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The worldwide 2.33�2.06Ga unique positive d13Ccarb excursion has been correlated with the Great Oxidation Event (GOE). The Dashiqiao
Formation in the Liaohe Group of the northeastern North China Craton formed at 2.2�2.174Ga and hosts one of the world-class magnesite
deposits. Here we present major element and C and O isotope analyses of 22 samples from the Dashiqiao Formation and use the data to
evaluate the impact of the GOE in the North China Craton, as well as the genesis of the Dashiqiao giant magnesite deposits. Six dolomitic
marble samples from a ~600m thick interval with 1.10� 0.04 of MgO/CaO (mol) ratios show higher d13CPDB values of 0.6�1.4% (average
1.2� 0.3%) than those of normal marine carbonates over the globe. However, they display lower d18OSMOW of 16.4�19.5% (average
18.2� 1.1%) as compared to their contemporaneous counterparts, suggesting that the primary carbonates in the Dashiqiao Formation should
possess a positive d13C anomaly (possibly 4.2%) reflecting the impact of the GOE, and that the d13C and d18O values have been depleted in
post-sedimentation diagenesis and/or regional metamorphism. The >550m thick magnesite layer in the studied section has MgO/CaO ratios
ranging from 4.45�200.00. These rocks show d13C and d18O values of 0.1�0.9% and 9.2�16.9%, with average values of 0.4� 0.2% and
13.3� 2.5%, respectively, obviously lower than those of the underlying dolomites. The depletions of 13C and 18O in magnesites relative to
dolomitic marbles are interpreted to be the result of hydrothermal alteration related to regional metamorphism leading to rock recrystallization
and mass exchange. This interpretation is further confirmed from the hanging-wall dolomitic marble and the veinlet-filled magnesite from the
ore layer. The former contains mega-crystals of cylindrical talc and has d13C of �2.6% and d18O of 14.1%, indicating that a local fluid–rock
interaction between (argillaceous) dolomite and (siliceous) hydrothermal fluids poor in 13C and 18O resulted in the formation of talc and fur-
ther depletion both in d13C and in d18O. The veinlet-filled magnesite yields d13C and d18O values of �2.7% and 16.2%, respectively, show-
ing lower d13C but higher d18O than those of massive magnesite in the adjacent strata. Our observation thus strongly supports the
interpretation that the massive magnesite interacted with low-d13C fluids which were possibly sourced from meteoric water at low temperature
during post-ore time. Thus, the formation of the Dashiqiao magnesite deposits involved primary sedimentation, diagenesis, regional
metamorphism, hydrothermal replacement and local post-ore fluid–rock interaction. Copyright © 2013 John Wiley & Sons, Ltd.

Received 22 April 2012; accepted 13 December 2012

KEY WORDS Great Oxidation Event (GOE); Dashiqiao magnesite belt; Liaohe Group; C�O isotopes; petrogenesis; North China Craton

1. INTRODUCTION

The Archaean/Proterozoic transition in Earth history wit-
nessed dramatic changes, which include the formation of
numerous cratonic basins in the Proterozoic as against the
widespread greenstone belts in the Archaean. From the
dawn of the Proterozoic, voluminous red beds, evaporites,

stromatolite-bearing carbonates (Chen, 1990; Melezhik
et al., 1999; Tang et al., 2009, 2011), Superior-type banded
iron formations (Huston and Logan, 2004; and references
therein), phosphate, and rare earth element deposits
(Tu et al., 1985; Chen, 1990; Zhao, 2010, and references
therein), andmagnesite deposits (e.g. the Dashiqiaomagnesite
belt deposits; Chen and Cai, 2000; Chen et al., 2003a, b; Jiang
et al., 2004) evolved rapidly. The tectonic processes and
global environmental change during the Palaeoproterozoic
from 2.5 to 1.6Ga have been the focus of numerous studies
in the past. Schidlowski et al. (1975, 1976) first discovered
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the positive d13Ccarb anomaly in the ~2.0Ga carbonates from
Karelia (Russia) and the Fennoscandian shields, and also in
the dolomites with ages of 2.65�1.95Ga from the Lomagundi
Province (Zimbabwe). They also related this phenomenon to
the oxidation of the atmosphere. However, this important
discovery had been largely neglected until 1990.

In 1989, the International Commission on Stratigraphy
recommended 2.3Ga as the boundary between the Siderian
and the Rhyacian in the Precambrian Stratigraphy Chart.
Thereafter, more attention was focused on the nature of the
2.3Ga stratigraphic boundary (Chen, 1988, 1990; Chen
and Fu, 1992; Chen and Su, 1998) and several workers
recognized marked positive d13C excursions in the worldwide
2.33�2.06Ga carbonate strata (Schidlowski, 1988; Bekker
et al., 2003a, b, 2006; Tang et al., 2011, 2012, and
references therein). The positive d13Ccarb excursion was
variously termed as the Lomagundi Event (Karhu and
Holland, 1996), the Jatulian Event (Melezhik and Fallick,
1996; Melezhik et al., 1999) or the Great Oxidation Event
(GOE) (Anbar et al., 2007; Konhauser et al., 2009; Zhao,
2010) and was genetically correlated to global environmental
changes (Karhu and Holland, 1996; Melezhik et al., 1999;
Chen et al., 2000; Young, 2012a, b), to the breakup of the
Kenorland/Superia supercontinent (Bekker and Eriksson,

2003), or to a 2.3Ga environmental catastrophe, as indicated
by the contrasting rare earth element geochemical signatures
between pre- and post-2.3Ga sediments (Chen, 1988, 1990;
Chen et al., 1994, 1998; Chen and Zhao, 1997; Tang et al.,
2012). Melezhik et al. (1999) suggested that the Lomagundi
Event consists of several sub-events, whereas Bekker et al.
(2003a) considered that it is a single long-lasting event. The
recognition of the GOE or environmental catastrophe was
one of the most important progresses in the research on the
Precambrian, and provided insights into our understanding
of the Precambrian evolution and mineralization during the
early Earth history.
The North China Craton (NCC; Fig. 1) is an Early

Precambrian continental block with widespread Palaeopro-
terozoic strata (see Zhai et al., 2010; Zhai and Santosh,
2011; Zheng et al., 2012), including the Liaohe Group in
the Jiao-Liao-Ji Belt (Fig. 2), which hosts one of the
largest magnesite ore belts of the world (the Dashiqiao mag-
nesite belt; Fig. 3), together with numerous other ore depos-
its (Zhang et al., 1988; Peng and Palmer, 1995; Jiang et al.,
1997, 2004; Wang et al., 1998; Chen and Cai, 2000; Peng,
2002; Xiao et al., 2003; Wang and Peng, 2008), such as
the Houxianyu B, Qingchengzi Pb–Zn and Lianshanguan U
ores. However, several questions remain unanswered including

