维普资讯 http://www.cqvi

Vol. 9 No. 2 June 2003

藏北高原新生代火山岩地球化学 系列划分及成因分析

刘 榮^{1,2}, 胡瑞忠¹, 迟效国³, 李 才³, 冯彩霞^{1,2} (1. 中国科学院 地球化学研究所, 贵阳 550002; 2. 中国科学院 研究生院, 北京 100039; 3. 吉林大学 地球科学学院, 长春 130061)

摘 要:根据 K-Ar 法和 Ar-Ar 法定年数据,藏北新生代火山岩从早到晚可划分为多格错仁和走构 油茶错高钾钙碱性系列(40~30 Ma)、巴毛穷宗和鱼鳞山白榴石碧玄岩 ~ 响岩系列(29~24 Ma)以 及黑石北湖钾玄岩系列(1.5 Ma)。从岩石化学和同位素方面对区内新生代火山岩进行了研究,认 为藏北新生代火山岩同时具有板内碱性玄武岩和岛弧玄武岩的双重地球化学特征。在成因和源 区上各系列存在着差异,高钾钙碱性系列为富集地幔玄武岩底侵作用导致地壳物质部分熔融的产 物,并经历了地壳的 AFC 过程。而白榴石碧玄岩 - 响岩系列和钾玄岩系列来自与古俯冲有关的 "古老富集地幔",为岩浆分离结晶作用的产物。岩浆起源深度随时间变新逐渐变大。

关 键 词:藏北;新生代;火山岩;板内;岛弧;富集地幔 **中图分类号:** P588.14 **文献标识码:** A **文章编号:** 1006-7493(2003)02-279-14

1 引 言

藏北高原自南向北分布有羌塘、可可西里和喀喇昆仑-玉门三条新生代火山岩带,按年代 分为钠质碱性玄武岩系列(西羌塘)(65~40 Ma)、白榴石碧玄岩-响岩系列(中羌塘)(29~23 Ma)、高钾钙碱性系列(东羌塘)(40~29 Ma)、可可西里钾玄岩系列(19~7 Ma)和喀喇昆仑-玉门钾玄岩系列(5 Ma 以来)(迟效国等,1999; 刘榮等,2001)。长期以来,许多学者(李才等, 1989; 刘嘉麒等,1990; 邓万明,1991,1993,1998; 邓万明等,1996; 解广轰等,1992; Arnaud et al,1992; Tuner et al,1993; Deng Wanming,1994b; 郑祥身等,1996; Chung et al,1998; 丁林 等,1999; 赖绍聪,1999; 迟效国等,1999)对该区火山岩进行了不同程度的研究,普遍认为藏 北新生代火山岩的形成与印度板块和欧亚大陆碰撞(40~55 Ma)(Dewey et al,1989; Beck et al,1995)后青藏高原北部大规模的地壳缩短、岩石圈加厚和减薄等深层次作用以及高原隆升 的地球动力学过程密切相关。但在系列划分上未将岩石学与年代学联系起来,成因认识方面 也存在着争议。本文在野外和前人(迟效国等,1999)工作的基础上,从时空分布和岩石地球化 学特征方面对研究区火山岩进行了系列划分和成因研究。在野外地质调研过程中,分别对羌 塘地区的多格错仁、巴毛穷宗和鱼鳞山岩区以及西昆仑地区的黑石北湖岩区(图 1)进行了实 地考察和采祥工作,并确定和研究了第三纪走构油茶错高钾钙碱性岩区。结合迟效国等 (1999)的 K-Ar 法和 Ar-Ar 法年代数据和划分标准,对研究区火山岩进行了系列划分,即多格

基金项目:原地矿部"九五"基础研究重点项目(9501101-5)和国家杰出青年基金项目(49925309) 第一作者简介:刘榮,男,1974 生,博士,从事岩石学和地球化学研究。E-mail;lliushen@hotmail.com

9卷

高校地质学报

1. 钾玄岩系列火山岩(Shoshonitic series volcanic rocks); 2. 高钾钙碱性系列火山岩(High potassium calc-alkine series volcanic rocks); 3. 白榴石碧玄岩 - 响岩系列火山岩(Leucitite basanite phonolite series volcanic rocks); 4. 断裂构造 (Fault structure)

图 1 藏北新生代火山岩分布图

Fig.1 The distribution of the Cenozoic volcanic rocks in northern Tibet

错仁和走构油茶错高钾钙碱性火山岩系列(40~30 Ma);巴毛穷宗和鱼鳞山白榴石碧玄岩 – 响岩火山岩系列(29~24 Ma)和1.5 Ma 以来的黑石北湖钾玄岩系列。该划分的合理性和正确性可以从下面岩石学方面得到验证。从年代上看,藏北高原火山活动自南向北推进。

青藏高原火山岩起源于加厚的陆壳底部及壳幔混合带,或直接来源于软流圈顶部地幔岩 的局部熔融(赖绍聪,1999),通过对各系列火山岩的研究,对认识深部地质作用过程和反演研 究区内的构造 – 岩浆旋回过程有一定的意义。

2 地质概况

羌塘岩带火山岩构造上受 EW 向边界断裂控制,火山岩呈近东西向展布(图 1);岩相上以 裂隙式和喷溢式为主;地貌景观多呈残丘状,且火山岩中均有沉积夹层,表明它们的现今地貌 是后期构造抬升侵蚀的结果;构造上可能与新生代早期藏北地区南北向拉伸作用有关(潘桂棠 等,1990)。黑石北湖岩区位于北纬 35°以北,黑石北湖以南,熔岩也呈东西向分布,火山活动 表现出与阿尔金断裂活动有着密切的成因关系。

3 地球化学特征

3.1 岩石化学

研究区内火山岩岩性以中基性、中性和中酸性岩类为主,含少量基性岩。各类火山岩的主 量元素含量列于表1。高钾钙碱性系列火山岩的 SiO₂ 含量较高(58.48%~66.7%),主要为 中性-中酸性岩类,包括粗面英安岩、橄榄粗安岩和英安岩(图 2A)。橄榄粗安岩为斑状结构, 斑晶主要为橄榄石,另有少量的奥长石和普通辉石,基质为奥长石、正长石和辉石等,副矿物为 磁铁矿和磷灰石。英安岩也为斑状结构,斑晶为石英和奥长石,另含少量黑云母,基质主要为 奥长石、透长石和石英微晶,基质为霏细结构。粗面英安岩组成与英安岩大致相同,只是基质 大致定向排列构成了粗面结构;白榴石碧玄岩 - 响岩系列火山岩主要为一套超钾质中基性岩 类,SiO₂ 含量相对较低(52.03%~56.07%),K₂O 含量较高(5.46%~9.96%),岩石类型包括

