Vol.23.No.1 Mar.,2003

文章编号:1000-4734(2003)01-0075-07

八方山大型多金属矿床热水沉积 岩相特征与矿化剂组分关系

方维萱1,2,刘方杰3,胡瑞忠1,陈梦熊2

(1.中国科学院 地球化学研究所 矿床地球化学开放研究实验室,贵州 贵阳 550002;2.有色金属矿产地质调查中心,北京 100814; 3.西北有色金属地质勘查局,陕西 西安 710068)

摘要:陕西八方山大型(金)多金属矿床赋存在于中泥盆统吉维特晚期的热水沉积岩相中。富 SiO,酸酐型热水 同生-交代沉积作用形成热水同生沉积微相(层状硅质岩)、热水同生交代微相(微晶石英岩及硅化灰岩);富 Fe²⁺-Mg²⁺碳酸盐型热水同生沉积作用形成层状含铜硅质铁白云岩;在同生断裂附近,因热水液压致裂-隐爆作 用形成含铜黄铁矿硅质铁白云石角砾岩;富 Na⁺铝硅酸盐型/富 Fe²⁺、Mg²⁺碳酸盐型热流体在同生断裂中形成 热水充填微相(穿层脉状钠长石碳酸岩);低温热卤水(富 F、Ba、B、As、Sb)形成热卤水同生沉积微相。矿质大规 模沉淀的地球化学动力学因素为:在热水沉积成矿盆地中,在单一成分热水体系的温度、压力改变而发生快速 化学沉淀;不同成分、性态的热水混合后,强烈的酸-碱作用及 Eh-pH 剧变等,触发热水体系失稳,引起矿质大规 模沉积。[SiO₂]和 F 可能是重要的矿化剂。

关键词:热水沉积岩相;热水成岩成矿;矿化剂;八方山

中图分类号:P555.4:P611 文献标识码:A

作者简介:方维萱,男,1961年生,研究员,构造地质专业博士,主要从事矿产勘查、沉积盆地与地质流体研究.

1 地质概括

秦岭造山带凤(县)—太(白县)泥盆纪一级拉 分盆地由东部太白和西部凤县二级盆地组成。陕 西凤县八方山大型(金)多金属矿床产于凤县二级 盆地北东部的银母寺—八挂庙—八方山三级拉分 式热水沉积盆地内。

矿区出露地层主要为中泥盆统古道岭组及 上泥盆统星红铺组。中泥盆统古道岭组上岩 段(D₂g₂)岩性为结晶灰岩、生物灰岩、生物碎 屑灰岩,局部夹少量粉砂质灰岩、泥质灰岩、碳 质灰岩。沉积相为碳酸盐台地相生物滩(礁) 相。上泥盆统星红铺组(D₃x)可分为四个岩性 层:第一岩性层为铁白云石绢云母千枚岩夹粉 砂质千枚岩,为矿体的近矿围岩;第二岩性层 为方解石绢云母千枚岩、粉砂质千枚岩、薄层 灰岩;第三岩性层为条带状薄层灰岩夹方解石 绢云母千枚岩;第四岩性层为绿泥石绢云母千 枚岩。

八方山背斜是矿体重要定位构造,它向东西 两个方向的深部倾伏,向东倾伏部位发现了隐伏 多金属矿体;中部拱起最高部位刺穿闭合区,矿化 较差。本区岩浆岩仅闪长玢岩脉较为发育。八方 山多金属矿床的 II 号矿体为主矿体,控制工业储 量有九十余万吨,全矿床储量可达百万吨以上, II 号矿体占矿床储量 90%以上。

2 地质地球化学特征

2.1 热水沉积岩相的微相特征

根据热水沉积岩的特点^[1~8],笔者划分了六 种热水沉积微相:热水同生沉积微相、热水混合同 生沉积微相、热水同生交代微相、热水液压致裂-隐爆微相、热卤水同生沉积微相、热水充填作用微 相。

热水同生沉积微相主要有两类岩石:①灰黑 色细粒硅质岩,灰黑色,石英呈细粒微晶状、雏晶 状,岩石致密坚硬,呈厚层块状;碳质及绢云母(泥

收稿日期:2002-07-21

基金項目:国家重大基础研究规划项目(2001CB409805);国家杰出 青年科学基金项目(49925309)

