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Abstract Northern Guangdong is an important part of
Nanling tungsten–tin metallogenic belt, South China. The
tungsten mineralization in this area consists of mainly
quartz–wolframite vein-type mineralization, with W–Sn
polymetallic deposits mostly distributed at the outer contact
zone between concealed Late Jurassic granitic stocks and
Cambrian–Ordovician low-metamorphosed sandstones and
shales. Molybdenite Re–Os and muscovite 40Ar/39Ar isotopic
dating of three typical tungsten vein-type deposits (Yaoling,
Meiziwo, and Jubankeng) in northern Guangdong, show that
two episodes of Late Jurassic W–Sn polymetallic mineraliza-
tion occurred in this area: an early episode during the Late
Jurassic (158–159 Ma) represented by the Yaoling, Hongling,
and Meiziwo tungsten deposits, and a younger event during
the Early Cretaceous (138 Ma) represented by the Jubankeng
deposit. Analysis of available radiometric ages of several
W–Sn deposits in the Nanling region indicate that these
deposits formed at several intervals during the Mesozoic at
90–100, 134–140, 144–162, and 210–235 Ma, and that large-
scale W–Sn mineralization in this region occurred mainly
between 150 and 160 Ma.
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Introduction

Northern Guangdong is one of the most important produc-
ing areas of tungsten–tin resources in Southern China. There
are 12 large to medium-sized deposits and dozens of minor
occurrences distributed in this region, which account for
more than 95% of total proven reserves of tungsten (about
21.88 Mt WO3), lead, zinc, copper, and silver, and 50% of
tin and antimony in Northern Guangdong. Tungsten mineral-
ization in these deposits is present mainly as quartz–wolframite
veins (Yaoling, Shirenzhang, Meiziwo, and Jubankeng depos-
its), in a few altered granites (Hongling deposit) or in scheelite
skarns (Yaoling deposit; Chen 1983; RGNTD 1985; Luo et al.
2006; Wang et al. 2006). The high concentration of W–Sn
polymetallic deposits and the diverse styles of mineralization
make Northern Guangdong an ideal place for the study of
tungsten mineralization. Research on ore genesis and ore-
forming processes of these tungsten deposits can provide
guidelines for the exploration of tungsten mineralization in
the Northern Guangdong area and by extension to the whole
Nanling region, which also includes the Southern Jiangxi,
Southern Hunan, and northeastern Guangxi areas.

The quartz–wolframite vein-type deposits account for
more than half of the total tungsten reserves of South China
and make up for more than 80% of the tungsten deposits and
tungsten occurrences discovered in this area (Liu and Ma
1993). Several deposits of this type, i.e., Yaoling, Hongling,
Shirenzhang, and Meiziwo in Northern Guangdong were
systematically prospected during the 1960s using the
“five-story building” model. This model summarized the
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vertical zonation and mineralogical compositions of these
quartz–wolframite veins, and thus provided important
guidelines for the exploration of these deposits in South
China (Guangdong Metallurgical and Geological Team
932 1966, 1967, 1976; RGNTD 1985; Liu and Ma 1993).
However, after decades of mining, tungsten resources are
rapidly decreasing and more geological studies are needed
in order to refine or develop new exploration models. De-
termination of the age of these ore deposits is not only a key
issue to understand the possible genetic relationship be-
tween regional granites and the W–Sn mineralization, but
also to determine regional metallogenetic epochs. Molybde-
nite Re–Os and mica 40Ar/39Ar dating methods have proven
to be two powerful tools for the precise age determination of
ore deposits (i.e., Suzuki et al. 1996; Reynolds et al. 1998;
Selby and Creaser 2001, 2004; Creaser et al. 2002; Du et al.
2004; Fraser et al. 2008; Mao et al. 2009). Tungsten miner-
alization ages from northern Guangdong are scarce. Fu et al.
(2008) reported molybdenite Re–Os isochron ages for the
Shirenzhang and Shigushan deposits, whereas Wang et al.
(2010) presented a molybdenite Re–Os isochron age for
Hongling. All three molybdenite Re–Os isochron ages are

~160Ma. Additionally, two muscovite 40Ar/39Ar plateau ages
have been reported, one for the Meiziwo deposit (Zhai et al.
2010; 156.0±0.6 Ma) and the second for the Jubankeng
deposit (Fu et al. 2009; 139.2±1.5 Ma). In this paper, we
present new mineralization ages for three tungsten deposits
located in Northern Guangdong (Yaoling, Meiziwo and
Jubankeng). We also provide a compilation and a discussion
of the available geochronologic data for tungsten deposits
from the Nanling region.

