桂北沙子江铀矿床稀土元素地球化学特征

石少华1,2, 胡瑞忠1, 温汉捷1

李贤国³, 孙如良³, 王加昇^{1,2}

中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州 贵阳 550002;
 中国科学院研究生院, 北京 100049;

3. 广西 310 核地质大队, 广西 桂林 541213

【摘 要】针对沙子江矿床的区域地层、赋矿图岩、成矿各阶段方解石及铀矿石进行稀土 元素地球化学研究发现:各类样品具大体类似的LREE 富集及Eu负异常的稀土配分模 式,表明它们之间稀土元素特征具有继承性,赋矿花岗岩与区域地层稀土元素特征指示两 者具有共同的陆壳沉积物源区;方解石及矿石中稀土元素主要继承了赋矿花岗岩的特征。 成矿各阶段方解石Y/Ho值范围狭窄,在28.86~38.22之间,显示它们具共同的源区,且 从成矿早阶段经主成矿阶段到成矿晚阶段,Eu负异常趋于强烈, dEu均值由 0.34→0.26 →0.25,表明成矿流体向相对还原环境演化。铀矿石具最高的稀土元素总量($\Sigma REE =$ 259.88×10⁻⁶~869.31×10⁻⁶),且与铀矿石的品位存在正相关关系,暗示稀土元素与铀 的迁移具同步性。铀矿石(以原生铀矿物为主)中Ce负异常的形成可能与铀源岩中分散 的U(IV)被活化为在成矿流体中易迁移的U(VI)的氧化过程相伴;而铀黑的Ce正异常则 是由表生作用过程所导致。

【关键词】 稀土元素;地球化学;沙子江;苗儿山;桂北 中图分类号:P619.14 文献标识码:A 文章编号:1001-6872(2010)01-0036-07

0 引 言

沙子江矿床位于广西桂林市资源县境内,是苗 儿山铀矿田内重要的花岗岩型铀矿床之一,在上世 纪 60 年代~70 年代开始勘探开发,近年来详查已 经确定其为大型铀矿床。苗儿山铀矿田是中南地区 五大铀矿田之一,其内分布有目前我国最大规模的 碳硅泥岩型铀矿床——铲子坪矿床,及双滑江、孟公 界等诸多规模较大的花岗岩型铀矿床。

通讯作者:胡瑞忠,男,52岁,研究员(博士导师). E-mail:huruizhong@vip, gyig. ac. cn

收稿日期:2010-09-02; 改回日期:2010-12-03

基金项目:国家自然科学基金重大项目(40634020);国家重点基础研究发展规划项目(2007CB411408) 作者简介:石少华,男,30岁,博士生,地球化学专业,研究方向:矿床学及矿床地球化学,

稀土元素地球化学在热液铀矿床研究中积累了 许多有益的认识,在成矿物质来源、成矿流体物理化 学状态、岩体含铀性,甚至指导铀矿找矿勘探等方面 都发挥了重要作用。区内开展的稀土元素地球化学 工作,主要是针对可能提供铀源的赋铀岩体^[1,2]及 铀矿石或铀单矿物^[3],然而,对与成矿关系密切的脉 石矿物研究尚欠深入。由于类质同像置换,含钙脉 石矿物(如方解石及萤石)继承了较多成矿流体的稀 土元素地球化学特征,开展此类脉石矿物的稀土元 素地球化学特征,可以获取矿化过程中诸多有价值 的物理化学信息^[4]。研究针对沙子江矿床的区域地 层、赋矿新鲜花岗岩、蚀变花岗岩和酸性脉岩、不同 成矿阶段方解石及铀矿石等不同组成部分的稀土元 素地球化学系统研究,以期获取有关矿质迁移、沉淀 及成矿流体经历的物理化学状态等信息。

1 地质概况

沙子江矿床的大地构造位置处于华南扬子板块 江南被动陆缘隆起带的南缘,苗儿山-越城岭花岗岩 穹窿构造西翼的苗儿山岩体中段,南东侧为华夏岛 弧系(图1)。苗儿山-越城岭花岗岩穹隆构造区是 我国南岭铀-多金属成矿带中的重要成矿区,除去苗 儿山矿田,东翼越城岭隆起边缘晚古生代坳陷区分 布有我国著名的碳硅泥岩型铀矿田——全州矿田, 其内分布有广子田、矿山脚及大江背等诸多矿床。 中部的新(宁)资(源)断陷红盆内分布有众多铀矿 点、矿化点,并发现了不少异常点、带,为很有远景的 铀成矿区^①(图2)。区内主要产铀地层为震旦系陡 山沱组及寒武系清溪组黑色岩系,中上泥盆统信都 组的含碳质石英粉砂岩、泥质岩,唐家湾组的含碳深

图 1 研究区大地构造位置示意图(据核工业 230 研 究所等,2007[@]修改)