2003年

质结晶而成)呈层纹状、极薄层状,显示沉积作用 特点。一般石英含量多在 85%以上,含少量碳质 (1%~3%)及泥质(绢云母小于 3%)。沿层理有 石墨化镜面构造,绢云母定向排列,显示一致消光 方位,反映受到后期构造作用发生顺层滑动,但仍 属热水沉积作用所形成。②灰白色中细粒铁白云 岩主要由铁白云石组成(含量大于 80%),尚有少 量石英、黄铁矿、黄铜矿,这些矿物互呈紧密镶嵌 结构,无交代关系,显示直接从热水中结晶析出。 整体呈中-薄层状,沿走向快速尖灭,构成铜矿体 的含矿岩石。

热水混合同生沉积微相由含矿硅质铁白云 岩、硫化物硅质岩、碳硅质岩、绢云母硅质岩及铁 白云石硅质岩等组成。硫化物呈条带状、条带条 纹状、浸染状产出,集合体整体顺层发育。含铜硅 质铁白云岩中,石英、铁白云石结晶粒度较小,黄 铜矿多沿铁白云石晶体之间呈他形充填分布,或 呈微粒被包裹体于铁白云石晶体之中。绢云母硅 质岩及铁白云石硅质岩多呈似层状、层状,一般产 于近矿围岩之中或构成矿化体。可见到较多的 "类鲕状"构造^[9],一般中心为扁球形硅质岩(石 英)或石英-铁白云石集合体,结晶颗粒粒径在1.0 ~3.0 mm。围绕其边部有泥质及细粒铁白云石 (小于 0.2 mm),它们具有塑性流动的特点。这种 现象可能为热水沉积物软泥曾被搬运和再沉积 (硅质岩扁球形鲕粒核);而富铁白云石类鲕粒核 可能是热水"发泡"作用所形成,由于含有铁白云 石固-液-气三相态的热水进入三级热水沉积盆地 后,气相物质逃逸作用形成"发泡"(这种现象在现 代热泉水非常发育),形成以铁白云石为主的鲕粒 核,扁球形是经压实成岩所定形。

热水同生交代微相在矿区普遍发育,是主要 的赋矿微相,顺层普遍发育热水同生交代结构、构 造,按产出层位主要有三类:①中泥盆统古道岭组 结晶灰岩中,其上、下层均为结晶灰岩。该微相由 不规则状微晶石英岩、硅化灰岩、黄铁矿硅化灰岩 及硅质铁白云岩等组成,呈透镜状及不规则状产 出,微相变强烈。矿化较为普遍,但矿体规模较 小。②赋存于中泥盆统古道岭组与上泥盆统星红 铺组之间顺层发育,规模大,其下伏岩性为古道岭 组碳酸盐岩,上覆岩性为热水同生沉积微相。该 微相由灰色微晶石英岩、浅色微晶石英岩、含矿硅 质岩、硫化物硅质铁白云岩等组成。常见有结晶 灰岩、生物灰岩及含碳生物碎屑灰岩等被交代的

残留体,呈岛屿状,外形不规则,边部常见交代蚕 蚀结构,石英晶粒交代方解石之后而呈方解石晶 体假象结构,显示富 SiO₂ 热水的同生交代作用。 闪锌矿交代充填生物化石残骸,并呈生物化石假 象产出,常见腕足类的外壳及海百合茎被闪锌矿 充填交代,形成生物斑杂状及稠密浸染状矿石。 硅化灰岩中发育细脉状、网脉状石英微脉,显微镜 下可清楚辩识。在硅质铁白云岩中,铁白云石交 代方解石及生物化石,又被石英所溶蚀,铁白云石 呈蠕虫状及不规则状,发育变形构造。该微相岩 石及矿体局部呈不规则状伸入古道岭组碳酸盐岩 中。浅色微晶石英岩常产于靠近上泥盆统星红铺 千枚岩类一侧,含有较多的铁白云石、绢云母和磁 黄铁矿,可相变为铁白云石硅质岩、绢云母硅质 岩。③上泥盆统星红铺组热水同生交代微相由硅 化灰岩、网脉状石英岩等组成,呈脉状、透镜状顺 层产出。

热水液压致裂-隐爆微相:由含矿硅质铁白云 石角砾岩和黄铁矿硅质铁白云石角砾岩组成,呈 不规则状产于硅质岩层中。角砾呈棱角状、次棱 角状,以黄铁矿铁白云石为主,局部有含黄铁矿硅 质岩角砾。胶结物主要为细粒铁白云石及黄铁 矿。