Figure 1. Archaean�Palaeoproterozoic terranes of the North China Craton (modified after Zhai et al., 2010). Ar/Pt =Archaean/Proterozoic. This figure is avail-
able in colour online at wileyonlinelibrary.com/journal/gj
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whether these Palaeoproterozoic strata record the GOE or
Lomagundi Event, and whether the sedimentary–metamorphic
deposits are genetically related to the GOE (Tang et al., 2009;
Zhai et al., 2010). A key to these problems is important in
understanding the Precambrian evolution and mineralizations
of the North China Craton. In this study, therefore, we carried
out geological and geochemical investigations on the giant
Dashiqiao magnesite deposits and its host-rocks within the
Liaohe Group. We report new geochemical data for the
Dashiqiao Formation, and evaluate the problems related to
the GOE, and the implications of the mineralization in the
North China Craton.

2. GEOLOGY AND STRATIGRAPHY

Recent models propose that the Precambrian crustal evolution
history of the North China Craton involved three main phases:
(1) a major phase of continental growth at ca. 2.7Ga; (2) the
amalgamation of micro-blocks and cratonization at ca.
2.5Ga; and (3) Palaeoproterozoic rifting–subduction–accretion–
collision tectonics and subsequent high-grade granulite facies
metamorphism–granitic magmatism during ca. 2.0–1.82Ga
(Diwu et al., 2011; Liu et al., 2011; Tsunogase et al., 2011;
Wan et al., 2011; Zhai and Santosh, 2011; Liu et al., 2012;
Santosh et al., 2012). The Precambrian basement of the
North China Craton can be divided into the Eastern and
Western blocks dissected by three major Palaeoproterozoic
accretionary belts, namely, the Khondalite Belt or the Inner
Mongolia Belt, the Trans-North China Orogen and the Jiao-
Liao-Ji Belt (Fig. 1; Zhao et al., 2005; Zhai et al., 2010;
Kusky, 2011; Santosh et al., 2012; Zheng et al., 2012).
The roughly E�W-trending Khondalite Belt or the Inner
Mongolia Suture Zone is interpreted as a Palaeoproterozoic
collisional belt along which the Yinshan and Ordos blocks

amalgamated to form the Western Block (Santosh, 2010;
Santosh et al., 2012, and references therein), which then
collided with the Eastern Block along the Trans-North
China Orogen to form the basement of the North China
Craton (Fig. 1; Zhao et al., 2005; Zhai et al., 2010; Kusky,
2011). The Jiao-Liao-Ji Belt is located within the Eastern
Block and its tectonic setting and nature remain controversial;
some invoking the opening and closing of a Palaeopro-
terozoic intra-continental rift (Li and Zhao, 2007; Zhai and
Peng, 2007; Luo et al., 2008), whereas others suggesting
the development of an island arc and its collision with
continental blocks in the Palaeoproterozoic (Zhang et al.,
1988; He and Ye, 1998; Faure et al., 2004), or as a major
Palaeoproterozoic collisional suture (Tam et al., 2012).

The northeast part of the North China Craton includes the
Liaobei, Longgang and Helong terrains in the north,
the Liaonan and Langlin terrains in the south, with the Jiao-
Liao-Ji Belt in the middle (Fig. 2). These terrains (or belts)
comprise Archaean granite–greenstone associations and Palaeo-
proterozoic lithostratigraphic successions (Zhang et al., 1988;
Sun et al., 1993; Zhao et al., 2004, 2005; Wan et al., 2006; Li
and Zhao, 2007; Tam et al., 2011). The Jiao-Liao-Ji Belt, how-
ever, is mainly composed of Palaeoproterozoic sedimentary
and volcanic successions that are metamorphosed in the
greenschist to lower amphibolite facies and tectonically associ-
ated with granitic and mafic intrusions (Li et al., 2006). Recent
studies have reported high pressure pelitic granulites from this
belt, suggesting a continental collision zone (Tam et al., 2012).

The Palaeoproterozoic Liaohe Group is best developed in
the Jiao-Liao-Ji Belt (Fig. 3) and unconformably overlies the
Archaean Anshan Group (Liaoning Bureau of Geology and
Mineral Resources, 1989). The stratigraphy of the Liaohe
Group in the Jiao-Liao-Ji Belt shows a progression from a
basal clastic-rich sequence and a lower bimodal-volcanic
sequence, through a middle high-Mg carbonate-rich sequence,
to an upper pelite-rich sequence (Wan et al., 2006; Luo et al.,
2008), and includes, in ascending order, the Langzishan,
Lieryu, Gaojiayu, Dashiqiao and Gaixian formations
(Fig. 4). The Langzishan Formation is 244–1278m thick
and comprises graphite-bearing calc feldspar-quartz schist,
amphibolite, sillimanite-bearing mica schist and thin-
bedded marbles, with conglomerate or quartzite at the base.
The Lieryu Formation is ~976m thick and well known for
borate deposits, such as the Houxianyu szaibelyite deposit
(Jiang et al., 1997) and the Wengquangou ludwigite deposit
(Wang and Peng, 2008), which are hosted in schists and
dolomitic marbles. Its protolith is thought to include
felsic–intermediate lava, pyroclastic rocks, tuffs, sand-
stones and carbonate rocks. The Gaojiayu Formation is
371�557m thick and consists of garnet-bearing two-mica
quartz schist, biotite schist, phyllite and dolomitic marble.
The Dashiqiao Formation is well known for its talc, magne-
site and serpentine deposits (Chen et al., 2003a, b; Jiang

Figure 2. Tectonic framework of the northeast part of the North China
Craton (cited from Tang et al., 2012). See Figure 1 for location. This figure

is available in colour online at wileyonlinelibrary.com/journal/gj
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et al., 2004) that are hosted in a 1054–3890m thick
carbonate–slate–phyllite–schist succession predominated
by dolomitic marble. The Gaixian Formation is widely
developed with a fairly uniform thickness of ca. 2415m
and a lithologic association of two-mica schist, mica-
bearing feldspathic schist, quartzite, phyllite and slate.