1. 断裂; 2. 研究区; F_1 . 安化-城步断裂; F_2 . 新资断裂; F_3 . 茶陵-郴州断裂; F_4 . 赣江断裂

Fig. 1 Sketch map showing the tectonic location of the Miaoershan uranium ore field 灰色厚-巨厚细晶白云岩。苗儿山-越城岭岩体为多 期多阶段花岗岩复式岩体,除苗儿山岩体有少量雪 峰期花岗斑岩出露外,两岩体主体均以加里东期花 岗岩为主,伴有多个印支期及燕山期花岗岩体。另 外,在苗儿山岩体中段及越城岭岩体东侧中上泥盆 统见基性岩浆侵入,时代不详。新资断陷红盆地层 不整合于早白垩系一震旦系地层及苗儿山-越城岭 两花岗岩体之上,呈 NNE 向蜿蜒分布,主要为白垩 系由一套陆相粗碎屑沉积物组成的类磨拉石建造。 区内断裂构造发育,主体为 NNE 向断裂。新资断 裂为区内最大断裂构造,并同时发育许多 NNE 向 次级断裂,它们是铀矿化的重要部位。

沙子江矿床产在苗儿山岩体中段印支期的豆乍 山岩体与香草坪岩体接触带附近,豆乍山岩体为中 粒-中细粒黑(二)云母二长花岗岩,香草坪岩体为中 粗粒黑云母花岗岩,最新锆石 SHRIMP U-Pb 年代 学数据显示两岩体的成岩年龄分别为 228 Ma±11 Ma^[2]及 211 Ma±2 Ma[©]。矿化段花岗岩蚀变作用 发育,蚀变带宽。近矿段常表现为强的赤铁矿化、黄 铁矿化、绿泥石化、钾钠长石化、高岭土化;远矿段为 伊利水云母化;无矿化段蚀变作用弱或无。另外,矿 区内分布有较多的花岗斑岩及细晶岩等晚期岩浆活 动脉岩。矿区构造发育,并伴有较多次级构造裂隙, 呈束状构造群排列。构造变异部位及两岩体的接触 带常控制了铀矿化的分布。矿体多呈透镜状、脉状 及楔状侧幕式排列,具尖灭再现、膨胀收缩、分支复 合等特点,矿体产状及形态与矿床内断裂近一致。 矿石矿物主要为沥青铀矿,呈浸染状、脉状、肾状及 球粒状等产出。另有铀黑、钙铀云母、铜铀云母、钙 砷铀矿等次生铀矿物。与成矿关系紧密的脉石矿物 主要有紫红色玉髓、微晶石英、紫黑色萤石、酱紫色 方解石及胶状、尘封状黄铁矿等。

2 样品采集及分析方法

用于稀土元素分析的样品分为4类:I类为区 域地层;II类为赋矿围岩,包括赋矿的豆乍山及香草 坪新鲜花岗岩、蚀变花岗岩及矿区酸性脉岩;II类为 方解石脉,均采自沙子江矿床坑道及矿区外围钻探 岩心。根据方解石的产状、颜色等可分为成矿早阶 段、主成矿阶段及成矿晚阶段3种:成矿早阶段方解 石为浅肉红色细脉;主成矿阶段方解石为深肉红色、

①广西 310 核地质大队. 新资盆地黄沙江-湾底地段白垩系地层层序 初步研究. 1991.

②核工业 230 研究所,南京大学地球科学系,苗儿山铀矿田双滑江铀 矿床次生铀矿富集成矿作用研究,2007.

酱紫色脉,伴紫黑色萤石、烟灰色石英及紫 红色玉髓等;晚阶段方解石大部分为白色、 乳白色大脉,有的呈层解石产出,距矿体有 一定的距离;Ⅳ类为不同品位的铀矿石。以 上4类样品详细特征及取样位置见表1。

Ⅰ类,Ⅱ类及Ⅳ类样品直接用全岩及矿石,Ⅲ类样品挑取纯度为99%以上的方解石 单矿物进行分析。稀土测试工作在中国科 学院地球化学研究所矿床地球化学国家重 点实验室采用电感耦合等离子体质谱(ICP-MS)法完成,分析误差±5%,具体分析方法 及流程见文献[7]。

3 测试结果

样品的稀土元素含量和特征参数见表 1,稀土元素配分模式见图 3,球粒陨石标准 化采用文献[8]数据。

I 类样品, $\Sigma REE = 111.30 \times 10^{-6} \sim 202.63 \times 10^{-6} (不含 Y, 下同), 稀土配分模式$ $稍许右倾, 轻稀土相对富集, LREE/HREE =7.26~8.57, 轻重稀土之间分异相对明 图 2 显, (La/Yb)_N=6.50~8.88, 轻稀土分异相对 Pt. 元 显著, (La/Sm)_N=3.75~4.62, 而重稀土之 <math>^{2.42}_{Fig.2}$ 间分异相对较弱, $(Gd/Yb)_N = 1.02 \sim 1.45$ 。