Regional geological setting

Northern Guangdong is located in the South China Caledonian
Fold Belt. Post Caledonian uplift and Hercynian–Indosinian
depressions extend from Southern Hunan to Northern Guang-
dong (Fig. 1). Regional exposed strata consist of Paleozoic
Cambrian, Ordovician, and Silurian low-metamorphosed clas-
tic sedimentary rocks, Devonian coastal and neritic facies
(sandstones, shales and carbonates), and Quaternary eluvium,
diluvium and alluvium. Regional exposed igneous rocks in-
clude the southern part of the Zhuguangshan composite

Fig. 1 Regional geological map of Northern Guangdong indicating the
main mineral deposits in the area (after Luo et al. 2006). YLYaoling, SRZ
Shirenzhang, MZW Meiziwo, HL Hongling, DJS Dajishan, JBK

Jubankeng, SGS Shigushan,MTWMiantuwo, FK Fankou Pb–Zn deposit,
DBS Dabaoshan polymetallic deposit, TC Tarim craton, NCC North
China Craton, YC Yangtze Craton
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batholith, the Guidong composite batholith, as well as other
small stocks. Tungsten mineralization is associated with Sn–
Bi–(Mo)–Pb–Zn–(Ag) and it is very abundant in northern
Guangdong with several deposits such as the super-large
Jubankeng, the large Meiziwo, and other minor deposits (e.g.,
Yaoling, Shirenzhang, Hongling, Miantuwo) (Guangdong
Metallurgical and Geological Team 932 1976; RGNTD 1985;
Luo et al. 2006). Polymetallic Pb–Zn deposits (Fankou and
Dabaoshan) are also present in the area (Fig. 1).

Geology of tungsten deposits

Yaoling

The Yaoling tungsten deposit is located in the southwestern
limb of the Yaoling anticline complex (Fig. 2a). Exposed
strata consist of Cambrian to middle Devonian low-grade
metasedimentary quartzites, slates and interlayered siliceous
conglomerates, cherts, siltstones, limestones, and argilla-
ceous limestones. Late Jurassic granitoids outcrop exten-
sively in the mining area. These granitoids are part of the
Baijizhai granitic stock, Yaoling quartz porphyry dyke, and
the concealed Yaoling granitic stock. The Yaoling anticline
complex consists of mainly NE- or near SN trending sub-
folds. The Yaoling tungsten deposit comprises several ore
blocks or areas (i.e., Beifeng’ao, Baolongli, Beifengwei,
Xiaonandong, and Baijizhai; RGNTD 1985; Wang et al.
2006; Luo et al. 2006).

The Yaoling deposit involves three types of tungsten
mineralization styles: quartz–wolframite vein-type mineral-
ization, skarn-type, and altered granite-type scheelite min-
eralization. Forty-seven ore veins have been identified so
far, which are mainly controlled by joint fractures (Fig. 2b).
These veins crosscut the premineralization quartz porphyry
dyke, and are displaced by postmineral faults (Fig. 2c).
According to their orientation, these veins can be classified
into three main groups: NW, NE, and NS; the NW group is
the main tungsten-bearing vein set. The width of veins range
from 0.15 to 0.38 m, and the average WO3 grade is 1.35%.
Wall rock alteration associated to quartz–wolframite veins
includes silicification, chloritization, and sericitization, and
the width of the alteration zone generally ranges from 0.2 to
2.2 m (Luo et al. 2006; Wang et al. 2006).

Skarn-type scheelite mineralization is mainly distributed
in the southwestern Baijizhai segment. The ore bodies,
commonly controlled by the contact zone and NE and
NNW trending faults, occur at the contact zone between
limestones, marls, and siltstones of the Middle Devonian
Donggangling Group with the Baijizhai granitic stock
(Fig. 2a). The scheelite orebody is more than 840 m wide,
200 m long, and 50 m thick, and mineralization is present in
veinlets and disseminations within the skarn. WO3 grades

range from 0.006% to 0.97%, with an average grade of
0.43% (Wang et al. 2006).

Altered granite-type scheelite mineralization was found
in the deep contact zone of the concealed Yaoling granite,
where disseminated or star point-like scheelite aggregations
occur along fractures or joint fractures. These fractures show
tourmalinization and greisen-type alteration. The size of the
orebody is more than 85 m long, and 0.68–1.30 m thick.
WO3 grades vary from 0.11% to 0.77%, with an average of
0.34% (Wang et al. 2006).