Detrital zircons in biotite–plagioclase gneiss from the
Langzishan Formation have yielded concordant SHRIMP
U–Pb ages of ~2.2 and ~2.4Ga, respectively, whereas meta-
morphic zircon gave a SHRIMP U–Pb upper intercept age of
ca. 1.86Ga, which was interpreted to record the 1.85Ga
metamorphic event (Wan et al., 2006). Detrital zircons with
magmatic features from the Langzishan Formation have

yielded concordant LA-ICP-MS U–Pb ages from 2.05 to
2.24Ga (Luo et al., 2004). The SHRIMP U–Pb age for
igneous zircons from fine-grained biotite gneiss of the
Lieryu Formation is ca. 2.18Ga (Wan et al., 2006), and
near-concordia SHRIMP U–Pb ages for detrital zircons in
quartzite of the Gaixian Formation fall in the range of
2.22–2.02Ga (Wan et al., 2006). All these ages suggest that
the Liaohe Group was deposited in the interval 2.24–2.02Ga,
and metamorphosed at about 1.86Ga. This conclusion is
supported by the age data on the Liaoji granite complex
which intruded the lower portion of Liaohe Group and is
considered to have developed somewhat coevally with the
Liaohe Group (Zhang et al., 1988). For example, a tourmaline-

Figure 3. Simplified geological map showing distribution of the Liaohe Group in the Dashiqiao magnesite belt and positions of the Qingshanhuai and Pailou
magnesite deposits (modified after Liaoning Bureau of Geology and Mineral Resources, 1989, and Jiang et al., 2004). See Figure 2 for location.
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bearing muscovite monzogranite in the Hupiyu area
intruding the lower portion of the Liaohe Group has yielded
LA-ICP-MS zircon U–Pb age of 2163� 15Ma (Lu et al.,
2004); similar intrusions in the Fengcheng area have
yielded SHRIMP zircon U–Pb ages of 2168� 13 and
2094� 6Ma, respectively (Li et al., 2005). The granites in
the Tonghua area record SHRIMP zircon U–Pb ages of
2158� 13, 2164� 8 and 2147� 12Ma (Lu et al., 2006),
and the Pailou biotite granite in the Dashiqiao area has
yielded a concordant SHRIMP zircon U–Pb age of
2173� 4Ma (Wan et al., 2006). The zircon U–Pb ages from
the granitoids range from 2173� 4 to 2094� 6Ma and in
the 2.24–2.02Ga interval is inferred to mark the timing of
deposition of the Liaohe Group.
The northwestern part of the Jiao-Liao-Ji Belt is famous

for hosting world-class magnesite, talc and borate deposits.
A number of important magnesite deposits, including the
Shengshuishi, Qingshanhuai, Shuiquan, Huaziyu, Pailou,
Jinjiabao, Xiafangsheng and Fanjiabaozi deposits (Fig. 3),
occur in the Dashiqiao magnesite belt (Fig. 3), and are
mainly located in the Haicheng and Dashiqiao counties,
Liaoning Province. These deposits are controlled by the
third member of the Dashiqiao Formation with bedded or
lens-type occurrence, and comprise an important part of

the Dashiqiao strata. The proven reserve of magnesite in this
belt is 2.987 billion tons (The Ministry of Land and
Resources of China, 2001), accounting for>80% of the total
magnesite reserves in China and up to 30% of the world
reserves (Chen et al., 2003a). The Dashiqiao magnesite belt
has been an important topic for the IGCP443 (International
Geology and Environment Comparison of Magnesite and
Talc) project (Chen et al., 2003b; Jiang et al., 2004).

3. SAMPLES AND ANALYTIC METHODS

Samples in this study were collected from the Qingshanhuai
(Fig. 5A) and Pailou (Fig. 5B) mining areas. A geological
profile survey has been conducted in the Qingshanhuai
area, starting from the hanging-wall dolomitic marble
(122�35.5540E, 40�38.8480N), continuing northward across
the magnesite deposit, and culminating at the footwall rocks
(122�34.6230E, 40�39.1370N). The thickness of magnesite
orebody in this area is up to 550m. The orebody occurs
conformably within dolomitic marbles in both the hanging
and foot walls. A fault has been inferred between the
orebody and hanging-wall dolomites which are heteroge-
neously broken and hydrothermally altered. Diabase dykes

Figure 4. The stratigraphic units of the Liaohe Group in the Jiao-Liao-Ji Belt (modified after Li et al., 2005).
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cutting the magnesite orebody can be also observed at the
Qingshanhuai area. The Pailou samples were collected from
the location with co-ordinates of 122�48.5250E, 40�43.6450N.

The details of individual samples are summarized in
Table 1. Among these, the Qingshanhuai area, sample
LD001 was collected from the hanging wall in direct contact
with the orebody. Samples LD002�LD008 were collected
from the orebody and are coarsely recrystallized magnesite
rocks, locally developed as veinlets with thickness up to
5mm. Samples LD009�LD014 come from massive micro-
sparite dolomitic marbles in the footwall. Samples
HLD01�HLD08 come from the orebody at the Pailou
deposit. The samples (0.5–2 kg) were reduced in size using
a steel press and a percussion mortar. Small dolostone chips
(�1mm in size, without secondary veins/minerals) were
handpicked and ultrasonically cleaned in deionized water
and subsequently milled in an agate mortar. Major elements
were analyzed by X-ray fluorescence spectrometry at the
Key Laboratory of Crust and Orogen Evolution, Peking
University, China, using an ARL ADVANTXP+ X-ray
spectrometer calibrated against limestone GSR13 and GSR6.

The detection limit for the element is around 0.001%, and
the precision (1s) is typically <1% for the major oxide.
Carbon and oxygen isotope analyses of the 14 carbonate sam-
ples were conducted at the Isotope Laboratory of the Institute
of Mineral Resources, Chinese Academy of Geological
Sciences, Ministry of Land and Resource of China, Beijing.
Carbon and oxygen isotopic compositions of carbonates were
measured on CO2 on the MAT-253 mass spectrometer. Under
vacuum, the CO2 was liberated and collected from powdered
carbonates using 100% phosphoric acid for operation at
50� 0.2 �C for 24 h. Then the CO2 was collected, condensed
and purified in a liquid nitrogen-alcohol cooling trap
(�70 �C) for d13C mass spectrometry analysis. The d13C data
are reported in per mill relative to V-PDB and the d18O data in
per mill relative to V-PDB and V-SMOW, respectively. The
precision (1s) for both isotope ratios is better than �0.2%.
Oxygen isotope data for dolomites were corrected using the
fractionation factor 1.01066 (Rosenbaum and Sheppard,
1986; Chen et al., 2005), and d18OV-SMOW was calculated
according to d18OV-SMOW = 1.03086� d18OPDB + 30.86
(Friedman and O’Neil, 1977).