2	HII.
2	册

1	able	1 The anal	ysis re	sults of	major	eleme	nts (%	of (enozoio	e voica	nic roc	ks in i	porther	n Tibe	et
样品号	系列	岩石名称	SiOz	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	TOL
B33062	钾	橄榄粗安岩	59.39	1.99	14.51	0.69	6.02	0.11	2.19	4.68	3.13	4.22	1.03	1.99	99.95
B33065	玄	橄榄粗安岩	60.70	2.02	14.28	0.39	6.34	0.11	1.97	4.16	3.44	4.30	1.04	0.72	99.47
B33067	岩	玄武粗安岩	51.81	1.91	14.4	3.27	5.30	0.15	4.85	6.29	3.10	2.84	0.70	5.77	100.39
B33070	系	玄武粗安岩	53.43	1.89	14.64	5.04	4.36	0.15	5.13	6.48	3.36	2.72	0.64	2.32	100.16
B33071	列	玄武粗安岩	54.25	1.88	14.87	5.91	3.61	0.12	4.58	6.46	3.29	2.67	0.61	2.11	100.36
Qhcb13	白	白榴石响岩	55.51	0.26	19.45	2.65	1.13	0.15	0.15	2.36	7.76	7.64	0.03	2.91	99 <i>.</i> 98
Qhcb6	榴	白榴石响岩	56.07	0.27	19.70	2.53	1.24	0.16	0.14	1.78	7.32	8.28	0.03	1.98	9.50
Qhcb7	石	白榴石响岩	55.25	0.27	19.41	2.60	1.24	0.16	0.11	1.94	8.11	8.2	0.03	2.45	99.77
Qhcb8	碧	白榴石响岩	55.09	0.27	19.43	2.51	1.38	0.16	0.10	1.91	8.15	7.77	0.02	1.67	98 <i>.</i> 46
Qhcb9	玄	白榴石响岩	55.41	0.61	19.34	2.76	1.10	0.13	0. 68	2.72	4.66	8.48	0.13	3.43	99.45
Qyb1	岩	响岩质碱玄岩	52.35	1.15	15.53	4.25	2.78	0.19	2.49	6.54	3.80	5.46	0.50	4.34	99.38
Qyb1-1		响岩质碱玄岩	52.03	1.19	15.41	4.34	2.86	0.19	2.46	6.72	3.79	5.67	0.50	4.33	99.49
Qyb10	响	白榴石响岩	55.95	1.24	16.99	6.10	0.09	0.16	0.71	2.38	2.32	9.96	0.20	3.29	99.39
Qyb2	岩	白榴石响岩	55.98	0.87	14.09	6.77	2.07	0.23	0.3	4.23	6.57	6.53	0.07	2.12	99.83
Qyb2-1	系	响岩质碱玄岩	52.64	1.12	17.64	4.60	1.22	0.22	0.81	5.01	2.95	8.28	0.14	4.89	99.52
Qyb3	列	碱玄质响岩	55.48	1.15	17.52	4.96	0.81	0.16	0.91	3.47	2.49	9.20	0.20	4.08	100.43
ZG1	高	粗面英安岩	63.99	0.90	15.64	1.00	3.39	0.06	1.92	3.93	4.37	3.58	0.36	0.64	99.78
ZG2	钾	橄榄粗安岩	60.52	1.04	15.09	1.47	3.50	0.07	2.69	5.15	3.84	3.81	0.50	1.99	99.67
ZG6	钙	橄榄粗安岩	61.43	0.85	15.28	1.57	2.84	0.06	2.45	5.15	4.03	3.48	0.35	1.91	99.4
ZG7	碱	橄榄粗安岩	60.58	0.98	15.30	1.58	3.08	0.07	2.92	5.12	3.67	3.66	0.44	2.16	99.56
ZG8	性	橄榄粗安岩	58.48	1.01	15.43	1.66	4.01	0.07	2.65	5.02	4.22	3.73	0.51	2.07	99.86
DG2	系列	英安岩	66.70	0.55	15.47	0.48	2.78	0.05	1.94	3.43	4.04	3.05	0.18	0.66	99.3 3

表 1 藏北新生代火山岩主量元素分析结果(%)

注:分析方法:XRF;分析单位:中国地质科学院地质实验测试中心; B33062-71 为黑石北湖岩区样品;DG 为多格错 仁岩区样品;ZG 为走构油茶错岩区样品;Qhcb 为巴毛穷宗岩区样品;Qyb 为鱼鳞山岩区样品

白榴石响岩、响岩质碱玄岩和碱玄质响岩(图 2A)。白榴石响岩为深灰至灰黑色,块状构造,斑状(响岩)结构,斑晶(25%)为自形的白榴石、辉石和斜长石,基质(70%)为透长石和碱性玻璃。 碱玄质响岩为暗绿色,具块状构造,斑晶组成为透长石(45%~50%),辉石(20%)(普通辉石和 透辉石)和少量黝方石和霞石(5%),基质为中长石和辉石等(25%)。响岩质碱玄岩为灰黑色 斑状结构,斑晶(45%)主要为辉石和少量橄榄石,基质(30%)主要由中基性斜长石、碱性长石 等组成。碱玄质响岩和响岩质碱玄岩样品中少量发生碳酸盐化现象;钾玄岩系列火山岩 SiO₂ 含量中等(51.81%~60.7%),K₂O为2.67%~4.30%,属中基性到中性高钾系列岩石,主要 出露有橄榄粗安岩和玄武粗安岩(图 2A),橄榄粗安岩和玄武粗安岩的区别为斑晶,前者主要 为橄榄石、奥长石和普通辉石,基质具粗面结构;而后者斑晶多为基性斜长石、普通辉石或紫苏 辉石,少量或不含橄榄石,基质为交织结构。在 SiO₂ - K₂O 相关图解(图 2B)中,除个别点外, 各岩区火山岩所投系列与按年代划分的标准(迟效国等,1999; 刘榮等,2001)一致。巴毛穷宗 岩区所有样品的 P₂O₅ 含量均小于 0.2%,显示了岛弧岩浆的特性(张海洋等,1999)。

3.2 微量元素和稀土元素

微量元素分析结果(表 2)显示,除了 Ni,Cr,V 和 Co 外,其余元素的丰度总体具有由高钾 钙碱性系列→钾玄岩系列→白榴石碧玄岩 - 响岩系列升高的趋势。各系列火山岩中 Cr,Ni 含 量变化较大((4~110)×10⁻⁶,(4~68.7)×10⁻⁶),但均远小于原始地幔值(大于 1000×10⁻⁶) 和 500×10⁻⁶)(Johnson et al,1990)。在白榴石碧玄岩 - 响岩系列中巴毛穷宗和鱼鳞山两个岩

9卷

△ - 钾玄岩系列 (shoshonite series); × - 高钾钙碱性系列 (high potassium calc-alkine series); 曾- 白榴石碧玄岩 - 响岩系列 (leucite basanite-phonolite series)

图 2 藏北新生代火山岩的化学分类命名(A)(Le,1989) 和岩石组合系列鉴定(B)(Peccerillo et al,1976)图解

Fig. 2 The chemical classification and identification diagrams of Cenozoic volcanic rocks in northern Tibet