热卤水同生沉积微相:主要分布于多金属矿 层之上,岩性为铁白云石绢云母千枚岩,但岩石成 分沿走向变化大,可变为泥钙质铁白云石粉砂岩, 实际上为一套热水浊流沉积岩。鳞片状绢云母约 30%~70%,定向排列,石英呈粉砂-细砂状他形。 细粒状铁白云石约有 10%~20%,粒径为 0.02~ 0.4 mm,呈不均匀散布或呈纹层状分布,铁方解 石约 2%~15%,呈它形微细粒。含有少量细小 叶片状或透镜状绿泥石、细微叶片状白云母。含 有粉砂状细粒-微粒钠长石、电气石、金红石和皓 石,稀疏浸染状及星点状黄铁矿、磁黄铁矿。镜下 呈显微粒状鳞片变晶和变余砂状泥质结构,变余 条带条纹、变余纹层状及千枚状构造。

热水充填作用微相:由钠长石碳酸岩脉组成, 穿切热水沉积岩相及多金属矿层,但仅限于其中, 呈脉状、多枝状和平行脉状。主要组成矿物是钠 长石、铁白云石、石英,含有少量磁黄铁矿、黄铁矿 和磷灰石。钠长石碳酸岩脉被印支期硫化物石英 脉穿切,而本身穿切多金属矿层及热水沉积岩相 说明形成于中泥盆世之后,很可能是晚泥盆世一 石炭纪产物。

77

2.2 热水沉积微相地球化学特征

从表1看:①生物滩(礁)相以 CaO 和 CO2 为 主,其他组份含量低,显示了化学-生物化学沉积 作用特征。砂屑薄层灰岩中镜下可见到石英、 绢云母为主的砂屑, SiO2 和 Al2O3 含量略有增 高。②热水同生交代微相 SiO。质量分数一般在 80%以上,因含有少量灰岩残留体,w(CaO)变化 于1.98%~7.38%,烧失量在3.73%~6.94%, 说明有 CaCO, 成分存在。③热水同生沉积微相 以各类硅质岩为主, w (SiO₂)在 86.88% ~ 92.04%,其他成分含量较低,系由 SiO2 酸酐型 热水同生沉积作用所形成。④在热水混合同生 沉积微相中,SiO,含量变化较大,含铜硅质铁白 云岩中, Fe2O3、FeO、MnO、MgO、CaO、CO2 含量最 高。显示形成过程中,可能由富 Fe²⁺、Mg²⁺、 Mn²⁺、Ca²⁺、CO²⁻的碳酸盐型热水混入 SiO₂ 酸 酐型热水后,因强烈的酸碱作用和氧化还原条 件骤变,发生热水混合同生沉积作用所形成。 而含矿(碳)硅质岩中, w(SiO₂)变化为 77.83% ~84.94%, FeO、CaO、MgO、CO2均有一定含量, Cu、Pb、Zn 发生富集成矿。可能是 SiO2 酸酐型热 水中混入富 Fe²⁺、Mg²⁺、Ca²⁺、CO²⁻ 的碳酸盐型 热水所形成。在矿床东部和西部较为发育,形 成碳硅质岩,多是富矿部位。一般地,沿走向变 化为绢云母(泥质)硅质岩时,含矿性很差。⑤ 在热水液压致裂-隐爆微相中,富 FerOa、FeO、 MnO、CaO、MgO、CO2 和 S,主要是角砾及胶结物 中含有大量的铁白云石及黄铁矿所引起,显示 富 Fe²⁺、Mn²⁺、Ca²⁺、Mg²⁺、CO²⁻的碳酸盐型热 水发生液压致裂-隐爆作用所形成。⑥热水充填 微相中富 SiO2、Al2O2、FeO、CaO、MgO、Na2O 和 CO2。它是一种没有经过热水沉积分异作用,直 接在沉积物(岩)发育的张裂隙中发生热水充填 成岩作用所形成。化学成分很可能代表了初始 热流体(富 Na⁺、[AlSiO₄]⁻/Fe²⁺、Mg²⁺、CO₃⁻)的 特征。本区及八卦庙超大型金矿床中硅质铁白 云岩及钠质热水沉积岩与其有着深刻地内在联 系。⑦矿体上盘围岩是一套钙屑泥岩,有多个 富 Ba、F、B 的层位,显示了有热卤水同生沉积作 用的混入。铁白云质绢云母泥岩中,富 SiO₂、 Al₂O₃、FeO、CaO、MgO、CO₂、K₂O、B,显示有低温热 卤水活动明显。