Meiziwo

The Meiziwo tungsten–tin deposit is a semiconcealed de-
posit within an area of 3.2 km2 located in the northern part
of the Guidong composite pluton, and at the eastern part of
the Yaoling anticline complex. The tungsten-bearing quartz
veins are controlled by a NW-trending fault system, and
occur in strongly folded low-grade metasedimentary rocks
(graywackes and slates) and Late Ordovician granodiorite
(Fig. 2d). The NW-trending mineralized veins extend up to
2,550 m long and 1,250 m wide, vertically converging to the
upper parts of the granodiorite (Fig. 2e). The quartz–wolframite
veins show horizontal and vertical zonation. The northwestern
sections of the veins have a higher concentration of WO3 than
the southeastern parts. Furthermore, mineralization in the
upper sections of the veins are predominantly silicates and
oxides with a small amount of cassiterite and locally high
chalcopyrite zones, while sulfides and carbonates increase
significantly in the deeper parts of the quartz–wolframite
veins. The veins have an average grade of 1.1% WO3,
0.05% Sn, and 0.06% Cu. The main ore minerals include
wolframite, scheelite, cassiterite, arsenian pyrite, chalcopyrite,
and molybdenite. Gangue minerals are mainly quartz, second-
ary feldspar, beryl, fluorite, tourmaline, and muscovite. Wall
rock alteration is mainly greisenization and tourmalinization
(Guangdong Metallurgical and Geological Team 932 1976).

Jubankeng

The Jubankeng tungsten deposit, located in the hinterland of
the Jiulian Mountain, is not only a large quartz–wolframite
vein-type deposit with polymetallic mineralization that
shows the “five-story building” vertical zonation, but it is
also the deposit with the largest tungsten reserves in China
(RGNTD 1985). The deposit is located at the edge of the
South China Caledonian Fold Belt, and at the northwest
limb of the Jiulian anticline complex. Regional exposed
units include Caledonian metamorphosed gray–green fine-
grained quartz sandstones and interlayered slates and
siltstones, NNW strike muldakaites, and NEE-trending
lamprophyre dikes (Fig. 2f). Quartz–wolframite veins in this
deposit can be divided into four groups according to strike:
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Fig. 2 Geologic maps and
cross-sections of the Yaoling
(a–c), Meiziwo (d, e),
and Jubankeng (f, g)
tungsten deposits, Northern
Guangdong (after RGNTD
1985; Luo et al. 2006)
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EW, NW, NE, and NS. Among these groups, the EW group
is the largest, followed by the NEE, NNW, and NW groups;
the NE and NWW trending vein sets are the smallest.

The EW vein group forms the main ore belt, stretching
for more than 1,500 m with a width of 200–300 m (Fig. 2g).
Quartz threads and wolframite-bearing quartz veinlets occur
near the surface, whereas W–Sn and W–Sn–Zn–Cu quartz
veins occur at both shallow and deeper parts of the deposit.
The average grade is 0.35% WO3, 0.125% Sn, 0.84% Zn,
and 0.28% Cu. Nearly 30 different mineral species have
been found in this deposit. The main paragenetic minerals
include wolframite, cassiterite, chalcopyrite, sphalerite, galena,
pyrite, molybdenite, quartz, protolithionite, trilithionite, topaz,
chlorite, malachite, blue vitriol, and triplite. Ore textures
include banded, miarolitic, massive, brecciated, and dissemi-
nated; the latter two are commonly found in sandstones and
shales. The main types of hydrothermal alteration are silicifica-
tion, topazization, tourmalinization, and chloritization (RGNTD
1985; Luo et al. 2006).

Sampling and analytical methods

Molybdenite-bearing quartz samples were systematically
collected from quartz-wolframite veins #12 (MZ-25, MZ-
26 and MZ-43), #18 (MZ-9 and MZ-42), and #57 (MZ-3
and MZ-7) at the 640–760 m level in the Meiziwo tungsten
deposit, and from quartz-wolframite veins #26 (YL-3 and
YL-11), #61 (YL-21), #62 (YL-16 and YL-23), #63 (YL-12
and YL-23), and #64 (YL-18) at the 479–532 m level in the
Yaoling deposit. Most molybdenite aggregations are usually
star point-like, blocky-shaped, distributed in the middle or
edge of quartz–wolframite veins from Meiziwo, whereas
some molybdenite samples from Yaoling are coarse and
euhedral, with minor clay minerals (Fig. 3). Molybdenite
samples were separated under a binocular microscope. After
cleaning with water and drying, molybdenite separates (~0.8
to 1.3 g) were grounded to about 200 mesh. In order to avoid
cross-contamination, all tools were cleaned with alcohol
between samples preparation.