区存在很大的差异,主要表现在 Ba, Rb, Sr, Th, U, Ti 和 Pb 的含量变化上,其中 Ba, Rb, Sr 和 Ti 含量相差较悬殊。在巴毛穷宗岩区 Ba, Ti, Cr, V, Ni 和 Co 含量相对较低。而 Rb, U, Th, Zr 和 Hf 含量以及 Rb/Sr 比值(0.297~0.083)则相对较高。钾玄岩系列 Sr 含量较低((663~ 858)×10⁻⁶)。研究区内火山岩 Nb/Ta 比值变化幅度较大(14~44),明显超过一般碱性玄武 岩的变化幅度(22~23)。在微量元素蛛网图(图 3A)中,各系列火山岩都具有明显的驼峰式分 布,表现在普遍富集大离子亲石元素(LILE)Ba(白榴石碧玄岩 - 响岩系列个别样品除外), Th, K 和高场强元素(HFSE)Zr 和 Hf,亏损高场强元素 Nb 和 Ta,说明研究区火山岩同时具有板内 碱性玄武岩和岛弧玄武岩的双重地球化学特征(迟效国等,1999;刘榮等,2001)。高钾钙碱性 系列中有一个样品表现出 Th 的相对亏损特征,可能是分析误差所致;钾玄岩系列和白榴石碧 玄岩 - 响岩系列蛛网图中 Sr 普遍或部分相对亏损,可能与源区或结晶分异有关,这种亏损在 浅源区可能是由斜长石分离结晶引起的(李昌年,1992),但在较深地幔(石榴石二辉橄榄岩地 幔)中这种可能性则很小,反映的信息是在地幔的稳定矿物相中可能有金云母存在(陈江峰等, 1995),但也不能忽视地壳混染作用和蚀变作用的的影响;白榴石碧玄岩 - 响岩系列出现了强 烈的 Ti, P 和少量 Ba 的亏损现象,暗示岩浆的分离结晶作用较强,成岩过程可能发生了磷灰 石、钛铁矿以及钾长石、斜长石和黑云母等矿物的分离结晶现象(邱瑞龙,1998)。

研究区内火山岩的稀土元素总量较高(表 2), Σ REE 为(196~2 409)×10⁻⁶,同样总体具 有由高钾钙碱性系列→钾玄岩系列→白榴石碧玄岩 - 响岩系列升高的趋势。尤以响岩最高 ((1 233~2 409)×10⁻⁶),如此高的 REE 含量可能与富含稀土元**素的副矿物(磷灰石等)的存** 在有关。La_N/Yb_N 和 C_{eN}/Yb_N 比值总体也具有此特征。各系列火山岩中 δEu 为 0.97~1.02,

r	詽	
Z	7 71	

Table 2 1	The analys	is results	of trace	elements	$(\times 10^{-6})$	and RE	E for C	enozoic v	olcanic	rocks i	n north	ern Tibe
样品号	B33062	B33065	B33067	B33070	B33071	ZG1	ZG2	ZG6	ZG7	2G8	DG1	DG2
所属系列	钾	玄	岩	系	列	高	钾	钙	藏		<u>系</u>	列
Ba	1 673.5	2 060.9	1 159.8	1 035.2	1 020.3	2 858	838	930 111	801	813	1 261	1 289
Sr	854	858	751	693	663	649	774	818	809	739	885	842
Y	33	31	25	25	25	15	16	15	9.5	16	10	10
Zr Nh	512	58.4	396 41.4	37.2	308	330 20.1	21.8	18.5	303 19.3	21.5	7.1	7.0
Ťĥ	39.1	43.8	17.3	16.6	16.3	18.7	14.6	18.0	2.66	12.7	18.8	17.5
Ni	10.4	9.5 77	68.7 120	62.1	54.8	12.8	24.65	23.5	34.9	23.4	33.6	36.1
Čr	20	18	97	105	110	22	62	61	65	52	50	53
H	13.8	15.0	11.3	10.8	10.9	9.7	9.1	9.3	8.9	9.0	7.6	7.7
	2.8 14.7	3.1 13.6	2.5 29.5	32.9	29.7	10.9	1.2	1.1	1.1	13.4	10.2	10.0
Ŭ	6.81	7.72	2.94	2.73	2.76	3.03	2.47	4.32	3.29	2.05	3.55	3.36
11 Ph	1 193	12 109	11 450 20	11 331 20 0	1 558	6 234 24 69	5 095	5 895 23 12	6 054 20 2	20 00	3 297	40 08
Sc	10.92	9.91	15.1	15.93	14.46	10.02	10.01	10.03	10.05	10.09	10.18	10.16
W	2.87	2.97	3.22	3.37	2.74	1.62	2.05	2.18	2.34	2.47	* 54 1	2.59
Ce	346	391	206	180	179	128.2	124.6	122.4	105.9	121.5	89.99	91.82
Pr	37.8	42.6	22.0	20.3	19.7	13.41	13.96	13.47	9.71	13.08	9.96	9.07
Nd	122.8	131.9	12 43	67.92 11.68	66.6 11.60	45.0 6.76	47.8	45.1 6 77	35.4	45.1	34.9	32.2
Eu	3.58	3.93	2.76	2.52	2.43	1.53	1.77	1.65	1.34	1.73	1.22	1.16
Gd	11.96	12.32	8.13	7.87	7.76	4.56	5.18	4.52	3.68	4.80	3.15	3.05
Dy	6.89	6.79	5.14	5.05	5.13	2.99	3.25	2.85	2.45	3.15	19.7	1.89
Hó	1.17	1.10	0.87	0.89	0.91	0.51	0.56	0.48	0.42	0.54	0.33	0.32
Er Tm	3.16 0.40	2.80	2.33	2.29	2.38	0.19	1.51	0.18	0.15	1.48	0.93	0.90
Yb	2.24	1.93	1.82	1.84	1.88	1.15	1.21	1.10	0.95	1.19	0.81	0.82
	0.31 741 4	0.25	0.24	0.25	0.26	0.15	0.15	0.13	0.11	0.15	0.09	0.09
Lan/Ybn	48.49	62.01	35.03	32.19	30.88	37.03	34.81	38.5	25.81	32.98	39.68	36.02
Ce _N /Yb _N	31.22	40.97	22.90	19.86	19.27	22.54	20.83	22.49	22.55	20.64	22.46	22.63
样品号	Qhcb13	Qhcb6	Qhcb7	Qhcb8	Qhcb9	Qyb1	Qyb1-1	<u>. 0.а.</u> Qyb10	Qybi	2 Q	<u></u> yb2-1	Qyb3
	白	榴	石	潛	玄	岩	-	响	岩		系	列
Ba	76.29	113.88	93.64 284	120.91	946.83	6 623.9	6 940 65	2 774	1 73	9 2	078	2 573
Sr	932	96 1	932	1 015	2 455	7 221	5 845	4 767	6 67	85	619	4 848
Y	38	37	33	40	41	61	50	50	88	. .	57	44
Nb	56.9	59.2	57.4	58.9	56.0	74.8	69.1	947 104	83.4	1 9	527 1.1	86.3
Th	152.7	159.2	146.2	170.4	122.9	95.1	57.7	50.4	137	9	0.3	88.1
	3.6	3.4	3.2	4.0 47	6.9 61	25.0 121	23.3	6.1 97	3.3		7.5 08	7.3
Ċr	5	5	4	6	11	38	39	8	4		ĩ	9
Hf	25.1	26.2	25.5	25.3	18.3	15.9	15	19	20		7.5	16
ċ	2.6	2.4	2.0	2.4	4.1	13.1	12.5	7.8	5.4		4.0 5.0	6.0
Ŭ	25.12	36.09	34.16	40.59	12.91	4.37	3.77	13.0	17.0) 6	. 99	4.50
Pb	413	428	403	451	133	174	139.8	5 215 199.7	283.	4 0 4 1	894 88.8	5 395 190.9
Sc	3.52	4.88	4.9	4.07	5.55	8.46	8.24	4.03	5.9	5 4	.87	5.58
W La	11.7 346	16.4 276.46	7.05	9.84 338.48	12.2	5.51	8.62 269 0	10.7 262 7	19.1	l 7 8 3	7.91 95.8	7.83
Ĉe	500	473	455	474	643	675	620.4	682.7	1 153	.5 6	64.2	631.0
Pr	* 126.0	31.5	27.3	38.4	59.3	77.3	62.71	56.64	122.7	71 70	0.89	64.28
Sm	120.0	11.24	9.73	13.32	27.02	230.9 39.45	192.4 34.02	27.72	53.2	8 2 2 3	1.95	29.58
Eu	2.94	2.84	2.38	3.12	6.03	9.23	8.13	7.11	12.9	5 7	. 99	7.11
Gol Th	8.14 1.09	8.44 1.14	0.98	8.34	15.30	22.47 2.89	20.33	16.74 2.21	29.6	4 18 5 7	5.02	16.07
Dy	*	5.78	5.02	6.14	8.71	12.31	11.0	10.1	17.2	ž 1	0.7	9.12
Ho Fr	1.28	1.11	0.96	1.18	1.48	2.11	1.93	1.80	3.01		.95	1.58
Tm	0.53	0.54	0.47	0.55	0.54	0.77	0.71	0.72	8.54 1.15	2 3 5 0	. 75	4.42
Yb	3.30	3.50	3.10	3.50	3.25	4.67	4.19	4.30	6.7	2 4	. 41	3.36
ΣREE	U.49 *	0.55	0.49	0.55 985.7	0.49	0.69	0.62	0.64 1.244	1.02	20 91	415	0.48 1.293
La _N /Yb _N	62.25	46.9	45.34	57.42	59.72	46.01	38.12	36.29	57.5	2 5	3.29	60.36
δEυ	30.63 0.82	0.89	29.73	27.43	40.04 0.91	29.23 0.95	29.93 0.95	32.09 0.99	34.3 1.00	4 34) 0	U. 45	37.96 1.00