表1 八方山矿床热水沉积岩相岩石化学特征表

			Tat	ble I. P	etrochen	ustry of	hydroth	ermal sec	lumentar	y rocks	from the	Batangs	shan dep	1061t			90	
微相	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	CO2	s	lg	P ₂ O ₅	H ₂ O	总和	备注	
1	46.45	0.59	13.32	1.19	2.83	0.08	1.77	13.44	0.25	3.74	13.62			0.14	1.92	99.36	A1	
2	77.84	0.10	2.61	0.43	2.98	0.08	1.72	5.08	0.10	0.75	6.77			0.08	0.93	99.4 7	A2	
	82.40	0.07	2.88	0.18	2.18	0.10	2.88	2.56	0.04	0.85			4.64	0.052	1.00	99.83	B1	
	81.27	0.09	4.00	3.86	1.78	0.12	1.06	1.64	0.07	1.09			5.26	0.092	0.95	101.28	B2	
	18.75	0.06	1.25	4.42	7.36	0.03	5.90	26.88	0.04	0.30	30.42	3.63			0.50	100.14	C1	
	89.44	0.00	0.59	1.54	1.38	0.05	0.76	3.07	0.03	0.17			3.78	0.12		100.93	C2	
	88.84	0.08	2.12	0.65	0.48	0.02	0.50	3.56	0.08	0.66			3.61	0.053		100.65	C	
	81.92	0.13	3.87	2.46	1.85	0.05	1.33	3.46	0.07	1.08			4.54	0.042		100.80	C4	
3	92.04	0.04	2.15	0.35	1.66	0.08	1.13	0.72	0.06	0.68			1.76	0.062	0.06	100.79	B3	
	86.88	0.03	1.23	0.17	2.33	0.12	1.18	3.28	0.02	0.32			4.96	0.062	0.06	100.64	B4	
4	80.37	0.07	1.76	2.01	1.30	0.05	0.81	7.38	0.03	0.05			6.94	0.082		100.85	C5	
	87.21	0.36	4.56	1.00	0.31	0.01	0.36	1.98	0.09	1.28			3.73	0.108		100.98	C6	
5	18.27	0.05	1.19	4.27	7.49	0.30	5.52	27.28	0.02	0.30	31.23	3.62				100.66	C7	
6	30.50	0.43	8.56	2.00	2.96	0.12	9.01	16.50	5.28	0.08	23.74			0.84		100.02	C8	
7	6.25	0.02	0.86	0.05	0.60	0.03	0.48	50.84	0.27	0.20	40.34			0.03	0.22	100.19	A3	

注:Ig为烧失量;本文数据由西安地质矿产研究所及西北大学大陆动力学实验室测得,化学定量法和 XRF 法,空格为未分析项目;微相/岩性(备注号):1.钙屑泥岩相微相/绢云母方解石千枚岩(A1),2.热水混合同生沉积微相/硅质岩(A2)、含碳硅质岩(B1)、含碳硅质岩(B2)、含铜硅质铁白云岩(C1,Cu=0.60%)、条带状硅质岩(C3)、浅灰色硅质岩(C4)、深灰色硅质岩(C4)、3.热水同生沉积微相/硅质岩(B3、B4),4.热水同生交代微相/含残留灰岩的灰色硅质岩(C5、C6),5.热水液压致裂-隐爆微相/硅质铁白云石角砾岩(C7,Cu=0.52%,Pb=0.60%),6.热水充填微相/钠长石碳酸岩(C8),7.生物礁灰岩相/生物碎屑灰岩(A3);A1~A3数据引自祁思载^[10],B1~B4数据由有色桂林研究院提供,C1~C8为本文数据,西安地质矿产研究所及西北大学大陆动力学实验室分析,化学定量法和 XRF 法、

2003年

3 热水沉积岩相与矿化剂关系

3.1 热水成矿流体及矿化剂来源

八方山多金属矿床铅同位素年龄(Doe 法)为 418~447 Ma^[9,11],这些年龄值明显老于赋矿地层 的年龄(中泥盆世为 386~377 Ma),说明铅源是来 自泥盆纪沉积盆地下伏基底地层。据王集磊 等^[11]研究,含铜黄铁矿矿石中石英包裹体水的 δD_{SMOW} 为 - 77‰, δ^{18} O为 - 3.5‰;黄铜矿-黄铁矿 矿石中石英包裹体水的 δD_{SMOW} 为 - 77‰, δ^{18} O‰ 为 + 4.8‰;锌矿石中石英包裹体的 δD_{SMOW} 为 - 77‰, δ^{18} O为 + 2.5‰,认为成矿流体中的 H₂O 类似于 Salton 地热水。综上所述,本区热水成矿 流体是来自泥盆纪沉积盆地下伏地层中的热水成 矿流体。