Fig. 3 Selected photographs of
molybdenite and muscovite
samples from Northern
Guangdong. The diameter
of the coin is 1.9 cm.
Abbreviations of minerals:
Qtz quartz, Mo molybdenite,
Ms muscovite, Ccp
chalcopyrite, Sp sphalerite
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Re–Os isotope analyses were conducted at the National
Research Center of Geoanalysis in Beijing, China, follow-
ing the procedure of Du et al. (2004). Weighted samples
(~0.3 g) were loaded into the bottom of Carius tubes (a
thick-walled Pyrex glass ampoule) through long narrow
neck funnels. Carius tubes were later submerged in a mix-
ture of liquid nitrogen and alcohol at a temperature of −50°C
to −80°C, then 185Re and 190Os spikes and HNO3–HCl–
H2O2 reagents were added. After the solutions within the
Carius tubes were frozen, the tubes were sealed using a
propane–oxygen torch and put into stainless steel jackets.
The sample-solution mixture was heated in an oven to
200°C for 24 h to decompose the sample. After reaching
room temperature, the Carius tube content was frozen again
and the tube popped open. The solution was then transferred
into a distillation flask with 40 ml MQ water. OsO4 was
separated from the solution by distillation at 105–110°C for
50 min and absorbed by a 10 ml MQ water trap. The
residual solution was evaporated to dryness, and 10 ml
5 mol/l NaOH was added. After centrifugation, the super-
natant was transferred into a 120 ml separatory funnel, in
which Re was extracted by 10 ml acetone. The acetone
phase was rinsed by 2 ml 5 mol/l NaOH and then evaporated
to dryness in a Teflon beaker with 2 ml MQ water at 50°C.
Several drops of concentrated HNO3 and 30% H2O2 were
added into the beaker. The solution was evaporated to dry-
ness again to remove possible Os remnants. Residuals were
dissolved with several ml of 2% HNO3 for Re mass
spectrometry measurements. If the salt content in the final
Re-containing solution exceeded 1 mg/ml, the solution was
further purified using cation exchange resin. Finally, Re and
Os concentrations and isotopic ratios were determined using
a TJA X-series inductively coupled plasma mass spectrom-
etry. Re, Os and 187Os blanks were 0.0038±0.0006, 0.0002,
and 0.0001 ng, respectively, which are far less than the Re and
Os contents in the analyzed molybdenite samples. Analytical
results of molybdenite standard sample GBW04435 (HLP)
measured using the same procedure yielded a mean age value
of 220.9±3.3 Ma, within error to the certified value of 221.4±
5.6 Ma (Du et al. 2004).

Molybdenite is highly enriched in Re relative to Os, and
hence almost all Os in molybdenite is radiogenic 187Os
(Luck and Allègre 1982; Suzuki et al. 1996). Therefore, a
molybdenite Re–Os age can be calculated by using the
187Re and 187Os isotopic abundances. Re–Os isochron ages
were calculated using ISOPLOT 3.70 program (see Ludwig
2004). The decay constant used in the age calculation was
λ187Re01.666×10−11 a−1 (Smoliar et al. 1996).

Two muscovite separates were collected and separated
from quartz–wolframite vein #440 (NNW striking; sample
JB-24) and quartz–wolframite vein #350 (EW striking; sample
JB-28) at the 380 m level in the Jubankeng tungsten deposit.
Muscovite is generally associated with wolframite–quartz,

chalcopyrite, and sphalerite (Fig. 3). The separates were
washed repeatedly in an ultrasonic bath using deionized
water and acetone. About 10 mg aliquots were wrapped
in Al foil and stacked in quartz vials. After samples have
been stacked, the sealed quartz vials were put in a quartz
canister, which was wrapped with cadmium foil (0.5 mm
in thickness) for shielding slow neutrons and for prevent-
ing interface reactions during irradiation. Samples were
irradiated for 30 h in channel B4 of Beijing 49–2 reactor
at the Chinese Academy of Nuclear-Energy Sciences.
During irradiation, the vials were rotated at a speed of
two cycles per minute to ensure uniformity of the irradi-
ation. The muscovite standard Bern4M (18.74±0.20 Ma;
Hall et al. 1984) was used to monitor the neutron flux.

40Ar/39Ar stepwise heating analyses were performed at
the Argon Laboratory, Institute of Geology and Geophysics,
Chinese Academy of Sciences, using a MM5400 mass spec-
trometer equipped with a Faraday cup and an ion counter
(multiplier) for Ar isotopes measurement. The irradiated
samples were loaded into a Christmas tree-type sample
holder and degassed at 200–250°C for about 72 h in a high
vacuum system. The samples were analyzed in 16 temper-
ature steps from 780°C to total fusion at 1,480–1,500°C.
Step-heating analysis was carried out in a double-vacuum
resistance furnace. Samples were heated at each temperature
step for 10 min and the extracted gasses were purified by
two SAES Zr-Al getters (NP10). K2SO4 and CaF2 crystals
were analyzed to calculate Ca, K correction factors:
[36Ar/37Ar]Ca02.609×10

−4±1.418×10−5, [39Ar/37Ar]Ca0
7.236×10−4±2.814×10−5, [40Ar/39Ar]K02.648×10

−2±
2.254×10−5. The decay constant value used in the age calcu-
lation was λ05.543×10−10 a−1 (Steiger and Jäger 1977). The
data-processing software used was the ArArCALC 2.4 soft-
ware (Koppers 2002). The plateau criteria involves: (1) at least
60% of the 39Ar released in three or more contiguous steps,
and the ages of these steps have to be concordant within 1
sigma error; (2) no resolvable slope on plateau; (3) no outliers
or trends at upper or lower steps; and (4) probability of fit of
plateau is >0.01.