表 2 藏北新生代火山岩微量元素和稀土元素分析结果(×10⁻⁶)

注:稀土及微量元家由中国科学院广州地球化学研究所用 PE Elan 6000 型电感耦合等高子质谱(ICP-MS)分析,分析精度优于 2%。 表中 * 号代表低于检出值。 不具有明显的 Eu 异常。其中钾玄岩系列 δEu 最低(0.97~0.84),反映出了极弱的负 Eu 异常。在球粒陨石标准化配分曲线(图 3B)中,各系列火山岩均表现为 LREE 强烈富集的右倾型。除了钾玄岩系列表现出轻微负 Eu 异常外,其它两系列都没有包含 Eu 的异常信息。说明除钾玄岩系列外其它两系列火山岩在岩浆形成和上移过程中普遍缺乏斜长石的分离结晶作用。从稀土配分曲线分布同样可看出,三系列火山岩稀土曲线从上到下依次为:白榴石碧玄岩 – 响岩系列、钾玄岩系列和高钾钙碱性系列,这种分布型式暗示他们在源区组成和成因上可能存在一定的差异(邓万明等,2001)。但各系列火山岩配分曲线几乎平行分布,不能排除它们在源区组成上彼此可能具有的相似性。

3.3 Sr, Nd, Pb 同位素组成

各系列火山岩的Sr,Nd,Pb同位素成分测试结果列于表3。由表3可见,⁸⁷Sr/⁸⁶Sr为0.70624~0.70986,¹⁴³Nd/¹⁴⁴Nd为0.51219~0.51260,²⁰⁶Pb/²⁰⁴Pb为18.8~19.6,²⁰⁷Pb/²⁰⁴Pb

2	8	5
_	-	-

	Table 3 Sr,	Nd, Pb	isotopic	composit	ions for	Cenozoic	volcanic	rocks in	northern	n Tibet	
样品号	岩石名称	系列	⁸⁷ Rb ⁸⁶ Sr	⁸⁷ Sr ⁸⁶ Sr	$\frac{^{147}\text{Sm}}{^{144}\text{Nd}}$	¹⁴³ Nd ¹⁴⁴ Nd	e _{Nd}	²⁰⁸ Pb ²⁰⁴ Pb	²⁰⁷ Pb ²⁰⁴ Pb	²⁰⁶ Pb ²⁰⁴ Pb	产地
B33062	橄榄粗安岩	钾	1.1207	0.70977	0.0839	0.51223	- 8.04	39.39	15.9	19	黒
B33065	橄榄粗安岩	玄	1.4444	0.7098	0.0849	0.51221	- 8.33	39.12	15.75	18.8	石
B33070	玄武粗安岩	岩	0.6639	0.70764	0.1046	0.51236	- 5.44	39.77	16.01	19.14	北
B33071	玄武粗安岩	系 列	0.653	0.70764	0.1041	0.51237	- 5.27	39.93	16.08	19.23	湖
Qhcb13	白榴石响岩	白	1.7342	0.70906	0.0959	0.51252	-1.94	40.18	16.16	19.26	巴
Qhcb7	白榴石响岩	榴	1.4998	0.70875	0.076	0.51219	- 8.35	39.39	15.83	18.87	毛
Qhcb8	白榴石响岩	石	1.3229	0.70887	0.0763	0.51258	-0.45	39.71	15.93	18.98	穷
Qhcb9	白榴石响岩	考古	0.4035	0.70844	0.0989	0.51231	- 6.16	39.56	15.87	18.91	宗
Qyb1-1	响岩质碱玄岩	Ī	0.0293	0.70943	0.0994	0.51222	- 7.88	40.1	16.01	19.33	鱼
Qyb10	白榴石响岩	响	0.1254	0.70985	0.0866	0.51219	- 8.36	39.78	15.89	19.15	
Qyb2	白榴石响岩	岩	0.1386	0.70986	0.0862	0.51228	-6.68	40.71	16.26	19.64	鰊
Qyb2-1	碱玄质响岩	系	0.0872	0.70945	0.088	0.51222	-7.87	39 .99	15.98	19.26	
Qyb3	碱玄质响岩	列	0.139	0.70948	0.0842	0.51228	-6.67	40.45	16.18	19.51	<u>Ц</u>
ZG1	粗面英安岩	高	0.9255	0.7068	0.0874	0.51242	- 4.33	39. 58	15.92	19.01	走
ZG2	橄榄粗安岩	钾	0.6515	0.70628	0.0906	0.51244	- 4.66	39.64	15.98	19.05	构
ZG7	橄榄粗安岩	钙碱性	0.5376	0.70629	0.0885	0.51244	-3.8	39.77	16.02	19. 0 8	油
ZG8	橄榄粗安岩	系	0.644	0.70624	0.0899	0.51243	-4.08	39.61	15.97	19.03	茶错
DG2	英安岩	列	0.5343	0.70788	0.0891	0.51236	-4.8	39.84	16.03	19.08	多格错仁