Figure 5. Geological characteristics of samples from the Qingshanhuai and Pailou magnesite deposits. (A) Qingshanhuai ore area. (B) Pailou ore area. (C)
Coarse-grained magnesite, relict banded texture, sample HLD03. (D) Hanging-wall dolomitic marble with mega-cylindrical talc crystals, sample LD001. (E)
Massive shallow pink coarse-grained magnesite, sub-equigranular texture, sample HLD02. (F) Massive white magnesite ore, sample LD002. (G) Pink,
coarse-grained magnesite ore disseminated with fine-grained carbonate-quartz veinlets, sample LD006. (H) Micrograined quartz in veinlets, sample LD006.
(I) The footwall dolomitic marble, sample LD011. Mineral abbreviations: Tc, talc; Dol, dolomite; Mg, magnesite; Qtz, quartz. This figure is available in colour

online at wileyonlinelibrary.com/journal/gj
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4. RESULTS

The analytical data on major elements and carbon and oxygen
isotope ratios are presented in Tables 2 and 3, respectively.
The strata examined in this study (Qingshanhuai area) cover
a total thickness of 1144m and consist of twomajor petrologic
domains. The upper part is ca. 550m thick and dominated by
magnesite; while the lower part is 600m thick and comprises
dolomitic marbles. Microlithological features of representa-
tive samples from the Dashiqiao magnesite belt are shown in
Figure 5 and the stratochemical variations are presented in
Table 2 and discussed by Tang et al. (2009). The d13C
histogram (Fig. 6a) shows a unimodal distribution whereas
the d18O values (Fig. 6b) show scatter.
The d13C and d18O values of the dolomitic marbles show

a range of 0.6�1.4% and 16.4�19.5%, respectively. The
CaO and MgO concentrations are 27.77�28.49% and
21.47�22.88%, respectively, with CaO/MgO ratios (mol)
of 0.87�0.94 and LOI (weight loss between 120�900 �C)
of 45.95�47.06%. The MnO, Fe2O3

T, Al2O3, Na2O and
P2O5 concentrations are lower than 1%, with values of
0.01�0.02%, 0�0.08%, 0.38�0.76%, 0.29�0.33% and

0.017�0.058%, respectively. The SiO2 content ranges from
1.61% to 2.88%.

The magnesite rocks have CaO and MgO contents of
0.33�11.83% and 36.43�46.65%, respectively. Their LOI
values range 47.20�59.12%, clearly higher than those of
dolomitic marbles, indicating the increase of MgCO3 in the
rocks. Compared to dolomitic marbles, they have lower
d13C (�1.3�0.9%) and d18O (9.2�16.9%; Table 3), as
well as depleted Na2O (0.01�0.28%), but higher MnO
(0.025�0.087%) and Fe2O3

T (0.30�1.02%). The SiO2

(0.12�3.98%) and P2O5 (0.011�0.047%) as well as Al2O3

(0.12�3.98%) values are lower and more variable than those
of the dolomites. Concentrations of K2O and TiO2 in the
magnesite samples are even lower than the detection limit.

5. DISCUSSION

5.1. Post-depositional variation in d13C and d18O

Carbon and oxygen isotopes of carbonate rocks can be
reset during post-depositional diagenetic, metamorphic and

Table 1. Geology of samples from the Qingshanhuai and Pailou deposits, Dashiqiao magnesite belt

No. Sample Stratigraphic
height (m)

Lithology

Qinshanhuai

LD001 Talc-dolomitic marble 1100 Dark-pink dolomitic marble composed of ~15% cylindrical talc with length up to 2 cm,
and ~85% hypidiomorphic dolomite with size of 0.01–0.3mm (Fig. 5D)

LD002 Magnesite 1044 Light green variegated white in colour, silicified and serpentinized, coarse-grained
magnesite (Fig. 5F); from fractured zone on the top of ore-bearing strata

LD003 Magnesite 985 Straw yellow, coarse-grained, massive magnesite, nearby a diabase dyke
LD004 Magnesite 890 White, coarse sub-equigranular grained, massive magnesite
LD005 Magnesite 838 Light pink, coarse sub-equigranular grained, massive magnesite
LD006 Veinlet-filled magnesite 815 Flesh-red coarse-grained magnesite, with pale grey fine-grained carbonate veins

(Fig. 5G, H)
LD007 Magnesite 735 Shallow pink, coarse-grained, massive magnesite
LD008 Magnesite 573 Shallow pink, coarse-grained, massive magnesite
LD009 Dolomitic marble 339 Grey, massive, microsparite dolomitic marble, with a few micrograined quartz

veinlets
LD010 Dolomitic marble 172 Grey, massive, microsparite dolomitic marble
LD011 Dolomitic marble 131 Light grey, massive, microsparite dolomitic marble (Fig. 5I)
LD012 Dolomitic marble 104 Grey, massive, locally recrystallized, microsparite dolomitic marble
LD013 Dolomitic marble 41 Grey, massive, microsparite dolomitic marble, with a few carbonate veinlets
LD014 Dolomitic marble 0 Light grey, notably silicified, massive, microsparite dolomitic marble, with some

carbonate veinlets
Pailou

HLD01 Magnesite White, medium-grained, massive magnesite, with scattered algal spots
HLD02 Magnesite Pink, coarse sub-equigranular grained, massive magnesite (Fig. 5E)
HLD03 Magnesite Light grey, coarse-grained, banded magnesite (Fig. 5C)
HLD04 Magnesite Pink, coarse sub-equigranular grained, massive magnesite
HLD05 Magnesite Pink, coarse sub-equigranular grained, massive magnesite
HLD06 Magnesite Pink, coarse sub-equigranular grained, massive magnesite
HLD07 Magnesite Light grey, medium-grained, massive magnesite
HLD08 Magnesite White, fine-grained, massive magnesite
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hydrothermal alteration processes, which usually lead to
isotopic fractionation and a decrease in the d13C and d18O
values (Veizer and Hoefs, 1976; Valley, 1986; Guerrera
et al., 1997; Jacobsen and Kaufman, 1999; Ray et al.,
2003; Banner, 2004; Melezhik et al., 2005a; Qi et al.,
2005). To investigate the primary isotopic signature of the
carbonates, any impact from post-depositional diagenetic
processes must consequently be considered and identified.