1991⁽⁰⁾;底图据孙清,2007^[5];矿床位置据方道宜,2007^[6]修改)
 Pt. 元古界; Pz. 古生界; T. 三叠系; K. 白垩系红盆地层; 1. 花岗岩体主体相;
 2. 花岗岩体补体相; 3. 断裂; 4. 铀矿床及矿点; 5. 采样位置; 6. 盆地边界
 Fig. 2 Simplified regional geological map of the Miaoershan uranium ore field

Fig. 3 Chondrite-normalized REE distribution patterns of all involved samples from the Shazijiang uranium ore deposit

Table 1 REE contents and parameters of all involved samples from the Shazijiang uranium ore deposit (in [×10 ⁻⁶]))					
分类	样号	名称	主要地质特征							位置*				La	Ce	Pr	Nd	Sm	Eu
I 类	WJ-1	硅质岩	寒武系清溪组内黑-灰色硅质岩											42,40	83.90	9,28	32.50	6.49	1.49
	WJ -2	板岩	寒武系清溪组内深灰色碳质板岩							1 1 1				24.40	44.10	5.47	19.50	3.59	0.76
	BJZ-1	砂砾岩	白垩纪断陷红盆内砖红色砂砾岩							莨山	莨山			30.60	68.10	6.06	20.30	4.17	0.43
	BJZ-2									1 260	1360 m 由段			41.40	88.40 60.00	9.95	34.30 25.70	6.94	0.46
	DZS-2		豆乍山岩体,青灰色,中细粒二云二长似斑 状花岗岩,斑晶主要为钾长石、石英、黑云 母及白云母 香草坪岩体,青灰色,中粗粒斑状黑云母花 島岜 西見主要为細长石 匆长石水之							1 300	1 000 m 1 2			27.69	47.91	5.95	21.85	4.73	0.38
	DZS-3	新鲜 花岗岩								* *				29.00	52.89	6.41	25.01	5.46	0.32
	DZS-4													25.92	50.45	6.56	23,65	5.05	0.31
Π	XCP-1									1 320	m 中段			34.80	74.50	8.98	32.20	6.53	0.60
英	XCP-2		□ 凶石, 斑崩土安万钾长石, 射长石伏乙 Ⅰ 股票 淡色 细粒白子母龙岛型											22.70	42.80	5.48	19.20	4.45	0.29
	SZJ-1 SZL-2	细晶石	一小口,次已,知过口公母化闪石								<u> </u>			2,44 22 50	3.95	0.65	2, 13	0.91	0.02
	SZJ-2	碎裂蚀变	赤铁矿化花岗岩								m 中段			16.10	27.20	3.81	12,90	3.04	0.28
	SZJ-4	花岗岩	伊利水云母化花岗岩											22.00	46.10	5.61	19.70	4.72	0.33
-	(11)a	成矿目险	浅肉红色方解石脉,油脂光泽								ZK704-29-3,910 m标高				7.66	0.88	3.31	0.91	0.10
Ⅲ类	(12)d	股方解石	浅肉红色方解石脉								ZK1-17,786 m标高				50.50	5.32	18.00	4.47	0.58
	19-1-1		浅肉红色方解石脉							1 360	<u>m 中段</u>	L		6.78	12.60	1.42	5.31	1.50	0.22
	(4)b		酉承巴力胜句 肉红鱼方解石脉 结晶差							ZK5-1	5,424 m 5 420 m	1 怀尚		8.43	17.80	2.08 1.24	7.01	2.01	0.18
	(⊕)¢ (Æ)f	}	內立已2月11日時,2日間左 肉红色方解石脉,伴黄铁矿细脉						ZK5-15,449 m 标高 ZK5-15,449 m 标高				4 00	9 42	1.24	4.33	1.27	0.12	
	(4)s	主成矿阶	肉红色方解石标;FFgG5 34标 肉红色方解石与烟灰色石英共生 浅紫色方解石脉						ZK5-1	5,431 m	标高		4.28	9,42	1.17	4.59	1.42	0.13	
	٠ (4) t	段万解石							ZK5-1	5,1 211	m标高		2.94	5.90	0.69	2.53	0.75	0.07	
	@f		肉红色方解石脉							1 360 m 中段				6.26	12.70	1.51	5.63	1.94	0.19
	(12)a		肉红色	色方解	石脉					ZK1-1	7,771 m	标高		4.56	9.02	1.06	3.96	1.21	0.12
	17-3	0-11-6-14	白色质	ミ解 石			~ 11. 11			1 400	m 中段	,	•	4.27	8.75	0.98	3.70	1.10	0.10
	18-7-2	成矿晚阶	日色万解石脉与绿色萤石共生							1 360 m 甲段 7K5 15 442 m 長官				6.17 A AG	13.40	1.87	7.84	2.55	0.23
	(4)1 (A)n	段万胜有	孔口巴刀肼臼 到白色古姆石 油形夹浮							ZK_{5-1}	ZK3-13,447 m 你同 ZK5-15 449 m 标直			4.40	9.00	1.03	3.00	1.01	0.08
	<u> P</u> -1		<u></u>							1 320	1 320 m 中段			110.65	193.92	25.54	108.43	26.78	1.63
IV 类	P-2	品位牧	疏松块状铀黑							1 320 m 中段				85.72	348.01	35.57	160.25	49.14	3.42
	P-3	间1/1 11	疏松块状铀黑 网脉状沥青铀矿石 4.4.6.4.5.5							1 340	<u>1 340 m 中段</u> 1 360 m 中段			67.88	278.58	28.03	121.44	40.15	2.88
	P-4	品位较								1 360				71,55	102.42	10.92	40,24	10.38	0.52
			=	ゴロン腿									E/	(17)		101/02			
	子 G	id Tb	Dy	Но	Er	Im	Yb	Lu	Y	ΣREE	LREE	HREE	HR	EE	(YD) _N	$La/Sm)_N$	(Gd/Yb) _N dEu	ðCe