表 3 藏北新生代火山岩 Sr, Nd, Pb 同位素组成

注:同位素由中国科学院广州地球化学研究所同位素分析中心测试

为 15.75~16.26,²⁰⁸Pb/²⁰⁴Pb 为 39.12~40.71, ε_{Nd}为 - 8.36~ - 1.94。由于岩石的成岩时代 较新,故这些数据未进行年代学校正,即将测定值视为成岩时代的初始值。以上同位素组成表 现为富集地幔源区或壳源岩浆 AFC 过程的特征。在 Sr - Nd 相关图解(图 4)中,所有火山岩 投影点均落于第四象限,大致呈负相关关系,且偏离地幔演化线。白榴石碧玄岩 - 响岩系列和 钾玄岩系列样品几乎都位于意大利 Roccamonfina 和 Roman 高钾熔岩区内,显示它们的 Sr,Nd 同位素有广泛的一致性,其中白榴石碧玄岩 - 响岩系列样品的 Nd 同位素组成变化较大,这种 差异可能是由源区组成不均一引起的。高钾钙碱性系列火山岩样品落于东非裂谷高钾熔岩区 域内或其附近,说明源区大量地壳组分的存在。在⁸⁷ Sr /⁸⁶ Sr - ²⁰⁶ Pb /²⁰⁴ Pb (图 5A)和¹⁴³ Nd /¹⁴⁴ Nd - ²⁰⁶ Pb /²⁰⁴ Pb (图 5B)相关图中,除高钾钙碱性系列落入东非裂谷高钾熔岩区域内或边界 外,其它两系列几乎都位于 EMII 一端,暗示源区为有俯冲物质参与的古老富集型地幔(Hart, 1984,1986; Othman,1989),同时说明高钾钙碱性系列火山岩源区与其它两系列不同。

4 成因探讨

4.1 成岩机制

图 6 为以 SiO₂ 含量为横坐标的 Harker 图解,图解中各系列火山岩样品的 TiO₂, Fe₂O₃,

Fig. 4 ${}^{87}\text{Sr}$ / ${}^{86}\text{Sr}$ - ${}^{143}\text{Nd}$ / ${}^{144}\text{Nd}$ correlation diagram of Cenozoic volcanic rocks in northern Tibet

MgO,CaO和 P₂O₅ 与 SiO₂ 总体均呈较好的负相关关系,说明岩浆在成岩过程中存在着磷灰石、单斜辉石和钛铁矿等矿物的分离结晶作用(李献华等,1999)。各系列火山岩大多数样品 (除白榴石碧玄岩 – 响岩系列少数样品和钾玄岩系列外)的 Al₂O₃ 和 SiO₂ 呈现正相关关系,反 映成岩过程中总体不存在明显的长石分离结晶作用。各系列火山岩中 CaO/Al₂O₃ 值随 CaO 含量的降低而变小,这是由单斜辉石晶出引起的(刘丛强等,1995)。此外,各系列火山岩中 Ni <200×10⁻⁶,CaO/Al₂O₃<0.5,Cr 含量较低,证明成岩过程可能经历了低度部分熔融作用或 强烈的结晶分异作用。

本区火山岩中强烈富集 LREE 和不相容元素,难以用正常地幔的平衡部分熔融来解释

(Baker et al, 1997)。它的形成与板块碰撞过程岩石圈厚度变化以及高原雏型形成前的古俯冲 作用有关(解广轰等, 1992)。从LREE - Cr(图 7A)相关图解可以明显看出,高钾钙碱性系列 火山岩为岩浆部分熔融的产物,同时岩浆的形成过程中也存在着不同程度的结晶分异作用。 目前,关于中酸性火山岩的成因存在两种解释(周文戈等, 1998),一种解释认为来自幔源基性 岩浆的结晶分异;另一种认为是幔源基性岩浆侵入中下地壳导致地壳物质部分脱水熔融的结 果。从地球化学特征上看,SiO₂>59%,富Al₂O₃(15.09%~15.64%)和 Na₂O(>3.6%),高 Sr((649~885)×10⁻⁶)和 Sc,低 Y(<17×10⁻⁶)和 Yb(<1.22×10⁻⁶),(La/Yb)_N>25,Sr/Y >40,MgO<3%(Mg[#]<0.35),以及弱的 Eu 异常等,与 Adakite 的特性完全相同。所以该系 列应为富集地幔基性岩浆侵入中下地壳导致下地壳物质部分脱水熔融形成的,并经历了地壳 的 AFC 过程。关于其具体成因将另文详述。

钾玄岩系列火山岩的形成归因于岩浆的分离结晶作用,石榴石碧玄岩 - 响岩系列形成过

高校地质学报

程则相对较复杂(图 7A)。实验表明,地幔岩经过任何程度的部分熔融都不可能产生这种碱性 岩类,而地壳岩石的混染亦不可能使岩浆普遍高度富钾(王德滋等,1991);而另有实验证明,在 地壳较厚地区(如藏北),莫霍面附近的基性岩浆在较高压力下经过充分的分离结晶,能产生相 当富钾的岩浆(Meen,1987,1990)。在图中该系列有两种趋势,一种是明显的分离结晶趋势 (鱼鳞山岩区),该种趋势中相容元素 Cr 和不相容元素 LREE 呈反消长关系,而且从 Cr 的含量 (<40×10⁻⁶)来看,这种分离结晶过程为一种高度分离结晶(进化岩浆的分离结晶作用);另 一种为 Cr 与 LREE 呈正消长关系(巴毛穷宗岩区),这种关系也反映为分离结晶作用,只是该 岩区的源区较鱼鳞山岩区要深(王中刚研究员面议)。同样,从 La/Sm - La 图解(图 7B)可看 出,巴毛穷宗和鱼鳞山两岩区火山岩都为分离结晶作用形成的,这与前人(Cocherine,1986; 丁 林等,1999)对藏北超钾质岩石成因的研究结果不一致。

(图例同图 3)

图 7 藏北新生代火山岩的 logLREE - logCr(A)和 La - La/Sm(B)相关图 Fig. 7 logLREE - logCr diagram (A) and La - La/Sm diagram (B) of Cenozoic volcanic rocks in northern Tibet