Results

Re–Os molybdenite ages

Calculated ages for sixmolybdenite samples from theMeiziwo
tungsten deposit range from 157.1±2.5 to 160.2±3.7 Ma.
Sample MZ-7 yielded an age of 165.6±2.6 Ma, which we
consider as an outlier (Table 1). The six samples yielded a
weighted average age of 158.0±2.1 Ma (Fig. 4a), and an
187Re–187Os isochron age of 157.7±2.8 Ma with an initial
187Os of 0.007±0.044 (ng/g; MSWD00.35; Fig. 4b). This
isochron age is basically the same as the reported muscovite
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40Ar/39Ar plateau age of 155.97±0.59Ma (Zhai et al. 2010) for
this deposit.

The Re–Os isotopic compositions of eight molybdenite
samples and their duplicates from the Yaoling tungsten
deposit are listed in Table 1. Most of these samples (the
same aliquots or reselected aliquots) were analyzed twice
for two reasons: (1) these samples contain common Os
(0.0095–0.6050 ng/g). High concentration of common Os
(>0.1 ng/g) in molybdenite samples have been reported in
some Cu–Fe–Au skarn deposits and in porphyry Cu–Mo
deposits (Lu et al. 2006; Li et al. 2007; Wang et al. 2008a, b;
Xie et al. 2009); and (2) while most calculated ages for the
Yaoling samples range from 155.1±2.5 to 161.7±2.4 Ma,

two samples (YL-16 and YL-21) show much younger
(147.7±2.6 Ma) and older (up to 195.2±2.8 Ma) ages,
respectively.

Our data shows that reproducibility of analytical data was
significantly improved (Table 1) by increasing the amount
of sample for molybdenite separation. Several grams were
sufficient for samples with molybdenite clumps, while 2–3 kg
of sample with disseminated star point-like molybdenite were
needed in order to obtain a more homogeneous molybdenite
separate and hence more accurate ages. For example, the
calculated ages of reselected aliquots of YL-21b and YL-23b

are 159.4±2.3 and 160.1±2.4 Ma, respectively. This also indi-
cates that poor reproducibility of the former analysis of sample

Table 1 Re and Os isotopic data for molybdenite samples from Meiziwo and Yaoling tungsten deposits, Northern Guangdong

Sample no. Weight (g) Re (ng/g) Common Os (ng/g) 187Re (ng/g) 187Os (ng/g) 187Re/188Os 187Os/188Os Age (Ma)

Meiziwo tungsten deposit

MZ-3 0.30028 2,084±22 0.0002±0.0005 1,310±14 3.432±0.028 157.1±2.5

MZ-7 0.30058 1,377±13 0.0002±0.0014 865.2±8.1 2.390±0.023 165.6±2.6

MZ-9 0.30032 4,663±66 0.0002±0.0005 2,931±41 7.634±0.064 156.2±2.9

MZ-25 0.30001 722.1±7.4 0.0003±0.0006 453.8±4.6 1.201±0.010 158.6±2.4

MZ-26 0.30003 2,652±21 0.0002±0.0011 1,667±13 4.417±0.035 158.9±2.2

MZ-42 0.30031 4,044±36 0.0002±0.0006 2,542±23 6.684±0.067 157.6±2.5

MZ-43 0.30022 4,344±83 0.0002±0.0005 2,730±52 7.297±0.074 160.2±3.7

Yaoling tungsten deposit

YL-3 0.29928 2,070±23 0.2004±0.0033 1,301±15 3.405±0.029 49,878±996 130.6±2.0 156.9±2.5

YL-3a 0.20054 2,105±17 0.2077±0.0034 1,323±11 3.425±0.031 48,959±903 126.7±2.0 155.1±2.3

YL-11 0.2999 460.0±4.6 0.0095±0.0010 289.1±2.9 0.754±0.006 234,485±23,757 611.1±61.5 156.2±2.4

YL-12 0.3003 3,826±53 0.3684±0.0040 2,404±33 6.345±0.051 50,151±882 132.3±1.2 158.2±2.8

YL-12b 0.30039 6,220±46 0.6050±0.0048 3,910±29 10.51±0.090 49,666±535 133.5±0.7 161.1±2.2