W]-	·1 5.	78 0.96	5.54	1.20	3.41	0.48	3.22	0.46	31.80	197.11	176.06	21.05	8.3	5 di 96 a	5,88 5,50	4.11	1.45	0.73	0.98
BIZ	-2 3. -1 3.	66 0.70	4 . 01	0.89	2.55	0.37	2.53 2.58	0.39	24.30	144.81	129.66	15.15	8.5	56 8	3.00	4.62	1.02	0.33	1.14
BJZ	-2 5.	49 1.06	5.68	1.18	3.41	0.51	3.41	0.44	33.60	202.63	181.45	21.18	8.5	57 8	3.19	3.75	1.30	0.22	1.02
DZS	-1 5.	32 1.05	5.82	1.27	3.43	0.52	3.76	0.52	35.60	149.18	127.49	21.69	5.8	8 5	5.02	2.85	1.14	0.20	0.99
DZS	-2 4.	70 0.82	4.83	0.93	2.72	0.4	2.77	0.45	26,86	126.04	108.42	17.62	6.1	.5 f	5.74	3.68	1.37	0.19	0.86
DZS	r3 5. :4 5	05 0.80	5.51	1.05	3.22	0.49	3.35	0.52	30,01	139.11	119.09	20.02	5.5	15 t 10 F	5.84 5.31	3.34	1.22	0,18	0.90
XCF	-4 J. -1 4.	93 0.83	4.22	0.84	2.32 2.24	0.32	2.06	0.29	23,00	173.34	157,61	15.73	10.0	2 1	1.39	3.35	1.93	0.31	0.99
XCF	-2 3.	33 0.59	2,90	0.52	1.28	0,17	1.15	0.16	13.70	105.02	94.92	10.10	9.4	0 13	3.31	3.21	2.34	0.22	0.90
SZJ	1 0,	66 0.18	0.90	0.16	0.42	0.07	0.61	0.09	4.82	13.19	10.10	3.09	3.2	7 2	2.70	1.69	0.87	0.08	0.74
SZJ	-2 4.	58 0.93	5.35	1.14	3.11	0.52	3,68	0.47	31,60	75 25	102.81	19.78	5.2	10 4 Maria	L. 12 L. 54	2.69	1.00	0.17	0.98
SZL	-3 2. -4 3	92 0 77	3.10 4.26	0.91	2.02	0.35	2.67	0.34	26.50	114.23	98.46	12.08 15.77	6.2	4 5	5.56	2.93	1.18	0.23	0.98
(11))a 1.	09 0.24	1.60	0.34	0.93	0.14	0.87	0.12	12.23	22.30	16.97	5.33	3.1	.8 3	3.18	2.84	1.01	0.31	0.93
(12)	d 5.	26 1.21	9.08	1.98	5.94	1.00	7.16	1.03	60.84	138.33	105.67	32.66	3.2	4 2	2.52	3.77	0.59	0.37	0.96
19-1	-1 2.	53 0.54	4.00	0.88	2.50	0.38	2.54	0.36	29,40	41.56	27.83	13.73	2.0	3 1	. 80	2.84	0.80	0.34	0.93
(4) (4)) Z.	21 0.48	3.13	0.67	1.89	0.32	2.16	0.30	21,03	49.27	38.11	11.10 6.47	3.4	1 2	2.63	2.64	0.83	0.26	1.00
(4) (4)	f 1.	33 0.28	1, 91	0.42	1. 24	0.21	1.41	0. 22	13. 52	27.10	20.09	7.01	2.8	7 1	. 91	2.08	0.76	0.24	1.04
Ť	s 1.	67 0.38	2.54	0.55	1.60	0.25	1.54	0.22	16.63	29.76	21.01	8.75	2.4	0 1	. 87	1.90	0.88	0.26	1.00
4	t 0.	85 0.22	1.52	0.32	1.00	0.16	1.02	0.14	12.23	18.11	12.88	5.23	2.4	6 1	. 94	2.47	0.67	0.27	0.96
0	£ 2.	63 0.65	4.63	0.98	2.83	0.47	3,51	0.51	30, 15	44.44	28.23	16.21	1.7	4 1	. 20	2.03	0.60	0.26	0.97
(12))a 1. 2 1	57 0.39	Z.75	0.61	1.83	0.29	Z.03	0.30	21.03 0 01	29.70	19.93	9.77 5.57	2.0	4 1 0 7	.51	Z. 37 2 11	0.62	0.27	0.95
18-7	-23	02 0.51	2.94	0.32	1.48	0.14 0.24	1.73	0. 24	5. 84 15. 34	42.78	32.07	10.71	2.9	9 2	2.40	2. 44 1. 52	1.41	0.25	0,94
4	- 0. 1.	06 0.22	1.44	0.32	0.98	0.16	1.07	0.15	10.45	25.21	19.81	5.40	3.6	7 2	. 81	2.78	0.80	0.23	1.00
۹.	o 1.	21 0.29	1.87	0.38	1.15	0.18	1.34	0,21	11.16	25.02	18.39	6.63	2.7	7 1	. 84	1.97	0.73	0.25	1.06
P-1	26.	53 5.43 3	30.71	6.28	l6.09	2.17	13.86	1.71	81.65	569.73	466.95	102.78	4.5	4 5	i. 38	2.60	1.54	0.18	0.85
P-2	48. 25	17 10, 18 5 24 8 26 7	00.92 I	0.702 8 28 9	23 11	3.97	25.08 21.48	3.44	107.45	689 12	082,11. 538 96	167.20	3.6 २ ६	4 2 9 9	. 22	1.10	1.49	0.21	1, 52
P-4	10.	07 2.191	4.00	3.15	9, 19	1.54	11.22	1.58	55.75	288.97	236.03	52.94	4.4	6 4	. 30	4.34	0.72	0.15	0.79
P-5	11.	48 2.44 1	3.85	2.69	7.37	1.16	8.56	1.03	69.50	259 . 88	211.30	48.58	4.3	53	. 63	1.92	1.08	0.17	0.79