Veizer et al. (1999) suggested that diagenetic resetting
was mostly related to the generation of stable mineralogical
assemblages during the early burial history of the sediments.
This process results in an average of ~2% d18O depletion,
but once accomplished, the bulk system represented by the
matrix remains internally buffered and is thus relatively inert
to further resetting. Oxygen isotope ratios of 260 Precam-
brian limestones and dolomites documented by Schidlowski
et al. (1975) showed that high-grade metamorphosed or
severely recrystallized marbles were depleted in d18O by
2–3% on average, compared to essentially unaltered con-
temporaneous carbonates.

Valley (1986), Schidlowski (1988), Chen et al. (2000), and
Bekker and Kaufman (2007) showed that metamorphism

could cause isotopic exchange between carbonates and organ-
isms leading to d13C depletions of the former and d13C enrich-
ments of the latter. The studies by Baker and Fallick (1989a, b)
andMelezhik et al. (2001a, b) suggest that the oxygen and car-
bon isotopic values are negatively correlated with the degree
of metamorphism. Whereas the 13C-enrichment signature
could be retained in amphibolite facies carbonates, the imprint
nearly disappears in granulite facies rocks. For instance,
the d13C value of the ~2.0 Ga Lofoten–Vesteraten
marbles is depleted by >8% on average while passing
from amphibolite facies (7.5� 2.9) to granulite facies
(�1.5� 4.3), with a decrease in d18O from ~25% to
~10% (Baker and Fallick, 1989b; Fig. 7; Table 4). Bot-
tinga (1969), Wada and Suzuki (1983), and Schidlowski
(1988) noted that metamorphism at temperatures
>650 �C would result in a decrease in 13C by more than
3%. Banner and Hanson (1990) showed that the d18O
values of dolomites of the Mississippian Burlington–
Keokuk Formation varied extensively with the water–rock
interaction, whereas d13C and rare earth elements were un-
affected. The oxygen isotope system of carbonates is more
sensitive to post-depositional resetting than the carbon

Table 2. Chemical compositions (wt%) of the Dashiqiao Formation, Dashiqiao magnesite belt

Sample no. SiO2 Al2O3 Fe2O3
T CaO MgO K2O Na2O MnO TiO2 P2O5 LOI Total Mg/Ca

Qingshanhuai

LD001 3.20 1.43 1.02 26.98 21.95 <0.01 0.31 0.07 0.03 0.04 44.92 99.97 1.14
LD006 1.13 0.38 1.01 4.53 42.42 <0.01 0.26 0.10 <0.001 0.03 50.12 99.98 13.16
LD002 3.98 0.32 1.02 0.45 46.65 <0.01 0.25 0.09 <0.001 0.02 47.20 99.98 142.86
LD003 2.06 0.37 0.61 0.33 46.63 <0.01 0.24 0.08 <0.001 0.05 49.61 99.98 200.00
LD004 1.23 0.39 0.76 11.72 36.68 <0.01 0.28 0.05 <0.001 0.04 48.83 99.98 4.35
LD005 1.37 0.38 0.55 11.83 36.43 <0.01 0.28 0.04 <0.001 0.03 49.07 99.98 4.35
LD007 1.01 0.38 0.72 7.61 40.14 <0.01 0.27 0.04 <0.001 0.02 49.80 99.98 7.14
LD008 1.21 0.33 0.91 7.37 40.17 <0.01 0.26 0.05 <0.001 0.01 49.67 99.98 7.69
Average (n= 6) 1.81 0.36 0.76 6.55 41.12 0.26 0.06 0.03 49.03 99.98 8.33
�1s 1.12 0.03 0.18 5.14 4.57 0.02 0.02 0.01 0.97 0.00 87.39
LD009 1.74 0.47 0.00 27.77 22.88 <0.01 0.29 0.01 <0.001 0.06 46.76 99.98 1.15
LD010 2.60 0.76 0.12 28.31 21.47 <0.01 0.33 0.02 0.00 0.03 46.36 99.99 1.06
LD011 2.00 0.51 0.03 28.49 21.74 <0.01 0.31 0.01 <0.001 0.03 46.86 99.98 1.06
LD012 1.61 0.39 0.03 27.93 22.62 <0.01 0.30 0.02 <0.001 0.02 47.06 99.98 1.14
LD013 1.97 0.39 0.03 28.14 22.37 <0.01 0.31 0.01 <0.001 0.05 46.71 99.99 1.11
LD014 2.88 0.38 0.08 28.21 22.12 <0.01 0.31 0.01 <0.001 0.02 45.95 99.96 1.10
Average (n= 6) 2.13 0.48 0.05 28.14 22.20 0.31 0.01 0.03 46.62 99.98 1.10
�1s 0.50 0.15 0.04 0.26 0.53 0.01 0.00 0.02 0.40 0.01 0.04

Pailou

HLD01 3.88 0.36 0.49 0.63 43.26 0.01 0.03 0.04 0.00 0.04 51.16 99.91 86.77
HLD02 0.22 0.09 0.71 1.54 45.20 0.01 0.01 0.06 0.00 0.49 51.56 99.89 140.87
HLD03 1.34 0.66 0.72 0.40 44.05 0.01 0.02 0.08 0.07 0.09 51.92 99.35 37.30
HLD04 1.38 0.07 0.45 0.71 38.05 0.02 0.01 0.03 <0.001 0.11 59.12 99.94 67.91
HLD05 2.30 1.00 0.54 1.22 40.25 0.03 0.01 0.03 0.03 0.53 50.94 96.89 41.93
HLD06 3.54 0.05 0.30 0.42 43.99 0.01 0.02 0.04 <0.001 0.04 51.49 99.90 132.34
HLD07 0.17 0.07 0.47 0.73 46.35 0.02 0.01 0.03 0.00 0.09 51.97 99.91 81.14
HLD08 0.12 0.07 0.39 0.52 42.65 0.01 0.01 0.03 <0.001 0.02 56.13 99.95 104.48
Average (n= 8) 1.62 0.30 0.51 0.77 42.98 0.01 0.02 0.04 0.01 0.18 53.04 99.47 86.59
�1s 1.50 0.36 0.15 0.40 2.68 0.01 0.01 0.02 0.03 0.21 2.96 1.06 38.10
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isotope system and can serve as an indicator of hydro-
thermal alterations (Tang et al., 2011).
Some studies have attempted to use d18O values to