YL-16 0.30074 650.6±6.5 0.0225±0.0010 408.9±4.1 1.132±0.009 139,613±6,343 386.5±17.0 165.9±2.5

YL-16a 0.06066 689.5±7.1 0.0223±0.0018 433.4±4.4 1.068±0.012 149,017±12,372 367.1±30.3 147.7±2.6

YL-18 0.30021 458.6±4.4 0.0860±0.0018 288.3±2.7 0.773±0.008 25,762±582 69.08±1.44 160.7±2.6

YL-18b 0.30031 2,904±26 0.5403±0.0041 1,825±16 4.925±0.042 25,961±304 70.0±0.3 161.7±2.4

YL-21 0.30068 804.3±7.2 0.0593±0.0007 505.5±4.5 1.647±0.013 65,545±961 213.5±2.1 195.2±2.8

YL-21a 0.30048 804±6 0.0594±0.0012 505.3±3.8 1.597±0.014 65,326±1,433 206.4±4.1 189.3±2.7

YL-21b 0.30061 1,550±13 0.0573±0.0023 974.3±8.2 2.592±0.022 130,688±5,400 347.6±13.9 159.4±2.3

YL-23 0.30026 1,018±10 0.1878±0.0025 639.9±6.3 1.760±0.015 48,959±903 126.7±2.0 164.8±2.5

YL-23b 0.30051 3,531±34 0.1244±0.0012 2,219±21 5.927±0.047 137,044±1,855 366±2.6 160.1±2.4

YL-24 0.30059 1,128±10 0.0331±0.0008 709.2±6.0 1.871±0.017 164,791±4,191 434.8±10.2 158.2±2.3

All errors are reported at 2 sigma level

Common Os contents were calculated based on the Os isotopic abundance of Nier (1937) and measured 192 Os/190 Os ratios, 187 Os stands for total
amount of isotope 187 Os

The uncertainty in Re and Os contents considers all sources of error, which include weighing error of samples and reagents, spikes calibration
errors, mass fractionation correction errors, and measurement error of isotope ratios of analyzed sample, at the 95% confidence level

Molybdenite ages were calculated using 187 Re and 187 Os contents and the following equation: T01/λ [ln (1 +187 Os/187 Re)], λ (187 Re decay
constant)01.666×10−11 a−1 (Smoliar et al. 1996). The uncertainty in these ages includes uncertainty in the Re decay constant (1.02%), at the 95%
confidence level

Analytical data of aliquots in Italic format was excluded from age calculations
a Repeated analysis of the same aliquot
b Analysis of reselected aliquots
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YL-21 and YL-16 might have been caused by Re and 187Os
decoupling (Stein et al. 2003; Selby and Creaser 2004;
Du et al. 2007; Takahashi et al. 2007). Moreover, the
analysis of an aliquot of sample YL-18b yielded a higher
calculated initial 187Os/188Os ratio (up to 1.2±1.4). Therefore,
the sample aliquots that yielded scattered erroneous ages (YL-
16, YL-21, YL-23, YL-3, and YL-18b) were excluded from the
weighted average and isochron age calculation (Table 1). Eight
analytical results define a weighted average age of 158.9±
3.0 Ma (Fig. 4c), and 187Re/188Os–187Os/188Os isochron age
of 159.5±2.8 Ma with an initial 187Os/188Os ratio of 0.4±2.4
(MSWD00.94; Fig. 4d). These aliquots also yielded an
187Re–187Os isochron age of 160.3±2.0 Ma with an initial
187Os (ng/g) of −0.020±0.042 (MSWD03.2).

40Ar/39Ar isotopic data for muscovite samples
from the Jubankeng deposit

40Ar/39Ar analytical results are shown in Table 2. Figure 5
shows the step-heating age spectra and inverse isochrons for
samples JB-24 and JB-28. The age spectra of JB-24 shows a

flat plateau with more than 95% of 39ArK released, indicat-
ing that K and radiogenic 40Ar* in the samples are distrib-
uted homogeneously and K–Ar isotopic systematics
remained closed from heating disturbance during the
geological history of the sample. Twelve continuous steps
(900–1,180°C) of one muscovite sample (JB-24) yielded a
well-defined weighted plateau age of 138.1±1.5 Ma, and a
39Ar/40Ar-36Ar/40Ar inverse isochron with an age of 138.0±
1.7 Ma and an initial 40Ar/36Ar ratio of 297.0±17.6
(MSWD05.53; Fig. 5a, b). The age spectra of JB-28 show
some variations and cannot be considered a plateau. However,
five continuous steps (1,100–1,280°C) of this muscovite sam-
ple with 29.41% of total 39Ar yielded a weighted average age of
137.9±1.4 Ma and an 39Ar/40Ar-36Ar/40Ar inverse isochron
age of 137.8±3.3 Ma with an initial 40Ar/36Ar ratio of 301.0
±91.5 (MSWD00.24; Fig. 5c, d). The initial 40Ar/36Ar ratios of
these isochrons are consistent with that of air (295.5±0.5, Nier
1950; 298.56±0.31, Lee et al. 2006) within uncertainty,
indicating that there is no excess argon in these samples.
These 40Ar/39Ar ages are consistent with the 40Ar/39Ar plateau
age of 139.2±1.5 Ma reported by Fu et al. (2009).