表 1 沙子江矿床稀土元素特征质量分数.w(B)/10⁻⁶及特征参数

 P-5
 11.48
 2.44
 13.85
 2.69
 7.37
 1.16
 8.56
 1.03
 69.50
 259.88
 211.30
 48.58
 4.35
 3.63
 1.92
 1.08
 0.17

 注: * 取自坑道的样品位置直接记录坑道的中段; 岩心样品已换算为采样实际标高。 * * 样号 DZS-2, DZS-3 及 DZS-4 的数据据文献[2]

II 类样品, ΣREE = 13. 19×10⁻⁶ ~ 173. 34× 10⁻⁶,稀土配分模式稍许右倾,轻稀土相对富集, LREE/HREE = 3. 27~10. 02,轻重稀土之间分异 相对明显, $(La/Yb)_N = 2.70~13.31$,轻稀土分异相 对显著, $(La/Sm)_N = 1.69~3.68$,而重稀土之间分 异相对较弱, $(Gd/Yb)_N = 0.87~2.34$ 。Eu 亏损明 显, δEu=0.08~0.31。大多数样品均无明显 Ce 异 常。其中,蚀变岩体较新鲜岩体,稀土元素总量有降 低趋势。

Ⅲ类样品, $\Sigma REE = 18.11 \times 10^{-6} \sim 138.33 \times 10^{-6}$, 轻稀土相对富集, 但 HREE 与 I 类及 II 类相 比明显增加, LREE/HREE = 1.74 ~ 3.67, 轻重稀 土之间分异较弱, $(La/Yb)_N = 1.20 \sim 3.18$, 轻稀土 分异相对显著, $(La/Sm)_N = 1.52 \sim 3.77$, 而重稀土 之间分异相对较弱, $(Gd/Yb)_N = 0.59 \sim 1.41$ 。 Eu 亏损明显, $\delta Eu = 0.23 \sim 0.37$, 从成矿早阶段经主成 矿阶段到成矿晚阶段, Eu 负异常趋于强烈, $\delta Eu 平$ 均由 0.34→0.26→0.25; 稀土元素总量趋于减小, 平均由 67.40→32.50→29.37。所有样品均无明显 铈异常, δCe 约为 1。

