合集块岩和玻璃颗粒比重从 1.0~3.32不等,玄武岩颗粒比重大多>3.32,角砾 岩颗粒比重从 2.9~3.10^[24]。相对于地球土壤的颗 粒比重一般为 2.6~2.8,大部分月壤颗粒的比重从 2.3~3.2不等,绝大部分在 2.9以上(表 8),明显高 于地球土壤的颗粒比重。

表 8 部分月壤颗粒和岩石碎片的比重

 Table 8
 Specific gravity of some lunar regolith particle and rock debris

样品编号	质量 /g	比重	样品编号	质量 /g	比重
10001/10005	49.1	3.1	14259.3	1.26	2.93 ± 0.05
10020.44	5.94	3. 25 ²	14321.74		3. 2 ± 0.1^{2}
10065,23	4.48	3.12 ^{.i}	14321.		3. 2 ± 0.1^{3}
10084	1.5	3.01	15015,29		3.0 \pm 0.1 ³
Apollo 12	56.9	3.1 ^ī	15101.68		3. 1 ± 0. 1
12002.85	2.32	2. 31 ³	15601.82	0.96	3. 24±0.05
12029,8	1.10	2.9	70017.77	2.55	3. 51 ²
12057,72		2.9	70215.18	4.84	3.44 -
14163,111	0.65	2.9 ± 1	72395.14	3.66	3.07 *
14163,148	0.97	2.90 ± 0.05	77035.44	3.68	3.05 ²

注;月壤比重的推荐值:3.1;①为月壤全样;②为单个玄武岩碎片;③ 为单个角砾岩碎片;未标志的为颗粒直径小于1mm部分分析得 到的数据

3.3 孔隙比和孔隙率

月壤的孔隙比 e 是指月壤中孔隙体积与颗粒体 积之比,用小数表示。天然状态下月壤的孔隙比是一 个重要的物理性指标,可以用来评价月壤的密实程 度。一般 e<0.6 的月壤是密实的低压缩性月壤,e> 1.0 的月壤是疏松的高压缩性月壤。

孔隙率 n 是指月壤中孔隙所占体积与总体积之 比,用百分数表示。一般而言,地球上粘性土的孔隙 率为 30%~60%,无粘性土为 25%~45%。不同深 度就位月壤平均孔隙率和孔隙比的最佳估计值见表 9^{,41}。

Carrier 等综合各个研究者的不同研究结论,给 出月表不同采样点在松散和紧实两种状态下的月壤 容重、孔隙比和颗粒比重的最佳估计值(表 10)。

表 9 就位月壤孔隙率和孔隙比的最佳估计值-**

Table 9Best estimates of porosity and void ratio of in-situ
lunar regolith

深度/cm	平均孔隙率 n/%	平均孔隙比e	平均容重/(g・cm ⁻³)
$0 \sim 15$	52 ± 2	1.07 ± 0.07	1.50 ± 0.05
$0 \sim 30$	49 ± 2	0.96 ± 0.07	1.58 ± 0.05
30~60	44 ± 2	0.78 ± 0.07	1.74 ± 0.05
$0 \sim 60$	46 ± 2	0.87 ± 0.07	1.66 ± 0.05

表 10 Apollo 11~15, Luna 16, 20 的月壤容重、孔隙比⁽²⁾ Table 10 Bulk density and porosity of lunar soil in Apollo 11~15 and Luna 16, 20 landing sites

11-~13	11 - 15 and Luna 10+ 20 failing sites							
 日 4夜	容重/(g・cm ⁻)		孔隙比		山毛			
力機	松散	紧实	松散	紧实	兀里			
Apollo 11	1.36	1.8	1.21	0.67	3.01			
Apollo 12	1,15	1.93						
Apollo 14	0,89	1.55	2.26	0.87	2.9			
	0.87	1.51	2,37	0.94	2.93			
Apollo 15	1.1	1,89	1,94	0,71	3.24			
Luna 16	1.115	1.793	1.69	0.67	3			
Luna 20	1.040	1.798	1.88	0.67	3			