identify whether carbonates have undergone hydrothermal
alteration. Veizer et al. (1992) noted that a low d18O value
indicated equilibrium reactions between primary rocks and
fluids. Feng et al. (2003) and Aharon (2005) showed that the
minimum d18O value of carbonates is not lower than 18% if
post-depositional modification processes do not reset the iso-
tope system. Melezhik et al. (2005b) suggested that this min-
imum d18O value should be at least 20%. Other researchers
have conducted studies to determine why the d18O of

carbonates is more variable than d13C (Banner and Hanson,
1990; Jacobsen and Kaufman, 1999; Ray et al., 2003). Banner
and Hanson (1990) and Jacobsen and Kaufman (1999) noted
that during open system diagenesis, calcite equilibrates with
fluid d18O values at fluid/rock ratios (mol) three orders of
magnitude lower (<10) than the fluid/rock ratios at which
it equilibrates with fluid d13C values (103), due to the ex-
treme differences in the concentrations of O and C in car-
bonates and fluids. Furthermore, the carbon isotopes may
be strongly buffered by the high C concentrations in car-
bonate minerals relative to the fluid (Banner and Hanson,
1990; Jacobsen and Kaufman, 1999, Melezhik et al.,

Table 3. Carbon and oxygen isotope ratios (%) of samples from the Dashiqiao Formation, Liaohe Group

No. Sample geology d13CV-PDB d18OV-PDB d18OV-SMOW Data source

LD001 Talc-dolomitic marble �2.6 �16.2 14.1 This study
LD002 Magnesite 0.1 �17.5 12.7 This study
LD003 Magnesite 0.6 �17.8 12.5 This study
LD004 Magnesite 0.5 �19.8 10.3 This study
LD005 Magnesite 0.3 �20.8 9.2 This study
LD006 Veinlet-filled magnesite �2.7 �14.1 16.2 This study
LD007 Magnesite 0.4 �20.0 10.1 This study
LD008 Magnesite 0.2 �19.7 10.4 This study
LD009 Dolomitic marble 1.2 �12.9 17.4 This study
LD010 Dolomitic marble 1.4 �11.7 18.7 This study
LD011 Dolomitic marble 1.4 �11.0 19.5 This study
LD012 Dolomitic marble 1.4 �11.3 19.1 This study
LD013 Dolomitic marble 0.6 �12.4 18.0 This study
LD014 Dolomitic marble 1.2 �14.0 16.4 This study
HLD01 Magnesite �1.1 �15.8 14.7 This study
HLD02 Magnesite 0.5 �15.6 14.9 This study
HLD03 Banded magnesite �1.3 �14.4 16.1 This study
HLD04 Magnesite 0.2 �15.4 15.0 This study
HLD05 Magnesite 0.9 �15.4 15.1 This study
HLD06 Magnesite 0.1 �13.6 16.9 This study
HLD07 Magnesite 0.6 �16.3 14.1 This study
HLD08 Magnesite 0.4 �16.3 14.1 This study
DSQ2 Marble �0.6 17.3 Jiang et al. (2004)
DSQ6-1 Marble 1.0 18.5 Jiang et al. (2004)
DSQ11 Marble 0.1 12.6 Jiang et al. (2004)
DSQ19-2a Marble �1.9 16.3 Jiang et al. (2004)
M-1 Marble �0.6 15.5 Jiang (1987)
L01015 Calcite marble �1.8 22.8 Chen et al. (2003a)
L01025 Calcite marble �4.5 19.6 Chen et al. (2003a)
L01017 Stromatolite marble �0.5 20.2 Chen et al. (2003a)
L01020 Banded marble 4.4 18.2 Chen et al. (2003a)
L01021 Banded marble 0.8 11.2 Chen et al. (2003a)
L01022 Magnesite 1.2 12.6 Chen et al. (2003a)
L01023 Banded magnesite �0.8 12.1 Chen et al. (2003a)
L01035 Talc magnesite �1.4 11.1 Chen et al. (2003a)
DSQ14 Magnesite 0.4 11.1 Jiang et al. (2004)
DSQ15 Magnesite �0.4 13.8 Jiang et al. (2004)
HYZ6-1 Magnesite 1.2 9.6 Jiang et al. (2004)
M-2 Magnesite �1.3 11.7 Jiang (1987)
M-3 Magnesite �0.6 11.1 Jiang (1987)
DSQ19-1 Magnesite vein 0.3 5.2 Jiang et al. (2004)
DSQ19-2b Magnesite vein 0.2 8.0 Jiang et al. (2004)
M-4 Calcite vein 1.3 16.9 Jiang (1987)
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2006) and, consequently, infiltration of externally sourced
fluids is likely to have a relatively greater effect on the O
isotope compositions in carbonate rocks (Ray et al.,
2003; Melezhik et al., 2006, 2008; Tang et al., 2011).

The carbon and oxygen isotopes of carbonate sediments
generally tend to decrease during post-depositional
diagenetic, metamorphic and hydrothermal alteration
processes as evident from the above studies, leading to three
major geochemical trends in d13C versus d18O plots. (i) Both
d13C and d18O decrease non-linearly to produce a scatter
pattern (Bekker et al., 2005; Melezhik et al., 2005b) that is
a common characteristic for most carbonates (Veizer and
Hoefs, 1976) and indicates isotopic equilibration with fluids

due to hydrothermal alteration or diagenetic–metamorphic
modification at a high fluid/rock ratio (Guerrera et al.,
1997; Jacobsen and Kaufman, 1999). (ii) A trend nearly
parallel to the oxygen axis that demonstrates partial isotope
resetting caused by lower fluid/rock ratio fluid alteration
(Banner and Hanson, 1990). (iii) A rare trend essentially
parallel to the d13C axis that is interpreted by Melezhik
et al. (2005b) to reflect intense alteration in an open system
with a high fluid/rock ratio. The latter trend is further
believed to be a unique phenomenon recording alteration
of carbonate strata by carbonic fluid flow (Tang et al.,
2011). In addition, diagenetic processes would lead to
decrease in Sr concentration and increases in Mn, Fe and

Figure 6. Histograms for d13C (a) and d18O (b) values of the Dashiqiao Formation, Qingshanhuai and Pailou areas.

Figure 7. d13C and d18O values of the Dashiqiao Formation and 2.33�2.06Ga marine carbonates. Data source: Lofoten–Vesteraten marbles (Baker and
Fallick, 1989b); dolomites of the Guanmenshan Formation (Tang et al., 2011); 2.33�2.06Ga marine carbonates (see Table 4).
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Rb concentrations of carbonates (Derry et al., 1992; Veizer
et al., 1992, 1999; Melezhik et al., 2008; and references
therein), which can also serve as an important criterion for
identifying post-depositional alterations.