IV类样品的稀土元素总量显著增加,ΣREE= 259.88×10⁻⁶~869.31×10⁻⁶,轻稀土相对富集,且 与 I 类及 II 类相比 HREE 有所增加,LREE/HREE =3.59~4.54,轻重稀土之间分异相对明显,(La/ Yb)_N=2.13~5.38,轻稀土分异相对显著,(La/ Sm)_N=1.10~4.34,而重稀土之间分异弱,(Gd/ Yb)_N=0.72~1.54。Eu 强烈亏损, δ Eu=0.15~ 0.23。两个铀黑样品表现为 Ce 正异常, δ Ce 为 1.52及1.54,而其他(以原生铀矿物为主的)铀矿石 表现为 Ce 负异常, δ Ce=0.79~0.85。

4 讨 论

综上所述,不论是区域地层、赋矿围岩、方解石 还是矿石,均具有大体类似的 LREE 富集及 Eu 负 异常的球粒陨石标准化配分模式,表明了各类型样 品中稀土元素具有继承性。Ⅱ类样品分析获得的赋 矿花岗岩稀土元素总量较低,低于世界花岗岩的平 均值(250×10⁻⁶)^[1],可能主要与花岗岩的源岩有 关。苗儿山岩体为典型的 S 型花岗岩,与 I 类地层 获得的稀土元素特征参数及配分模式非常相似,指 示它们具有共同的陆壳沉积物源区。随岩浆分异程

度增加,至岩浆活动晚期的酸性脉岩,花岗岩中 Eu 负异常明显增大,稀土元素总量有降低的趋势,Eu 负异常部分是继承了陆壳源区的特点,主要受控于 斜长石的结晶分离;稀土元素总量降低与富含稀土 元素矿物结晶分离有关。碎裂蚀变花岗岩中稀土元 素总量有降低趋势,但应该注意的是所分析的碎裂 蚀变花岗岩为发生铀矿化后的岩体,由于铀成矿特 殊的成岩-成矿巨大时差特点,其内稀土元素的活动 可能存在两种过程:(1)蚀变过程直接活化了岩体中 的稀土元素,并大规模迁移聚集;(2)直至成矿作用 发生时,稀土元素才与U一起被活化并进入成矿流 体大规模迁出。然而,单纯的前者必将增加岩体中 粘土矿物含量,它们是更易富集稀土元素的,这必将 导致碎裂蚀变花岗岩中局部稀土元素总量的增加, 这与此次分析结果相悖,说明后者可能是造成碎裂 蚀变花岗岩中稀土元素总量降低的主要原因,暗示 稀土元素的活化迁移与铀的迁移具有同步性,富铀 的热液同时应该也是富稀土的,但不能排除蚀变过 程中发生了少量稀土元素的活化及聚集。

方解石是沙子江矿床内重要的脉石矿物,其内 保留了成矿流体的重要信息。不同成矿阶段方解石 尽管稀土元素总量变化较大,但 Y/Ho 值分布范围 狭窄,在28.86~38.22之间,暗示所有方解石具有 相同的来源^[9]。方解石内稀土元素特征总体继承了 赋矿花岗岩的特征,但 HREE 有增加的趋势,使球 粒陨石标准化曲线呈现近"海鸥型"。目前,铀在成 矿热液中主要以碳酸铀酰络离子 UO₂ (CO₃)²⁽¹⁻ⁿ⁾ 形式迁移^[10]已取得了较多共识,成矿流体中CO₂的 加入对铀的活化迁移至关重要。沙子江矿床方解石 碳、氧同位素研究显示,δ¹³CPDB-δ¹⁸Osmow相关图解上 两者呈明显负相关关系,暗示了成矿流体去气 (CO₂)作用是导致方解石沉淀的重要因素之一³。 在富 CO₂ 的流体中稀土元素与碳酸络离子形成稳 定络合物迁移,且重稀土较轻稀土更容易迁移[10], 这可能是方解石样品中 HREE 相对增加的原因。 成矿流体中稀土元素含量一定的条件下,伴随成矿 流体去气(CO₂)作用导致方解石的沉淀,较早阶段 沉淀的方解石中可能更多的富集了稀土元素,其后, 稀土元素含量逐渐趋于减少,导致了成矿早阶段到 晚阶段,稀土元素总量大体呈降低趋势。Eu 负异常 趋于强烈,暗示了成矿流体向相对还原环境演化,因 为 Eu 在成矿流体中通常呈 Eu³⁺,在相对还原条件 下部分转变为 Eu²⁺ 与其他稀土元素分离,导致了

③石少华,胡瑞忠,温汉捷,等.桂北沙子江花岗岩型铀矿床碳、氧、硫 同位素特征及其成因意义.矿物岩石地球化学通报(待刊).