Fig. 4 Weighted average ages and Re–Os isochrons for molybdenite samples from the Meiziwo tungsten deposit (a, b) and Yaolingtungsten
deposit (c, d)
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Discussion

Mineralization ages of W polymetallic deposits in Northern
Guangdong

Molybdenite samples from theMeiziwo tungsten deposit yielded
a weighted average age of 158.0±2.1 Ma and 187Re–187Os
isochron age of 157.7±2.8 Ma. Both ages are identical within
error and represent the mineralization age of this deposit. Molyb-
denites from the Yaoling deposit contain common Os, which is
about 300 times higher than average common Os concentration
observed in other molybdenites (~0.0002 ng/g). However, the
Re–Os age determined using the 187Re–187Os concentration plot

(160.3±2.0Ma) and the traditional 187Re/188Os–187Os/188Os plot
(159.5±2.8Ma) are within error, and they are alsowithin error of
the weighted average age (158.9±3.0 Ma) determined from the
individual Re–Os model ages for the Yaoling samples (Table 1).

The Re–Os ages for Meiziwo (157.7±2.8 Ma) and for
Yaoling (159.5±2.8 Ma) coupled with previously reported
Re–Os molybdenite isochron ages of 159.1±2.2, 154.2±
2.7, and 159.1±3.0 Ma for the Shirenzhang W deposit,
Shigushan W-Bi deposit and Hongling W deposit, respec-
tively (Fu et al. 2007; Wang et al. 2010), overlap with each
other within uncertainties, and hence we interpret them as
representing an early episode of tungsten mineralization in
Northern Guangdong.

Table 2 40Ar/39Ar analytical data for two muscovite samples from the Jubankeng tungsten deposit, South China

Temp. (°C) 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 40Ar*/39Ark 40Ar* (%) 39Ark (%) Age (Ma)