4.2 成岩环境

火山活动对应一定的构造变形。印度板块与欧亚板块的碰撞发生在 40~55 Ma。新生代 火山岩发生在两大板块碰撞后的陆内构造演化阶段,与陆内拉张事件密切相关。构造及沉积 记录显示,新生代以来,藏北地区至少发生过两期重要的拉伸事件:早期以南北向为主,形成 NEE,NWW 及 EW 向呈串珠状排列的地堑或半地堑式裂陷盆地,如康托盆地、双湖盆地等,盆 地边界以同生断裂为限,羌塘地区火山岩(包括高钾钙碱性系列和白榴石碧玄岩 - 响岩系列) 多产于此类拉张盆地当中,火山岩呈近东西向展布,与盆地的走向相近,火山活动以裂隙式喷 溢为主;晚期拉伸发生在中新世以来,以东西向拉张作用为主,形成南北向展布的对称型拉张 盆地,在藏北地区广泛发育,与该期拉张事件共生的火山活动(以钾玄质系列火山活动为主)主 要发生在羌塘以北地区。

钾玄岩系列常出露于陆内造山带的边界,成为陆内造山带边界的典型标志(Lai et al, 1996)。该岩石系列产于大陆弧和后碰撞弧环境,也可发育于大洋岛弧,形成时间较晚,空间上 远离海沟,少数产于板内环境(Morrison,1980; Foley et al, 1992;季绍新等,2001)。在Y+Nb - Rb 相关图解(略)中,研究区火山岩均投影于碰撞后的板内环境中,在 Zr/Al₂O₃ ~ TiO₂/ Al₂O₃ 图中(Muller et al, 1993, 1995)(略),研究区钾玄岩样品也落于板内环境,结合前人 (Deng,1992; 邓万明,1998; 季绍新等,2001)的研究观点和西藏高原构造演化历史,作者认为 该系列钾玄岩应产出于大陆板内环境。

4.3 源区性质

同位素分析表明,高钾钙碱性系列火山岩源区与其它两系列不同。对于前者,为富集地幔 玄武质岩浆底侵到中下地壳导致地壳物质部分熔融形成的。对于白榴石碧玄岩 – 响岩系列和 钾玄岩系列,EMII 特性说明这种富集地幔可能是上地幔与沿着古俯冲带被带入地幔楔的壳 源物质、大洋沉积物发生了混合交代作用的产物(Hart,1984;邓万明等,2001);另从表3可 知,两系列火山岩的 e_{Nd}负值相对较大,暗示壳幔物质混合是在源区进行的(源区混合作用),而 非岩浆上升过程中与地壳物质发生混染(地壳混染作用)的结果。然而幔源岩浆底侵作用是如 何发生的呢,即上升通道和动力如何产生?壳源物质是如何进入地幔源区的呢?伴随着板块 碰撞的持续进行,藏北高原内部存在大量的陆内俯冲作用(A型俯冲)(邓万明,1998)。壳源物 质通过俯冲就会大量进入楔型地幔。另由于碰撞挤压的持续进行,岩石圈发生了南北缩短和 垂向增厚,深处就会产生一定的超壳断裂,同时岩石圈内部也会由于相变而发生拆沉作用 (Tunner,1993),为岩浆的底侵提供了通道和动力。

高钾钙碱性系列为壳源岩浆。白榴石碧玄岩 - 响岩系列和钾玄岩系列源区都为 EMII 型 富集岩石圈地幔。白榴石碧玄岩 - 响岩系列火山岩稀土配分曲线上重稀土 Dy - Lu 段比较平 坦,表现出尖晶石二辉橄榄岩地幔派生的特征(姜常义等,1997)。钾玄岩系列火山岩形成时间 较晚(1.5 Ma),稀土配分特征(Dy - Lu 段较陡,重稀土分异较大)以及微量元素标准化曲线特 征(显示一定的正 Zr 和负 Sr,Y 异常)显示其地幔类型为石榴石二辉橄榄岩地幔(徐义刚等, 2001;姜常义等,1997)。结合藏北高原岩石圈随持续碰撞不断加厚的构造演化历史以及白榴 石碧玄岩 - 响岩系列两岩区起源的不同,可得出研究区内新生代火山岩的岩浆起源深度具有 由老渐新变大的趋势。

5 结 论

 研究区内火山岩以中性 - 中酸性岩类为主,各系列火山岩普遍强烈富集大离子亲石元 素(Ba,Th和K)以及亏损高场强元素(Nb,Ta)为特征,显示了研究区火山岩同时具有板内碱 性玄武岩和岛弧玄武岩特征的双重地球化学性质。

除了钾玄岩系列具有轻微的负 Eu 异常特性外,其它两系列都几乎不具有 Eu 的异常特性,说明在岩浆形成和上移过程中几乎没有出现熔浆 – 斜长石的相平衡过程,即斜长石的分离结晶作用不明显。

3. 高钾钙碱性系列为富集地幔基性岩浆侵入中下地壳导致地壳物质部分脱水熔融形成的,并经历了地壳的AFC过程;白榴石碧玄岩 - 响岩系列两岩区(鱼鳞山和巴毛穷宗)火山岩源区组成上都为一种"古老的富集型地幔",即存在古俯冲物质参与的 EMII 型富集地幔端元。 在成因上也相同,都为高度分离结晶的岩浆类型,但后者的岩浆起源深度相对较大。

4. 火山岩源区深度随时间变新自南向北逐渐变大。

致 谢:在撰写过程中得到了徐义刚研究员、赖绍聪副教授、裘俞卓研究员、王中刚研究员以 及方维董老师的指导和帮助,特此感谢。

参考文献:

- 陈江峰,满发胜,倪守斌. 1995. 西天山菁布拉克岩带基性-超基性岩的 Sr、Nd 同位素地球化学. 地球化学,24(2):121-127. 迟效国,李才,金巍,等. 1999. 藏北新生代火山作用的时空演化与高原隆升.地质论评,45(增刊):978-985.
- 邓万明. 1991. 中昆仑造山带钾玄质火山岩的地质、地球化学和时代. 地质科学, 26(3): 193-206.
- 邓万明, 1993. 青薰北部新生代钾质火山岩微量元素和 Sr、Nd 同位素地球化学研究. 岩石学报, 94(4): 379-387.
- 邓万明. 1998. 青藏高原北部新生代板内火山岩. 北京: 地质出版社.
- 邓万明,郑锡澜,松本征夫. 1996. 青海可可西里地区新生代火山岩的岩石特征和时代. 岩石矿物学杂志, 15(4): 289-298.

邓万明,孙宏娟,张玉泉. 2001. 囊谦盆地新生代钾质火山岩成因岩石学研究. 地质科学, 36(3): 304-318.