Eu 负异常的增加。这与大多数热液铀矿床中铀在 成矿流体中以 U(N)的酰类形式迁移,而沉淀成矿 的主要铀矿物为 U(N),经历了还原过程的认识是 一致的。另外,在成矿晚阶段梳状石英的流体包裹 体研究中发现了较多的烃类包裹体,也佐证了成矿 流体向有利于铀沉淀的相对还原环境演化^④。

Ⅳ类矿石样品具高稀土元素总量,而且,稀土元 素总量与铀矿石品位存在正相关关系,这一特征在 众多铀矿床铀矿石中都有体现^[11,12]。McLennan 等[10]认为稀土元素与铀经历了极为相似的活化、迁 移及富集过程,这可能是导致铀矿石中具上述稀土 元素特征的原因。沥青铀矿中稀土元素主要是以类 质同像形式存在,由于 U(Ⅳ)与 REE³⁺的离子半径 相近,离子类型和键性也相似,它们之间的类质同像 置换十分普遍,另外,Th,Ca及U衰变产物 M(Ra, Pb 及 Po 等)的混入,致使沥青铀矿呈现复杂的化学 式 ($U_{1-x-y-z}^{4+}$, U_x^{6+} REE_y³⁺ M_z²⁺ O_{2+x-y-z}) [13]。 HREE 相对增加可能是由于 U(IV)与 HREE 的离 子半径更为接近,而导致类质同像置换时 HREE 较 LREE 在铀矿石中具更大的分配系数。另外,沥青 铀矿复杂的晶体结构可能也是导致 U 与 REE 广泛 类质同像并具高 ΣREE 的重要因素之一。

沙子江矿床赋存于豆乍山岩体与香草坪岩体接 触带附近,本次分析的 II 类样品赋矿花岗岩具有较 高的 U 质量分数,平均为 20.63×10⁻⁶(n=10),远 高于 全球 花岗 岩的 U 平均质量分数(3.5× 10⁻⁶)^[1],而且该值为发生成矿作用之后可能已有大 量 U 迁出的花岗岩的现代 U 含量,说明它们完全具 有提供铀源的潜力。而矿石及方解石稀土元素配分 模式与花岗岩的相似性也暗示了铀源为就近的赋矿 花岗岩体。花岗岩中 U 经早期蚀变作用及其载体 矿物"自洁作用"被活化,并可能发生了预富集。提 供铀源的花岗岩中分散的 U(W)被活化为以碳酸铀

酰络合物形式的 U(Ⅵ)在成矿流体中大规模迁移, 这一(氧化)过程同时将成矿流体中的部分 Ce³⁺ 氧 化为 Ce4+, 而 Ce4+溶解度很小, 易被氢氧化物吸附 而脱离溶液体系[14],这可能是(以原生矿物为主的) 铀矿石样品(样号 P-1, P-4 及 P-5)显示 Ce 负异常 的原因。而样号 P-2 及 P-3 的样品依据麦尔科夫的 分类原则,应归为残余铀黑,是沥青铀矿在表生作用 中不充分氧化的产物(转引自余达淦等[15]),显示为 Ce 正异常。表生作用中 Ce 正异常在众多地质体研 究中都有发现,常被归因于 Ce3+ 的氧化、水解,并以 高价铈氧化物形式被吸附保留[16]。研究认为,苗儿 山地区至少存在3期铀成矿作用,分别为04.4 Ma, 74.1 Ma±9.9 Ma 及 53.0 Ma±6.4 Ma^[17],且与统 计的华南地区基性脉岩反映的岩石圈伸展作用时代 一致[18],铀的大规模活化迁移受控于成矿流体中地 幔来源 CO₂ 的加入,而铀的沉淀则受成矿流体去气 (CO₂)作用及氧化还原电位降低等因素影响,与前 述稀土元素演化过程是一致的。

5 结 论

5.1 赋矿花岗岩与区域地层稀土元素特征指示两 者具有共同的陆壳沉积物源区;方解石及矿石中稀 土元素主要继承了赋矿花岗岩体的特征。

5.2 不同成矿阶段方解石具有共同的来源,成矿早 阶段到晚阶段,Eu负异常趋于强烈,暗示成矿流体 向相对还原环境演化。

5.3 稀土元素与铀的迁移具有同步性,富铀的热液 同时应该也是富稀土的,铀源为就近的富铀花岗岩 体。(以原生铀矿物为主的)铀矿石 Ce 负异常的形 成可能与铀源岩中分散的 U(N)被活化为在成矿流 体中易迁移的 U(N)的氧化过程相伴;而铀黑 Ce 正异常则是由表生作用过程所导致。