4 电性和电磁性质

月壤的电性表现出典型硅酸盐矿物的特征,即 极低的电导率和电损耗。月表物质在黑夜中的 DC 电导率从 10⁻¹⁴ mho/m(粒径<1 mm 部分)到月岩 的 10⁻⁹ mho/m 不等;而在阳光照射下,月壤和月岩 的电导率将增加 6 个数量级以上。

月壞的介电常数决定于容重,而与化学成分、矿物组成、频率(>1 MHz)和温度(月表温度变化范围内)无关,即:

 $\varepsilon' = 1.9^{\rho}$

月壤的介电损耗正切与(w_{TiO₂}+w_{Fe0})和容重有关,即:

 $\tan \delta = 10^{[0, 038(w_{\rm DO}_2 + w_{\rm FeO} + 0.312\rho - 3.260]}$

月壤极低的电导率和损耗导致两个方面的结 果。一方面,月球物质对电磁波几乎是透明的,无线 电波可轻易穿透月壤厚达 10 m 左右;电磁波从月 表某点传播到另一点并不需要这两点之间相互可 视,电磁波可穿透障碍物传播。另一方面,极低的电 导率和损耗使月球物质极易带电,并可以在相当长 的时间内保持带电。因此,月球上日出和日落时巨大 的光电效应使月壤颗粒带电飘浮并移动,这些飘浮 颗粒附着在仪器设备表面将干扰这些设备的正常工 作。

石

5 月壤的压缩性、抗剪性和承载 力

5.1 月壤的压缩性

月壤在压力作用下体积缩小的特性称为压缩 性。试验表明,在一般压力(100 kPa~600 kPa)作用 下,月壤颗粒体积的压缩量远远小于月壤体积的总 压缩量,完全可以忽略不计。因此,月壤的压缩实际 上就是通过月壤颗粒位置调整与重新排列而减少孔 隙的体积。静态压力条件下,不同孔隙比月壤样品的 压缩系数如表 11 所示。

- 表 11 不同孔隙比月壤样品的平均压缩系数(静态压力条 件下)
- Table 11
 Average coefficient of compressibility of lunar regolith with different void ratio (Static Pressure)

日博会粉	孔隙比					
月壤参数	>1.3	1.3~1.0	1.0~0.9	< 0.9		
压缩系数(1/MPa)	>40	20	8	< 3		

5.2 月壤的抗剪性和承载力

月壤是由固体颗粒组成的,颗粒间的连结强度 远远小于颗粒本身的强度,故在外力作用下颗粒之 间发生相互错动,引起月壤中的一部分相对另一部 分产生滑动。月壤颗粒抵抗这种滑动的性能,称为月 壤的抗剪性,由内摩擦角 φ 和内聚力 c 两个指标决 定。内摩擦角 φ 的大小,体现月壤颗粒间摩擦力的强 弱;内聚力 c 值的大小,体现颗粒间粘结力的强弱。 表 12 表 13 分别列出月表不同位置、不同深度月壤 的内摩擦角 φ 和内聚力 c 的最佳估计值。

而根据 Luna 9,13;Surveyor;Lunokhod 1,2 月 球车;Apollo 月球车和宇航员对就位月壤的物理和 机械性质的数千次测试结果分析,可将就位月壤的 机械性质归纳(表 14)为月表不同位置的月壤具有 不同的孔隙比,而孔隙比的差异导致月壤承载力、压

表 12 月表不同位置月壤的内摩擦角 φ和内聚力 c 的最佳 估计值

Table 12Best estimates of angle of internal friction φ and
cohesion c of lunar regolith in different location
of lunar surface

位置	内聚力 c/kPa	内摩擦角 φ/(°)
普遍值	0.1 \sim 1	$30 \sim 50$
撞击坑壁(坑内)	0.17~1.0	$45 \sim 25$
撞击坑坡部(坑外)	0.52~2.7	$45 \sim 25$
平坦底部	0.34~1.8	$45 \sim 25$

表 13 月表不同深度月壤的内摩擦角 φ和内聚力 c 的最佳 估计值

Table 13Best estimates of angle of internal friction φ and
cohesion c of lunar regolith at different depth