5.2. Isotope signature in Dashiqiao Formation and its
implications
In Figure 8, the d13C and d18O values of the carbonates from
the Dashiqiao Formation show a fairly positive correlation
(excluding samples LD001 and LD006, discussed below)
with a trend nearly parallel to the oxygen axis in d13C�d18O
plots, indicating diagenetic, metamorphic and/or fluid alter-
ation at lower fluid/rock ratios in the initial stage. The wide
d13C and d18O variations indicate that the post-depositional
geological processes were complex and heterogeneous. The
dolomitic marbles and magnesites have differing d13C and
d18O values, reflecting a genetic difference between the two.

The average d18O value of the 2.33�2.06Ga global
carbonate strata is ~22% (Table 4, Fig. 7). Veizer et al.
(1992) noted that the mean d18O value of early Precambrian
(>1.9Ga) dolomites is 26� 2%. Thus, the d18O values of
primary Palaeoproterozoic dolomite are generally >22%,
such as the 2.3�1.9Ga dolomites within the Guanmenshan
Formation, Liaohe Group, northern Liaoning (Tang et al.,
2011) with a d18O average of 22.1� 2.3%. The d18O values
of the 2.2�2.174Ga Dashiqiao carbonates range from
9.2�19.5% with average of 14.8� 3.0% (n = 22), notably

lower than those of global contemporaneous dolomite
(Fig. 7), with the degree of depletion being similar to those
of the Lofoten–Vesteraten marbles from amphibolite to
granulite facies (Baker and Fallick, 1989b). Chen et al.
(2003a, b) and Jiang et al. (2004) argued that the isotope
signatures of the Dashiqiao Formation witnessed extensive
diagenetic and metamorphic overprints. Since the grade of
metamorphism of the Liaohe Group is only up to greenschist
or amphibolite facies, the extent of d18O depletion in the
Dashiqiao Formation cannot be interpreted by solely consid-
ering diagenetic–metamorphic alteration, and the impact of
hydrothermal alteration must also be taken into account.
As shown in Figure 8b�f, from dolomitic marble through
massive magnesite to veinlet-filled magnesite, the MgO/
CaO ratios of the samples increase by two orders of
magnitude, the Mn concentrations increase by one order of
magnitude, and Fe concentrations increase by about two
orders of magnitude. Moreover, both Mn and Fe are nega-
tively correlated with d13C (Fig. 8b, c), which indicate that
the Dashiqiao Formation was subjected to significant fluid
alteration, especially, by meteoric water.
In Table 3, apart from LD001 and LD006 (see Section 5.3),

the d18O values of 14 magnesite samples range from
9.2�16.9% (average 13.3� 2.5), notably lower than those
of six dolomitic marbles (16.4�19.5%, average 18.2� 1.1),
which suggests that the magnesites have experienced stronger
hydrothermal alteration than the dolomitic marbles. Even if we

Figure 8. Correlations of d13C with d18O (a), MnO (b), Fe2O3
T (c) and MgO/CaO (d), as well as correlations of MgO/CaO with d18O (e) and SiO2 (f) of the

Dashiqiao Formation, Qingshanhuai and Pailou areas. This figure is available in colour online at wileyonlinelibrary.com/journal/gj
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consider only the impact of diagenesis which usually causes
~2% depletion in d18O (Veizer et al., 1999), the initial d18O
value of the Dashiqiao carbonates is estimated >21.5%
(19.5 + 2). This estimation is still lower than the highest
d18O value (22.8%) of the Dashiqiao Formation marbles
reported by Chen et al. (2003a, b). We therefore infer that
the initial d18O of the Dashiqiao Formation carbonates might
have been similar to those of the Guanmaenshan Formation
carbonates (25� 1%; Tang et al., 2011).
Since the decrease in d18O is accompanied by a concomi-

tant decrease in d13C (Fig. 8a), the initial d13C values of the
Dashiqiao Formation carbonates must have been higher than
the measured values. In Figures 6 and 8, the d13C values of
the 12 magnesite samples are positive, with an average of
0.4� 0.2%, and show a slightly positive anomaly. The d13C
values of six massive dolomitic marbles of wall rocks are
0.6�1.4% (average 1.2� 0.3%), higher than the average of
marine carbonates (0.5%; Schidlowski, 2001; Hoefs, 1997),
indicating that the Dashiqiao Formation must have possessed
remarkably positive d13C anomalies before diagenesis,
metamorphism and hydrothermal alteration. We consider the
different possibilities to account for the above features.
(i) Granulite facies metamorphism could result in a depletion
in d13C of>8% on average compared to those of amphibolite
facies carbonates (Baker and Fallick, 1989b), and the degree
of d18O depletion of the studied carbonates is equivalent to
the depletion caused by granulite facies metamorphism.
(ii) Metamorphism at temperatures >650�C could result in
>3% decrease in d13C (Bottinga, 1969; Wada and Suzuki,
1983; Schidlowski, 1988), and the Liaohe Group generally
underwent greenschist to amphibolite facies metamorphism,
as well as extensive hydrothermal alteration, which must have
caused a great decrease in d18O. (iii) The wide variations in
d18O and d13C values of the Dashiqiao Formation carbonates
suggest that fluid–rock interaction resulted in significant
depletion in d18O and d13C. We extrapolate this to infer that
the initial d13C values of the Dashiqiao Formation carbonates
were no less than +4.2%, and decreased by at least 3% during
post-depositional processes. This inference is also supported
by the highest d13C value of 4.4% obtained from the
Dashiqiao dolomitic marbles by Chen et al. (2003a, b) (Fig. 7).
Thus, it is concluded that the d13C values of the Dashiqiao
Formation carbonates show a remarkable positive excursion,
indicating that the Jiao-Liao-Ji Belt of the North China
Craton preserves the GOE at 2.33�2.06Ga.