参考文献

- [1] 张祖还,章邦桐.华南产铀花岗岩及有关铀矿床研究[M].北京:原子能出版社,1991.
- [2] 谢晓华,陈卫锋,赵葵东,等.桂东北豆乍山花岗岩年代学与地球化学特征[J].岩石学报,2008,24(6):1302-1312.
- [3] 徐伟昌,张运洪. 桂东北铀矿区各类型铀矿床中沥青铀矿的稀土元素分布模式的研究[J]. 铀矿地质,1988,4(2):94-98.
- [4] Schwinn G, Markl G. REE systematics in hydrothermal fluorite[J]. Chemical Geology, 2005, 216(3-4): 225-248.
- [5] 孙 涛,王志成,陈培荣,等,南岭地区晚中生代北带花岗岩研究:苗儿山-越城岭岩体[A].周新民.南岭地区晚中生代花岗岩成因与岩石 图动力学演化[C].北京:科学出版社,2007,504-520.
- [6] 方适宜,范立亭,朱康任,等. 孟公界花岗岩型脉状铀矿床成矿构造研究及找矿预测[J]. 铀矿地质,2007,23(3):138-144.
- [7] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3), 507-513.
- [8] Boynton W V. Geochemistry of the rare earth elements; meteorite studies [A]. In; Henderson P(Ed), Rare Earth Element Geochemistry [C]. Elsevier, Amsterdam, 1984:63-114.
- [9] Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids[J]. Contributions to

④石少华,胡瑞忠,温汉捷,等.桂北沙子江铀矿床流体包裹体初步研究.矿床地质(待刊).

Mineralogy and Petrology, 1995, 119(2-3): 213-223.

- [10] McLennan S M. Taylor S R. Rare earth element mobility associated with uranium mineralisation[J]. Nature, 1979, 282:247-250.
- [11] Fryer B J, Taylor R P. Rare-earth element distributions in uraninites: Implications for ore genesis[J]. Chemical Geology, 1987, 63(1-2); 101-108.
- [12] Fayek M,Kyser T K. Characterization of multiple fluid-flow events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca basin, Saskatchewan[J]. The Canadian Mineralogist, 1997, 35:627-658.
- [13] Janeczek J, Ewing R C. Structural formula of uraninite[J]. Journal of Nuclear Materials, 1992, 190:128-132.
- [14] Möller P, Morteani G. On the geochemical fractionation of rare earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits[A]. In: Augustithis S S. ed. The Significance of The Trace Elements in Solving Petrogenetic Problems and Controversises[C]. Athens: Theophrastus Publ, 1983; 747-191.
- [15] 余达淦,吴仁贵,陈培荣. 铀资源地质学[M]. 哈尔滨工程大学出版社,2005,54.
- [16] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279, 206-210.
- [17] 石少华,胡瑞忠,温汉捷,等.桂北沙子江铀矿床成矿年代学研究:沥青铀矿 U-Pb 同位素年龄及其地质意义[J]. 地质学报,2010,84(8): 1 175-1 182.
- [18] 胡瑞忠,毕献武,苏文超,等. 华南白垩-第三纪地壳拉张与铀成矿的关系[J]. 地学前缘,2004,11(1):153-160.

REE GEOCHEMICAL CHARACTERISTICS OF THE SHAZLJIANG URANIUM ORE DEPOSIT, NORTHERN GUANGXI, CHINA

SHI Shao-hua^{1,2}, HU Rui-zhong¹, WEN Han-jie¹, LI Xian-guo³ SUN Ru-liang³, WANG Jia-sheng^{1,2}

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;

2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;

3. 310 Guangxi Geological Party, China National Nuclear Corporation, Guilin 541213, China

REE geochemistry of 4 groups of samples (the regional stratigraphy, ore-hosting Abstract : rocks, calcites and uranium ores) were analyzed by using ICP-MS method to investigate the genesis of the Shazijiang uranium ore deposit in northern Guangxi, China. Different groups of samples show significant similarities in LREE-enriched REE patterns and negative Eu anomalies. It is indicated that ore-hosting rocks and regional strata are of common sedimentary source of the continental crust. Besides, calcites and uranium ores inherited abundant REE geochemical characteristics from ore-hosting rocks. The calcites from different mineralization stages with narrow range of Y/Ho ratios between 28. $86 \sim 38.22$ were the products derived from the same source. From early to main and then late mineralization stage, the growing trend of negative Eu anomalies (a decrease in the δ Eu values: 0. 34 \rightarrow 0. 26 \rightarrow 0. 25) of calcites suggests that the ore-forming fluid changed to reducing environment. In addition, uranium ores are characterized by highest ΣREE contents $(\Sigma REE = 259.88 \times 10^{-6} \sim 869.31 \times 10^{-6})$ and ΣREE contents correlating positively with uranium ores grades, which is regarded as a clue to Simultaneous transportation of REE and U. Negative Ce anomalies of uranium ores (except for two uranium black samples) were most probably resulted from oxidation condition. Meanwhile, $U(\mathbb{N})$ distributed in uranium source was oxidized to U (1) which is easily transported in ore-forming fluid. Whereas, positive Ce anomalies of 2 uranium black samples are attributed to supergene processes.

Key words: REE; geochemistry; Shazijiang; Miaoershan; northern Guangxiang

ISSN 1001-6872(2010)04-0036-07; CODEN:KUYAE2

Synopsis of the first author: Shi Shaohua, male, 30 years old, a Ph D of geochemistry. Now he is engaged in the research of economic geology and ore deposit geochemistry.