- 丁林,张进江,周勇,等. 1999. 青藏高原岩石圖演化的记录:藏北钾质及钠质火山岩的岩石学与地球化学特征. 岩石学报, 15(1):408-421.
- 季绍新,于根峰,刑文臣. 2001. 试论膏藏高原岩浆活动史及其与板块构造的关系. 火山地质与矿产, 1: 31-40.
- 姜常义,苏生瑞,任名华,等. 1997. 北秦岭柞水一太白区段两类活动陆缘型幔源演讲活动与演讲过程. 岩石矿物学杂志. 16 (4):314-323.
- 赖绍聪. 1999. 青藏高原北部新生代火山岩的成因机制. 岩石学报, 15(1): 98-104.
- 李才,范和平,徐锋.1989.青藏高原北部新生代火山岩岩石化学特征及其构造意义.现代地质,3(1):58-69.
- 李昌年. 1992. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社.
- 李献华,李寄嵎,刘颖,等.1999. 华夏古陆元古代变质火山岩的地球化学特征及其构造意义. 岩石学报, 15(3): 364-371. 刘嘉麒,买买提依明.1990. 西昆仑第四纪火山的分布与 K-Ar 年龄. 中国科学 (B 辑), 2: 180-187.
- 刘丛强,解广袤,增田彰正, 1995. 中国东部新生代玄武岩的地球化学一Ⅰ.主元素和微量元素组成;岩石成因及源区特征. 地球化学, 24(1):1-19.
- 刘棠,迟效国,李才,等. 2001. 藏北新生代火山岩系列的地球化学及成因. 长春科技大学学报, 31(3); 230-235.
- 潘桂棠,王培生,徐耀荣,等. 1990. 青藏高原新生代构造演化. 北京:地质出版社,32-58.
- 邱瑞龙. 1998. 九华山花岗岩岩浆分异特征及岩石成因. 岩石矿物学杂志. 17(4): 308-315.
- 王德滋,周金城,邱检生. 1991. 橄榄粗安岩系的研究现状. 南京大学学报(地球科学),3(4): 321-329.
- 解广轰,刘丛强,增田彰正,等.1992. 青藏高原周边地区新生代火山岩的地球化学特征——古老富集地幔存在的证据.刘 若新主编.中国新生代火山岩年代学与地球化学,北京:地震出版社,400-427.
- 徐义刚,颜文,孙敏,等. 2001. 大陆地幔变压熔融机制:广东麒麟幔源包体提供的证据. 科学通报. 46(11): 943-947.
- 张海洋,张大中,朱炳泉. 1999. 庐山星子群变质基性火山岩的地球化学特征及大地构造意义. 岩石学报, 15(3): 372-378.
- 郑祥身,边千韬,郑健康. 1996. 青海可可西里地区新生代火山岩研究. 岩石学报. 12 (4): 530-545.
- 周文戈,张本仁,杨巍然,等.1998.秦岭-大别造山带碰撞后中酸性火山岩地球化学特征及构造意义.地球化学,27(6): 537-548.

References:

- Arnaud N O, Ph Vidal, P Tappnnier, et al. 1992. The high-K₂O volcanism of northwestern Tibet: Geochemistry and tectonic implication. *Earth Planet. Sci. Lett.*, 111: 351-367.
- Baker J A, Mcozics M A, Thirlwall M F, et al. 1997. Petrogenesis of Quaternary intraplate volcanism, sana'a, yemeo: Implications for plume-lithospheric interaction and polybaric melt hybridization. Journal of Petrology, 38(10): 1 359-1 392.
- Beck R A, Burbank D W, Sercombe W J, et al. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. *Nature*, 373: 55-58.
- Chen Jiangfeng, Man Fasheng, Ni Shoubin. 1995. Neodymium and Strontium isotopic geochemistey of mafic-ultramafic intrusions from Qinbulake rock belt, west Tianshan Mountain, XinJiang. *Geochemica*, 24(2): 121-127 (in Chinese with English abstract).
- Chi Xiaoguo, Li Cai, Jin Wei, et al. 1999. Spatio-temporal evolution of Cenozoic volcanism in northern Tibet and the uplifting of Qinhai-Tibet plateau. *Geological Review*, 45(Sup.): 978-985 (in Chinese with English abstract).

Chung S L, Lo C H, Lee T Y, et al. 1998. Diachronous uplift of the Tibetan plateau starting 40Ma ago. Nature, 394: 769-773. Cocherine. 1986. Systematic use of trace element distribution patters in log-log diagram for plutonic suites. Geochimica et Cos-

mochimica Acta, 11: 2517-2522.

- Deng Wanming. 1991. Geology, geochemistry and age of shoshonitic lavas in the central Kunlun orogenic belt. Chinese Journal of Geology, 3: 193-206 (in Chinese with English abstract).
- Deng Wanming. 1992. Cenozoic volcanism and intraplate subduction in northern margin of the Tibetan plateau. Chinese Journal of Geochemistry, 10(2); 140-152.
- Deng Wanming. 1993. Study on trace element and Sr, Nd isotopic geochemistry of Cenozoic potassic vlcanic rocks in north Tibet. Acta Petrologica Sinica, 94(4): 379-387 (in Chinese with English abstract).
- Deng Wanming. 1994b. An asymmetric continental subduction and restriction on Cenozoic magmatism in Tibetan plateau. Proceedings of Symposium on Karakorm and Kunlun. China Meteorological Press, 23-30.
- Deng Wanming. 1998. Cenozoic Intraplate Volcanic Rocks in the Northern Qinghai-Xizang Plateau. Bejing: Geological Publishing House (in Chinese with English abstract).

Deng Wanming, Sun Hongjuan and Zhang Yuquan. 2001. Petrogenesis of Cenozoic potassic volcanic rocks in Nangqian basin. Chinese Journal of Geology, 36(3): 304-318 (in Chinese with English abstract).

Deng Wanming, Zheng Xilan, Yukio Matsumoto. 1996. Petrological characteristics and ages of Cenozoic volcanic rocks from the Hoh'Xil Mts, Qinghai province. Acta Petrologica et Mineralogica, 15(4): 289-298 (in Chinese with English abstract).

Dewey J F, Cande S and Pitman W C. 1989. Tectonic evolution of the India/Eurasia collision zone. Eclogue Geol. Helc., 82: 717-734.

Ding Lin, Zhang JinJiang, ZhouYong, et al. 1999. Tectonic implication on the lithosphere evolution of the Tibet plateau: Petrology and geochemistry of sodic and ultrapotassic volcanism in northern Tibet. Acta Petrologica Sinica, 15(1): 408-421 (in Chinese with English abstract).

Foley S F and Peccerillo A. 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28: 181-185.

Hart S.R. 1984. A large-scale isotope anomaly in the southern Hemisphere mantle. Nature, 309: 753-757.

Hart S R, Geriach D C, White W M. 1986. A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. *Geochim. Cosmochim. Acta*, 1551-1557.

Ji Shaoxin, Yu Geifeng and Xing Wenchen. 2001. Relation between magmatic evolutionary process and plate tectonics of Qinghai-Tibet plateau. Volcanology & Mineral Resources, 1: 31-40 (in Chinese with English abstract).

Jiang Changyi, Su Shengrui, Ren Minghua, et al. 1997. Two types of active epicontinental mantle-derived magmatic activities and magmatic processes in the Zhuoshui-Taibai sector of north Qinling mountains. Acta Petrologica et Mineralogica, 16(4): 314-323 (in Chinese with English abstract).