5.3. Formation of the Dashiqiao magnesite deposits

The genesis of the Dashiqiao giant magnesite belt has been
addressed in various works (Zhang et al., 1988; Dong
et al., 1996; Chen and Cai, 2000; Chen et al., 2003a, b;
Jiang et al., 2004). Our study shows that the magnesite
deposits in the Dashiqiao magnesite belt were formed

through a complex processes as follows: (i) Palaeoprotero-
zoic sedimentation in a high-Mg lagoonal environment
(Jiang et al., 2004), with evaporation leading to an enrich-
ment of Mg, 18O and 13C in the primary carbonates. Tu
(1996) noted that Palaeoproterozoic Mg-rich seawater and
CO2-rich atmosphere contributed to the formation of
the magnesite deposits; (ii) post-depositional diagenesis,
probably accompanied with Mg-rich brine metasomatism
similar to modern sabkha evaporation (Jiang et al., 2004);
(iii) greenschist to amphibolite facies metamorphism
of the Liaohe Group and related metamorphic fluid
alteration resulting in chemical differentiation, possible
Mg-enrichment and recrystallization of magnesite ores
(Zhang et al., 1988; Dong et al., 1996; Chen and Cai,
2000); these also led to a reduction in the d18O and d13C
ratios of the magnesite ores, which are lower than those of
both the footwall dolomites at Qingshanhuai (Table 3;
Figs. 7 and 8) and the contemporaneous global carbonate
strata (Table 4, Fig. 7) and (iv) Local post-metamorphic
hydrothermal alterations, as reflected by the formation of
fine vein-type samples LD001 and LD006, probably associ-
ated with faulting, causing further decrease in d18O and
d13C ratios. Among the four processes mentioned above,
the first three were addressed in previous studies, but the last
one has not been discussed yet.

The sample LD001 has a similar Mg/Ca ratio to those of
footwall dolomitic marbles, but has the lowest d13C
(�2.6%) and d18O (14.1%) values among all the dolomitic
marbles studied, with low Mg/Ca ratios (1.06�1.15)
(Fig. 8d, e). This sample was collected from a fault zone
between the hanging-wall dolomitic marble and magnesite
orebody and is characterized by the presence of mega-
crystals of cylindrical talc (Table 1; Fig. 5D). The talc was
possibly formed by interaction between dolomite and
siliceous hydrothermal fluids, or between argillaceous
dolomite and hydrothermal fluids through the reaction:

3CaMg CO3ð Þ2 þ 4SiO2 þ H2O ! Mg3 Si4O10½ � OHð Þ2 talcð Þ þ 3CaCO3 þ 3CO2 "

The release of CO2 resulted in a decrease in both d
13C and

d18O of dolomite, since the CO2 liberated during the reaction
is about 5% richer in 18O and about 6% richer in 13C than
the coexisting calcite (Shieh and Taylor, 1969). Hence, the
lower d13C and d18O values of sample LG001 and the
formation of cylindrical talc mega-crystals can be interpreted
to have resulted from local hydrothermal alteration. A talc-
bearing magnesite obtained from the Dashiqiao Fm. by
Chen et al. (2003a) has also shown lower d13C (�1.4%)
and d18O (11.1%) values (Table 3).

Sample LD006 (Fig. 5G, H) is from pink, coarse-grained
magnesite ore, which is developed with micrograined, fine
carbonate veinlets. It has the highest Fe andMn concentrations
(Fig. 8b, c) among all the magnesite samples, indicating that
it experienced local fluid–rock interaction after the
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formation of the massive magnesite. Minerals in sample
LD006 are dominated by magnesite, with minor chalcedony
and disseminated limonite, suggesting that the post-ore
fluid–rock interaction was possibly resulted from low-temper-
ature meteoric water circulation. Sample LD006 has the low-
est d13C value (�2.7%) among all the samples, which can
be reasonably interpreted by referring to the mechanism for
sample LD001. However, LD006 has a higher dl8O value
(16.2%) than the other magnesite ores and sample LD001
(Table 3; Fig. 8a, e), which warrants further discussion.

During the interaction between fluid and rock, the isotopic
fractionation is mainly controlled by temperature. The final
d13C and d18O values in rocks are controlled by the initial
isotope compositions of rocks and fluid. Given that sample
LD006 (dl8O = 16.2%; dl3C =�2.7%) was isotopically
equilibrated with fluids at a given temperature, we
can estimate the possible temperature and isotope composi-
tions of fluids through calculation using equations of
(1) 1031na(Dolomite�water) = 3.06� 106/T2� 3.24 (Matthews
and Katz, 1977) and (2) 1031na(Dolomite�CO2) =�0.388
109/T3 + 5.538� 106/T2� 11.346� 103/T+ 3.132 (Sheppard
and Schwarcz, 1970). Table 5 lists the dl8O and dl3C values
of fluids which were fully equilibrated with carbonates at
different temperatures under the conditions with high enough
W/R. To match up with both the dl8O and dl3C ratios of
sample LD006, the most likely fluids were meteoric because
its dl8O value is usually <0% and the dl3C value of its
dissolved CO2 is around �8% (Schidlowski, 2001), and
the most realistic temperature is between 75 and 100 �C.
Therefore, compared to other magnesite samples, the dl3C
decrease and the dl8O increase of sample LD006 resulted
from post-metamorphic interaction between the massive
magnesite and meteoric water at temperature of 75�100 �C.

6. CONCLUSIONS

(1) The Dashiqiao magnesite belt is the largest MgCO3

producer in the world, with magnesite ores being hosted
in the 2.2�2.174Ga Dashiqiao Formation, Liaohe
Group, in the northeastern North China Craton. Magne-
site samples from the orebody yield d13C ratios of
0.1�0.9% with an average of 0.4� 0.2% (n = 12),
and d18O value of 9.2�16.9% with an average of

13.3� 2.5% (n=14). Six dolomitic marble samples from
the footwall yield d13C and d18O values of 0.6�1.4%
and 16.4�19.5%, with averages of 1.2 � 0.3% and
18.2 � 1.1%, respectively. These data clearly exhibit
positive dl3C anomalies.

(2) It is estimated that the primary sediments of the
Dashiqiao Formation might possess d13C values of
>4.2%, and dl8O values of >21.5%. The Palaeoproter-
ozoic carbonate strata in the Jiao-Liao-Ji Belt, North
China Craton, therefore records the global GOE.

(3) The carbonate rocks in the Dashiqiao magnesite belt
reduced the d13C and d18O values during post-
depositional geological modifications, as indicated by
the much lower and variable d18O ratios relative to global
carbonates, and the negative d13C values in talc-bearing
dolomite and veinlet-filled magnesite samples.

(4) The post-depositional geological processes were com-
plex, including diagenesis–metamorphism and associated
hydrothermal alteration, limited post-metamorphic
faulting, and then local low-temperature fluid–rock
interaction. These, in addition to the Palaeoproterozoic
evaporate sedimentation in a high-Mg lagoon, might have
favoured the formation of the giant Dashiqiao magnesite
belt. Thus, the formation of the Dashiqiao magnesite belt
records a multistage and polygenetic history.
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