热水成矿流体中[SiO₂]及F可能是主要矿化 剂。据张本仁等^[12]研究,前泥盆纪地层中,Pb、Zn 均以易活化的相态为主,且主要硫化物相,这些相 态中 Pb、Zn等成矿元素在热水作用下可能发生活 化、迁移。实验证明在盐度较高的氧化物溶液中, 温度 > 250 ℃及压力为 40 MPa 条件下,可溶解质 量分数为数百个 10⁻⁶的 SiO₂,热水中溶解的 SiO₂ 能提高 Pb-Zn 硫化物的溶解度。溶解的 SiO₂ 在较 高的温度和压力条件下是热水体系理想的 pH 缓 冲剂,保持了热水体系 pH 值稳定;同时,因 SiO₂ 本身的聚合能力形成的胶体大分子能对金属络合 物起保护作用,使金属元素能够长距离迁移。发

生热水同生沉积作用后,SiO,直接从热水体系中 晶出形成含硅质岩的热水沉积岩相,使成矿元素 与 S²⁻结合形成硫化物。在银母寺、八方山和八 卦庙等矿床中,矿层上盘围岩中有 F、B 原生异 常,w(F)一般在1000×10⁻⁶左右,最高7000× 10^{-6} , w(B) 一般 > 100 × 10^{-6}, 最高可达1 000 × 10^{-6} 以上;矿物包裹体中F的含量也很高, $w(F^-)$ 达1217×10-6[11],对于铅锌矿床而言,F可能是 一个良好的矿化剂元素^[13,14]。Pb、Zn 与 F 组成 $[PbF_4]^{2-}$ 、 $[ZnF_4]^{2-}$ 络阴离子团在热水中长距离 迁移。热水成矿流体组分类型属 Ca²⁺-Na⁺-(F⁻, Cl⁻)-SO²⁻型,F原生异常主要与铁白云质泥岩 (千枚岩)有关,可能是以F络合物迁移的卸载后, F⁻由于具有强亲石性而残留在热水中,最终在矿 体上盘围岩中形成原生异常及热水同生沉积岩 相。

3.2 成矿流体的成分

从表 2 看,硫化物形成时成矿流体的组分类 型为 $Ca^{2+}-(Na^+)-(F^-,Cl^-)-SO_4^-$ 型,含 CO_2-CO- H₂O 高,为碳酸盐型热水^[5]形成提供很好物质基 础,结合热水沉积岩相的地球化学特征,热水成矿 流体主要有:①富 $Na^+-Ca^{2+} - (F^-,Cl^-)-SO_4^{2-}-$ ($CO_2-CH_4-H_2O$)型以及 SiO₂ 酸酐型热水^[5]。②富 Fe^{2+} 、 Mg^{2+} 、 Ca^{2+} 、 CO_3^{2-} 的碳酸盐型热水。③富 金属离子及富烃热流体;④低温热卤水型。上述 的热水成矿流体中可能不同程度的富集 Cu、Pb、 Zn、Ag、As、Sb、Hg、Mn、B、F、Ba 等微量元素。

表 2 八方山多金属矿床矿物气液包裹体成分表

			Table	2. Comp	sition of m	ineral gas-	liquid incl	usions from	the Bafan	gshan polyn	etallic dep	osit		10-6
đ)	物	n	K+	Na ⁺	Ca ²⁺	Mg ²⁺	F-	C1-	SO ₄ ²⁻	CO2	CO	CH4	H ₂	H ₂ O
硫亻	化物	6	2 193	2 462	12 162	647	1 217	4 493	51 561	230 273	10 051	999	382	283 149
石	英	2	1 155	8 617	17 064	546	666	11 111	11 848	122 764	2 913	3 738	231	288 844

注:数据引自王集磊等^[11], n 为样品数。

3.3 热水成矿流体的物理化学性态

据王集磊等^[11]研究,热水成矿流体的冷冻 盐度为4.5%~16.0% NaCl,南矿带平均盐度 为8.5% NaCl,北矿带平均盐度为9.80% NaCl, 属盐度较低的热水成矿流体。石英包裹体均 一化温度在240~300℃,属中温范围。流体 密度为0.801~0.982 g/cm³,热水成矿流体的 总压力在 800~1 300 Pa,属浅成中温热水成矿 范围。