Johnson K T M, Dick H J B, Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophy Res., 95: 2661-2678.

Lai Shaocong. 1996. Cenozoic volcanism and tectonic evolution in the northern margin of Qinghai – Tibet plateau. Joural of Northwest University, 20(1): 99-104.

Lai Shaocong. 1999. Petrogenesis of the Cenozoic rocks from the northern part of the Qinghai – Tibet plateau. Acta Petrologica Sinica, 15(1): 98-104 (in Chinese with English abstract).

Le Maitre R W ed. **1989**. Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific publications, Oxford, 193.

Li Cai, Fan Heping and Xu Feng. 1989. The geologo-petrological features and tectonic significance of Cenozoic volcanic rocks in northern Qinghai – Tibet plateau, *Geoscience*, 3(1): 58-69 (in Chinese with English abstract).

Li Changnian. 1992. Trace Element Petrology of Igneous Rocks. China University of Geosciences Publishing House (in Chinese).

Liu Congqiang, Xie Guanghong and Zeng Tianzhangzheng. **1995**. Geochemistry of Cenozoic basalts from eastern China—I. Major element and trace element petrogenesis and characteristics of mantle source. *Geochimica*, 24(1): 1-19 (in Chinese with English abstract).

Liu Jiaqi and Maimaiti Yiming. 1990. The distribution and K-Ar ages of Quternary volcances of western KunLun. Science in China (series B), 2: 180-187 (in Chinese with English abstract).

Liu Shen, Chi Xiaoguo, Li Cai, et al. 2001. Geochemistry and genesis of Cenozoic volcanic rock series in northern Tibet. Joural of Changchun University of Science and Technology, 31(3): 230-235 (in Chinese with English abstract).

Li Xianhua, Li Jiyu, Liu Ying, et al. **1999**. Geochemiscal characteristics of the paleo Proterozoic meta-volcanics in the Cathaysia block and it's tectonic significance. *Acta Petrologica Sinica*, 15(3): 364-371 (in Chinese with English abstract).

Meen J K. 1987. Formation of shoshonites from calc-alkaline basalt magmas: geochemical and experimental constraints from the type locality. *Contrib. Mineral. Petrol.*, 97: 333-351.

Meen J K. 1990. Elevation of potassium content of basaltic magma by fractional crystallization: The effect of pressure. Contrib. Mineral. Petrol., 104: 309-331.

Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13: 97-108

Muller D and Groves D I. 1993. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore. Geol. Rev., 8(5): 383-406.

Muller D and Groves D I. 1995. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Berlin: Springer-Verlag, 1-210.

Othman D B, White W M, Patchett J. 1989. The geochemistry of marine sediments, island are magma genesis and crust-mantle recycling. *Earth. Planet. Sci. Lett.*, 94: 1-21.

Pan Guitang, Wang Peisheng, Xu Yaorong, et al. 1990. The Cenozoic Tectonic Evolution of Qinghai-Tibet Plateau. Beijing: Geological Publishing House. 32-58 (in Chinese).

Peccerillo A and Taylor S.R. 1976. Chemistry of Eccene calc-alkaline rocks from the kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., 58: 63-81.

Qiu Ruilong. 1998. Magmatic differentiation and genesis of Jiuhuashan granite. Acta Petrologica et Mineralogica, 17(4): 308-315 (in Chinese with English abstract).

Stolz A J, Jochum K P, Spettel B and Hoffmann A W. 1996. Fluid and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 24(7): 587-590.

Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mentle composition and processes. In: Saundern A D and Norry M J, eds. 1989. Magmatism in the ocean basins. *Geol. Soc. Spac. Publ.*, 42: 313-345. Tuner S, Hawksworth C J, Lin J Q, et al. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. *Nature*, 364: 50-53.

Wang Dezi, Zhou Jincheng, Qiu Jiansheng. 1991. Present situation of the study on shoshonite series. 3(4): 321-329 (in Chinese with English abstract).

- Xie Guanghong, Liu Congqiang, ZengTian Zhangzheng, et al. **1992**. The existing evidence of old enriched mantle from the geochemical characteristics of Cenozoic volcanic rocks in the area around Qinghai-Tibet plateau. in Liu Ruoxin ed. The Chronology and Geochemistry of China Cenozoic Volcanic Rocks. Beijing: Seism. Publishing House, 400-427 (in Chinese with English abstract).
- Xu Yigang, Yan Wen, Sun Min, et al. 2001. Transformation melting mechanism for continental mantle : Evidence from inclusions of mantle source in Qulin, Guangdong province. *Chinese Science Bulletin*, 46(11): 943-947 (in Chinese with English abstract).
- Zhang Haiyang, Zhang Dazhong and Zhu Bingquan. 1999. The geochemical characteristics of metamorphic basic volcanics from Xingzi group, Lushan and the tectonic implications. Acta Petrologica Sinica, 15(3): 372-378 (in Chinese with English abstract).

Zheng Xiangshen, Bian Tiantao and Zheng Jiankang. 1996. On the Cenozoic volcanic rocks in Hoh Xil district, Qinghai province. Acta Petrologica Sinica, 12(4): 530-545 (in Chinese with English abstract).

Zhou Wenge, Zhang Benren, Yang Weiran, et al. 1998. Geochemical characteristics and tectonic implications of post-collisional intermediate and acid volcanic rocks from Qinling-Dabie orogen, *Geochimica*, 27(6): 537-548 (in Chinese with English abstract).

Geochemistry, Series Subdivision and Petrogenetic Interpretation of Cenozoic Volcanic Rocks in Northern Tibet

LIU Shen^{1,2}, HU Rui-zhong¹, CHI Xiao-guo³, LI Cai³, FENG Cai-xia^{1,2}

(1. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Graduate

School, Chinese Academy of Sciences, Beijing 100039, China; 3. Geoscience College of Jilin University, Changchun 130061, China)

Abstract: Based on the ages determined by K-Ar and Ar-Ar dating methods, the Cenozoic volcanic rocks in the studied region, from early to late, can be subdivided into three series. They are high-K calc-alkaline series $(40 \sim 30 \text{Ma})$, leucite basanite – phonolite series $(29 \sim 24 \text{Ma})$ and shoshonite series (1.5 Ma), respectively. The Cenozoic volcanic rocks in northern Tibet, mainly studied by petrochemical and isotope methods, have the characteristics of both WPAB (within plate alkali basalt) and IAB (Inland-arc basalt). For these three series of rocks, the difference exists not only in their geneses, but also in their sources. We interprete that high-K calc-alkaline series was generated by partial melting of crust due to underplating of the basaltic magma from enriched mantle, and underwent the process of crust's AFC. However, the leucite basanite – phonolite series and shoshonite series were evolved from an old enriched mantle related to ancient subduction, and their geneses are attributed to the fractional crystallization in different degrees. From this study, it is clear that the depth of the sources for the Cenozoic volcanic rocks in this area gradually becomes deeper and newer from south to north.

Key words: northern Tibet; Cenozoic; volcanic rocks; intraplate setting; island-arc; enriched mantle

(收稿日期:2003-01-27)