深度	内聚力 c/kPa		内摩擦角 φ/(°)		71 184 - 117
'cm	变化范围	平均值	变化范围	平均值	1 化原戊
0~15	0.44~0.62	0.52	41~43	42	1.07 + 0.07
$0 \sim 30$	0.74~1.1	0.90	$44 \sim 47$	46	0.96 ± 0.07
$30\!\sim\!60$	2.4~3.8	3.0	$52 \sim 55$	54	0.78+0.07
$0\sim 60$		1.3~1.9	$48 \sim 51$		

表 14 就位月壤的机械性质 Table 14 Mechanical properties of in-situ lunar regolith

月壤参数		承载力 ∕kPa	内聚力 /kPa	内摩擦 角 ⁄(°)	月表典型位置
	>1.3	<7	<1.3	<10	孤立的细颗粒物质层
£L.	1.3~1.0	$7 \sim \! 25$	1.3~2.2	10~18	新鲜小型撞击坑边缘、陡坡 处
隙	1.0~0.9	$25 \sim 36$	2.2 \sim 2.7	$18\!\sim\!22$	强烈侵蚀撞击坑单元
1.12	0.9~0.8	$36 \sim 55$	2.7 ~ 3.4	$22\!\sim\!27$	撞击坑交叠区域
ιĽ	<0.8	>55	>3.4	>27	新成的薄层月壤:类石建 造、孤立石块

缩性和抗剪性的不同。也就是说、控制就位月壤机械 性质的主要因素是其压实程度(用孔隙比衡量)。而 对于月表分布面积最广的相对平缓和均一地貌区, 孔隙比为 0.8~1.0 是最经常出现的情形,更松散的 月壤大多出现在具有较大坡度的地貌区。对相对平 缓和撞击坑交叠区来说、承压力为 25 kPa~55 kPa 的出现频率最高、承压力小于 25 kPa 的情形大多见 于撞击坑环和坡度大于 10°的地区(Bazilevsky *et al*,1984)。

参考文献

- [1] Gromov V. Physical and Mechanical Properties of Lunar and Planetary Soils[J]. Earth Moon and Planets1999.80:51-72.
- [2] Krotikov V D. Troitsky V S. Radio emission and the nature of the Moon[J]. Usp Fiz Nauk. 1963.81:589-639.
- [3] Cherkasov I I. Gromov V V, et al. Soil Resistometerpenetrometer of the Automatic Lunar Station Luna-13[J]. Doklady AN USSR (1967, 179(4).
- [4] Houston W N, Namiq L I. Penetration resistance of lunar soils [J]. Journal of Terramechanics, 1971, 8(1); 59-69.
- [5] Gromov V V.Leonovich A K.Lozhkin V A. et al. Mechanical properties of the lunar soil sample brought by the autonatic station 'Luna-16'[J]. Kosm Issled Moscow.1971.9(5).
- [6] Carrier W III, Mitchell J K, Mahmood A. The nature of lunar soil [J]. NASA STI/Recon Technical Report. 1973. A75, 12 424.
- [7] Gromov V V.Leonovich A K.Shvarev V V. et al. Results of investigations of the physicomechanical properties of a lunar soil sample in a nitrogen atmosphere [A]. In: Lunar Highland Soil [C]. 1979,686-690.
- [8] Bazilevskiy A T.Grebennik N N.Gromov V V. et al. Florenskiy, Physical and mechanical properties of lunar soil as function of specifics of relief and processes in vicinity of operation of Lunokhod-2[J]. USSR Report Space 2,1984,65-66.
- [9] Carrier W D,Olhoeft G R, Mendell W. Physical properties of the lunar surface[A]. In: Heiken G H, Vaniman D T, French B M. eds, Lu

nar Source book[C]. Cambridge Univ. Press. New York. 1991.475-594.