3.4 地球化学环境与矿化剂元素的变化

3.4.1 热水沉积成矿盆地的氧化-还原性质

n(Fe²⁺)/n(Fe³⁺)值有助于判断热水沉积成 矿盆地的氧化-还原性质。从表3看,在热水活动

79

之前,生物滩(礁)相(生物碎屑灰岩)已处于强还 原环境中。早期进入沉积盆地的 SiO2 酸酐热水 成矿流体在相对氧化环境中 $[n(Fe^{2+})/n(Fe^{3+})]$ <1.0],发生热水同生沉积形成条带状深灰色硅 质岩,对下伏的碳酸盐软泥发生同生交代作用形 成含灰岩残留体浅灰色硅质岩。由于沉积盆地处 于强还原状态,使热水中 SO2⁻ 大量被还原为 S^{2-} ,为硫化物的形成提供了 S^{2-} 源。由于早期处 于相对氧化状态的热水不利于矿质大量沉淀,在 多金属矿床下盘可见到较厚的浅灰色-深灰色硅 质岩层。含灰岩角砾的浅灰色硅质岩呈不规则状 整体上成层产于古道岭组碳酸盐岩与硅质岩层之 间。后因喷溢进入沉积盆地的热水被大量还原, 所形成的含碳硅质岩中也有条带状、条纹状、致密 块状闪锌矿,矿质发生热水混合同生沉积成岩成 矿。中期发生富 Fe²⁺、Fe³⁺、Mg²⁺、Ca²⁺、CO²⁻的 碳酸盐型热水喷溢。含铜硅质铁白云岩及含铜黄

铁矿硅质白云石角砾岩中 $n(Fe^{2+})/n(Fe^{3+})$ 为 1.85~1.94,处于弱还原环境,但与含碳硅质岩及 含矿硅质岩相比,仍属于偏氧化状态,矿物包裹体 中CO2 含量明显大于 CO 含量。因富含气相组 分,在同生断裂上部发生热水液压致裂-隐爆作 用,仅形成铜富集,很少见方铅矿、闪锌矿。这与 铅硐山矿床的含矿角砾岩及含矿硅质铁白云岩有 较大差异,铅硐山矿床中,硅质铁白云岩是铅锌矿 主要含矿岩石, $n(Fe^{2+})/n(Fe^{3+})$ 值可达 12.22^[6]。八方山矿床中,只形成铜富集,可能是 处于相对氧化环境所致,这也反映了铜与铅锌在 热水成岩成矿过程中是有差异。钙屑泥岩相中 n(Fe²⁺)/n(Fe³⁺)为 2.64~4.00,局部有强烈地 热卤水活动,但只利于形成矿源层,不利于矿质大 规模沉淀。泥岩相是八方山四级热水洼地萎缩封 闭时所形成,反映当时沉积盆地仍处于较强还原 环境。

表 3 热水沉积岩相的 n(Fe²⁺)/n(Fe³⁺)值

Table 3. Fe ²⁺ /Fe ³⁺	ratios in	hydrothermal	sedimentary	lithfacies
---	-----------	--------------	-------------	------------

微相	岩 类	$n(Fe^{2+})/n(Fe^{3+})$	微相	岩类 n($\overline{Fe^2} + /n(Fe^{3+})$
 泥岩相	绢云母绿泥石泥岩	7.78	热水同生沉积微相	硅质岩	5.26
	碳质泥岩	7.73		硅质岩	15.21
钙屑泥岩相	铁 白云质 泥 岩	4.00		条带状	0.99
	绢云母方解石 泥 岩	3.16		深灰色硅质岩	0.82
热水混合同生	硅质岩(上部)	11.72	热水同生交代微相	含碳岩残留体	0.34
沉积微相	硅质岩(中部)	7.59		浅灰色硅质岩	0.72
	硅质岩(下部)	3.74	热水液压致裂隐爆微相	含铜硅质铁白云石角砾岩	t 1.94
	含碳硅质岩	13.44	热水充填微相	钠长石碳酸岩	1.62
	含锕硅质铁白云岩	1.85	生物滩(礁)相	生物碎屑灰岩	13.32

注:据表1数据计算.

3.4.2 热水沉积成矿盆地水体的古盐度恢复

粘土质岩中 B 含量常被用作估计沉积水体 的古盐度^[6,12,15], Walker 等^[15]提出了计算粘土质 岩中伊利石的 B 含量作为海水古盐度的标志。 在八方山矿床内,地层仅经历了轻变质作用(板岩 一千枚岩类),在近地表范围内未造成 B 的大规 模迁移与贫化,粘土质岩中伊利石的校正 B 含量 仍记录了沉积水体古盐度的信息(与脆韧性剪切 带有关的电气石钠长石脉显著不同)。伊利石中 校正 B 含量 $w_j(B)$ 的计算公式为:

 $w_{\rm j}({\rm B}) = 8.5 \ w({\rm B})/100 w({\rm K}_2{\rm O})$

从表 4 看, 矿体上盘的钙屑浊积岩中校正 B 含量在 225×10⁻⁶左右数据较多, 反映古海水的 盐度偏高。热水浊积岩中校正 B 含量可达 763× 10^{-6} , 热水钙屑浊积岩中 w(Ba)高达 1686×10⁻⁶, 铁白云质钙屑浊积岩中 w(F)高达 1150×10⁻⁶ ~ 1480×10⁻⁶, w(As)为 149×10⁻⁶ ~ 59.3×10⁻⁶, w(Sb)为1.31×10⁻⁶ ~ 2.49×10⁻⁶, 说明沉积水体 曾高度卤化, 曾有强烈的热卤水活动。

W TO TO JA	ø	物	学	报
------------	---	---	---	---

2003年

		长考			w/10 ⁻⁶		
地层代兮	石性	17F9X	W(N ₂ U)/ %	Ba	F	В	<i>w_j</i> (B)/10
D 3-2	钙屑泥岩	2	1.62	319	470	60	315
$D_3 x_1^{-2}$	钙屑泥岩	1	1.47	321	540	60	347
	铁白云质泥岩	3	2.01	433	620	70	296
D ₃ x ₁ ³⁻¹	热水浊积岩	2	3.34	620	890	300	763
	钙肩浊积岩	1	2.34	508	800	60	218
$D_3 x_1^{2-2}$	铁白云质钙屑浊积岩	14	2.01		903	47	200
	含碳生物碎屑灰岩	3	0.32	51	126	9.3	-
	铁 白云质 钙屑浊积 岩	2	1.70	313	11 50	45	225
	薄层砂屑灰岩	1	0.55	112	210	20	
	铁白云质钙屑浊积岩	2	2.60	389	1480	53	172
D ₃ x ₁ ²⁻¹	含碳生物碎屑灰岩	1	2.0	36	80	< 5	-
	铁 白云质 钙屑浊 积岩	4	1.46	176	638	40	232
	薄层灰岩	2	0.08	40	50	< 5	
$D_3 x_1^1$	铁 白云质 钙屑浊积 岩	2	1.26	460	560	43	290
	热水钙屑浊积岩	2	0.80	1686	395	28	295

表 4 八方山多金属矿床 ZK113 钻孔元素含量特征表

3.5 矿质大规模聚集沉淀的机理及矿化剂沉淀

在泥盆纪,秦岭造山带由于受扬子板块岩石 圈地幔深部近南北向挤压收缩及佛坪大陆热点 垂向热驱动共同作用,热水成矿流体大规模地从 地壳深部被排出。凤太一级拉分盆地内发育的 NE向、NW 向和 SN 向网状同生断裂为热水成矿 流体向陆壳浅部运移提供了构造通道。因沉积 盆地处于滞流、强还原、静水相对封闭的环境中, 使以 SiO,为酸酐的相对氧化态热水成矿流体因 氧化还原条件的改变(Eh),发生矿质的大规模沉 淀聚集。由富 Fe²⁺、Mg²⁺、Mn²⁺、Ca²⁺、CO²⁻的 碳酸盐型热水混入以 SiO2 为酸酐的热水后,因强 烈的酸碱作用和氧化还原条件骤变,发生热水混 合同生沉积作用, Cu、Pb、Zn 发生富集成矿。硅 质岩-铁白云石硅质岩-硅质铁白云岩-硅质灰岩-生物灰岩为密切共生的岩石系列,也是主要含矿 岩石,在热水成岩成矿体系中,SiO2-CaCO3 组分 已在热水沉积成矿盆地的底部形成硅质软泥及 碳酸盐软泥,这些软沉积物是良好的缓冲体系 (buffer system)。局部硅质岩中碳质高达 10%,说 明可能富碳热流体也参与了热水混合同生沉积 作用,这种现象主要在矿床东部较为发育,多是 富矿部位,暗示在该区东延深部可能是今后寻找 隐伏矿体有利部位,建议系统进行热水沉积岩相 的三维精细结构填图、深部隐伏矿体定位预测和 勘查工作。

4 结 语

在热水沉积成矿盆地中,在单一成分热水体 系的温度、压力改变而发生快速化学沉淀,不同成 分、性态的热水混合后,强烈的酸-碱作用及 EhpH的剧变等,触发热水体系失稳,引起矿质大规 模骤沉。热水成矿流体中[SiO₂]和 F 可能是主要 矿化剂。成矿物质卸载富集成矿后,SiO₂ 直接从 热水体系中晶出形成含硅质岩的热水沉积岩相; F 原生异常主要与铁白云质泥岩(千枚岩)有关, 可能是以 F 络合物迁移的卸载后,F⁻由于具有强 亲石性而残留在热水中,最终在矿体上盘围岩中 形成原生异常及热水同生沉积岩相。