JB-24, sample weight011.1 mg, J00.0047870±0.0000239

780°C 477.79099 0.04305 1.53106 25.368346 5.31 0.43 207.3±88.0

860°C 217.2321 0.01063 0.62488 32.58407 15.00 2.79 262.1±36.0

900°C 31.75755 0.00548 0.05138 16.574733 52.19 8.64 138.1±3.1

930°C 18.22043 0.00403 0.00575 16.520917 90.67 13.70 137.6±1.0

960°C 17.56433 0.00208 0.00322 16.612027 94.58 13.64 138.4±1.0

990°C 17.76482 0.01377 0.00415 16.538904 93.10 10.58 137.8±0.9

1,020°C 17.93824 0.00707 0.0051 16.431315 91.60 10.05 136.9±1.0

1,050°C 17.78648 0.00616 0.00492 16.332085 91.82 9.49 136.1±1.0

1,080°C 18.04924 0.00659 0.00525 16.496981 91.40 7.30 137.4±1.1

1,110°C 17.87563 0.00569 0.00423 16.624454 93.00 14.94 138.5±0.9

1,140°C 17.83626 0.02619 0.0037 16.744841 93.88 6.52 139.4±0.9

1,180°C 18.41341 0.09762 0.00537 16.835842 91.42 0.92 140.2±1.7

1,260°C 19.3439 0.07692 0.00822 16.921105 87.47 0.61 140.8±1.4

1,340°C 27.3628 0.60769 0.03636 16.674163 60.91 0.09 138.9±4.6

1,480°C 21.99897 0.1637 0.01443 17.749303 80.67 0.29 147.5±2.2

JB-28, sample weight08.55 mg, J00.0048160±0.0000241

780°C 216.8999 0.13721 0.70233 9.371856 4.32 0.10 79.8±47.6

860°C 382.10652 0.00183 1.21447 23.23039 6.08 1.45 191.8±72.2

910°C 57.80553 0.00172 0.14627 14.582482 25.23 5.19 122.7±8.8

950°C 19.61653 0.00221 0.01155 16.20486 82.61 11.4 135.9±1.3

980°C 17.59472 0.00332 0.00482 16.17147 91.91 10.41 135.6±1.3

1,000°C 17.23775 0.00244 0.00432 15.961731 92.6 8.19 133.9±1.0

1,020°C 17.09121 0.00145 0.00442 15.784811 92.36 8.64 132.5±1.3

1,050°C 17.33215 0.00128 0.00519 15.799412 91.16 10.63 132.6±1.0

1,080°C 17.6631 0.00041 0.00492 16.208418 91.76 13.54 135.9±1.1

1,110°C 17.63433 0.00022 0.00392 16.47535 93.43 21.44 138.1±1.2

1,140°C 17.50443 0.00829 0.00361 16.438389 93.91 4.04 137.8±1.1

1,180°C 17.43735 0.01542 0.00341 16.432053 94.23 1.82 137.7±1.1

1,230°C 17.64004 0.01395 0.00379 16.520504 93.65 1.28 138.4±1.5

1,280°C 18.13526 0.00434 0.00569 16.453541 90.73 0.83 137.9±1.4

1,400°C 21.88677 0.21013 0.01596 17.190415 78.53 0.24 143.8±2.6

1,500°C 18.18078 0.02312 0.00457 16.833337 92.59 0.79 141.0±1.8

All errors are reported at 2 sigma level
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Muscovite 40Ar/39Ar plateau age represents an alteration
event that is associated to tungstenmineralization, and therefore
the 40Ar/39Ar plateau age of muscovite sample JB-24 (138.1±
1.5 Ma) is interpreted here as the mineralization age of Juban-
keng tungsten deposit. This age is similar to previously reported
muscovite and lepidolite K-Ar ages of 134 and 140 Ma, re-
spectively (RGNTD 1985), and consistent with an 40Ar/39Ar
age of ~140 Ma for the regional mafic dikes from the
Zhuguangshan and Guidong batholith (Li et al. 1997), as well
as with a Rb–Sr isochron age of 136–137 Ma for the second
stage granite from Qianlishan, Southern Hunan (Mao et al.
1995) and a zircon SHRIMP U-Pb age (137±2 Ma) for the
Ejinao A-type granite from Middle Guangdong (Wang et al.
2005). The data indicates that this event corresponds to a second
episode of tungsten mineralization in Northern Guangdong.

Metallogenic epochs of W–Sn mineralization in Nanling
region

Peng et al. (2007, 2008) regarded large-scale W–Sn minerali-
zation in Nanling Region as occurring mainly at 150–160 Ma,

while Mao et al. (2007) emphasized that mineralization oc-
curred within two stages: (1) Late Jurassic–Early Cretaceous
(165–150 Ma), and (2) middle Cretaceous (130–90 Ma). In the
past few years, more geochronological ages for the tungsten–
tin polymetallic deposits in the Nanling region have been
determined by several researchers using 40Ar/39Ar and Re–Os
isotopic dating methods. A summary of available information
on 31 W–Sn–(Pb–Zn) polymetallic deposits is shown in
Table 3. When all 54 ages of these deposits are statistically
analyzed, three main age clusters can be identified: an oldest
group at 210–235 Ma, which includes four deposits, a second
and most important cluster at 130–165 Ma that involves 24
deposits, and a third group at 90–100Ma, which includes three
deposits (Table 3). The second age cluster can be further
divided into two episodes, 134–140 and 144–162 Ma (most
dates range from 150 to 160Ma) with a maximum frequency at
154–156 Ma. Therefore, large-scale W-Sn mineralization in
Nanling region mainly occurred at 150–160 Ma (Mao et al.
2007; Peng et al. 2007, 2008). The extension-induced deep
crustal melting and underplating of mantle-derived basaltic
melts are suggested as the two main driving mechanisms for

Fig. 5 40Ar/39Ar age spectrum and inverse isochrons for two muscovite samples from the Jubankeng tungsten deposit, Northern Guangdong. The
solid squares represent the steps selected for inverse isochron age calculation
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the Late Jurassic granitic magmatism in South China (Zhou et
al. 2006). The simultaneity of the Late Jurassic large-scale
granitic magmatism and large-scale W–Sn mineralization in
the Nanling region (Mao et al. 2007; Peng et al. 2008) suggests
that large-scale W–Sn mineralization is related to the same
extensional processes.

Conclusions

Two episodes of Late Jurassic W–Sn polymetallic mineral-
ization are recognized in Northern Guangdong. An early
episode of tungstenmineralization represented by the Yaoling,
Hongling and Meiziwo deposits, during the Late Jurassic
(158–159 Ma), and a younger episode represented by the
Jubankeng tungsten deposit during the Early Cretaceous
(~138 Ma). W–Sn mineralization in the Nanling region oc-
curred in several intervals at 90–100, 134–140, 144–162, and
210–235 Ma. The most important large-scale W–Sn mineral-
ization event occurred within a 10 Ma timeframe during the
Late Jurassic (150–160 Ma).
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