- [10] Cherkasov I I, Shvarev V V, Ishlinskii A Y. Lunar soil science. Physicomechanical properties of lunar soils[J]. NASA STI/Recon Technical Report N, 1975, 76, 20 049.
- [11] Gromov V V, Carrier W D I. Mechanical properties of lunar soil and simulants[A]. In: Proceedings of the 3rd International Conference on Engineering, Construction, and Operations in Space III[C]. Publ by ASCE, New York, NY, USA, Denver, CO, USA, 1992, May 31-Jun 4:518-527.
- [12] Morris R V, et al. Handbook of Lunar Soils[J]. NASA Johnson Space Center, 1983, 914.
- [13] Carrier W D, III, Lunar Soil Grain Size Distribution[J]. Moon 6,1973:250.
- [14] Mckay D S. Heiken G H. Taylor R M. et al. Apollo 14 soils: size distribution and particle types [A]. in: Proc Lunar Sci Conf 3rd [C] . 1972.983-995.
- [15] Vinogradov A P. Preliminary Data on Lunar Ground Brought to Earth by Automatic Probe 'Luna-16'[J]. Geochimica et Cosmochimica Acta (Proc. of 2nd Lunar Science Conf.), 1971, 1 (Suppl. 2): 1-16.
- [16] Vinogradov A P. Preliminary data on lunar soil collected by the Luna 20 unmanned spacecraft1[J]. Geochimica et Cosmochimica Acta, 1973.37(4):721-722.
- [17] Heiken G H, McKay D S, Frularld R M. Apollo 16 Soils: Grain Size Analyses and Petrography [J]. Geochimica et Cosmochimica Acta (Proc. of 4th Lunar Science Conf.), 1973, 1 (Suppl. 4): 251-265.
- [18] McKay D S, Fruland R M, Heiken G H. Grain size and the evolution of lunar soils [A]. In: Lunar Science Conference, 5th 1[C], 1974, 887-906.
- [19] Nordin C.F. Application of Engelund Hansen Sediment Transport Equation in Mathematical Models[A]. In: Fourth International Symposium on River Sedimentation[C]. 1989,611-616.
- [20] Heywood H. Particle size and shape distribution for lunar fines sample 12057,72[A]. In: Proc 2nd Lunar Science Conf[C]. MIT Press. 1971,1 989-2 00.
- [21] Mahmood A, Mitchell J K, Carrier W D, III, Grain orientation in lunar soil[A]. In: Lunar and Planetary Science Conference 5[C]. 1974. 2 347-2 354.
- [22] Cadenhead D A.Brown M G.Rice D K, et al. Some surface area and porosity characterizations of lunar soils [A]. In: Lunar and Planetary Science Conference 8[C]. 1977.1 291-1 303.
- [23] Shkuratov Y G.Bondarenko N V. Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data[J]. Icarus. 2001.149(2); 329-338.
- [24] Duke M B, Woo C C, Sellers G A. et al. Finkelman, Genesis of lunar soil at Tranquillity Base[A]. In: Proc. Apollo 11 Lunar Science Conf[C]. Pergamon, New York, 1970, 347-361.

PHYSICAL AND MECHANICAL PROPERTIES OF LUNAR REGOLITH

ZHENG Yong-chun^{1,2}, OUYANG Zi-yuan¹, WANG Shi-jie¹, ZOU Yong-liao³

1. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;

2. Graduate School, Chinese Academy of Sciences, Beijing 100039, China;

3. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

Abstract: The lunar surface is almost completely covered by a dark gray layer of debris, lunar regolith, with thicknesses in the range of 2 meters to 20 meters. It is created by meteorite and micrometeorite impacts, high diurnal (day/night) temperature difference, solar wind and cosmic ray bombardment. The surface layer consists of crushed bedrock, fine-grained rock and mineral fragments, meteorite residuals, polymict regolith breccias, and fused glass. Thus the loose regolith layer is ready-to-excavate mineral product, which is not necessary to drill and blast. The special formation process of lunar regolith leads to different properties from soils on the earth. This paper listed the average and best estimated value of physical and mechanical parameters at Luna and Apollo landing sites. These parameters are particle size distribution, particle shape, specific gravity, porosity and void ratio, electric conductivity and electromagnetic parameters, coefficient of compressibility, bearing capacity and shear strength. These parameters are significant for the design and operation of engineering equipment, lunar base siting and construction, and resource utilization.

Key words: lunar regolith; physical property; mechanical properties; best estimated value

ISSN 1001-6872(2004)04-0014-06; CODEN:KUYAE2

Synopsis of the first author: Zheng Yongchun, male, 27 tears old, a Ph D of astrochemistry. Now he is engaged in lunar and planetary sciences.