参考文献:

- [2] 陈先沛,高计元,陈多福,董维全,热水沉积作用的概念和几个岩石学标志[J].沉积学报,1992,10(3);124~132.
- [3] 方维营,张国伟.银硐子一大西沟特大型矿床中重晶石岩类特征及成岩成矿作用[J].岩石学报,1999,15(1);121~128.
- [4] 刘家军,郑明华,刘建明.西秦岭寒武系金矿床中硅岩的地质地球化学特征及其沉积环境[J]. 岩石学报,1999,15(1):145~154.
- [5] 方维萱.秦岭造山带古热水场地球化学类型及流体动力学模型探讨-热水沉积成矿盆地分析与研究方法之二[J].西北地质科学, 1999,20(2):17~26.
- [6] 方维查. 陕西铅铜山大型铅锌矿床热水沉积岩相特征[J]. 沉积学报, 1999, 17(1):44~50.
- [7] 方维查,张国伟,胡瑞忠,刘方杰.秦岭造山带泥盆系热水沉积岩相应用研究及实例[J].沉积学报,2001,19(1):48~54.
- [8] 方维营,张国伟,胡瑞忠,芦纪英.秦岭造山带泥盆系热水沉积岩相的亚相和徽相划分及特征 [J]. 地质与勘探,2001,37(2):50~54.
- [9] 王俊发,张复新,炎金才,陈 苓.秦岭泥盆系层控金属矿床[M].西安:陕西科学技术出版社, 1991.2~71.
- [10] 祁思敬,李英.秦岭泥盆系铅锌成矿带[M].北京:地质出版社, 1991.124~178.
- [11] 王集磊,何伯墀,李健中,何典仁.中国秦岭铅锌矿床[M],北京:地质出版社, 1996.195~218.
- [12] 张本仁,骆庭川,高山,等.秦巴岩石圈构造及成矿规律地球化学研究[M].武汉:中国地质大学出版社, 1994.298~306.
- [13] 胡瑞忠.矿化剂-热液矿床研究中的薄弱环节[A]. 全国第四界矿物岩石地球化学学术讨论会论文汇编[C].北京:地震出版社, 1991.73~74.
- [14] 胡瑞忠,李朝阳,倪师军.华南花岗岩型铀矿床成矿热液中∑CO,来源研究[J].中国科学(B辑),1993,(2):189~196.
- [15] 何起祥. 沉积岩和沉积矿床[M]. 北京:地质出版社,1978.316~320.

CHARACTERISTICS OF HYDROTHERMAL SEDMENTARY FACIES IN RELATION WITH MINERALIZER IN BAFANGSHAN POLYMETALLIC DEPOSIT

FANG Wei-xuan^{1, 2}, LIU Fang-jie², HU Rui-zhong¹, CHEN Meng-xiong³

LODG Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
Northwest Geological Exploration Bureau, Xi' an 710054, China;

3. The Mineral and Ceological Exploration Center of Nonferrous metals of China, Beijing 100814, China)

Abstract: The Bafangshan polymetallic deposit occurs in the Middle Devonian Fengtai apart-pull basin. Based on its sedimentology, mineralogy, petrology and geochemistry of the deposit, the geological-geochemical characteristics of hydrothermal facies are described. Six patterns of these hydrothermal lithofacies were defined, i.e., hydrothermal syn-sedimentation microfacies, hydrothermal syn-sedimentation-replacement microfacies, mixing hydrothermal syn-sedimentation microfacies, hydrothermal explosion and fluid pressure-fracturing microfacies, hydrothermal filling-replacement microfacies and hot-brine syn-sedimentary microfacies. Silicates with (FeO + Fe₂O₃ + MgO) accounting for less than 10% and SiO₂ > 70% may have resulted from hydrothermal syn-sedimentation. Siliceous ferrodolomitites with (FeO + Fe₂O₃ + MgO) accounting for more than 20% and SiO₂ 30% to 50% were also derived from hydrothermal syn-sedimentation in the subbasin. Ferrodolomitites were produced by Fe-Mg-Ca-rich carbonate-type hot water. Polymetallic ores were accumulated as a result of mixing of different components. Ore-forming materials were deposited in response to extensive chemical reactions. F and [SiO₂] in hydrothermal fluids could serve as the mineralizers mainly responsible for the transport of metallogenic materials.

Key words: hydrothermal lithofacies; hydrothermal diagenetics-metallogenism; mineralizer; Bafangshan