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Abstract
The Devonian subduction-related Heishan mafic-ultramafic intrusion hosting a magmatic Ni-Cu-(PGE) 

deposit is situated at the southern margin of the Central Asian orogenic belt. The outcrop of the intrusion is 
~800 m long and ~470 m wide and dips to the southwest to depths up to 1,300 m. The Heishan intrusion is 
emplaced in Neoproterozoic dolomitic marble and siliceous slate and dominantly comprises of harzburgite 
and lherzolite. The stratigraphic reversals of Fo and Ni contents of olivine within the lerzolite and harzburgite 
indicate injections of several pulses of magmas. The two orebodies (Nos. 1 and 4) within the harzburgite and 
lherzolite at the lower part of the intrusion host ~35 million metric tons (Mt) of disseminated sulfide mineraliza-
tion with average grades of 0.6 wt % Ni and 0.3 wt % Cu. The sulfides of the No. 4 orebody are lower in PGE 
contents on the basis of 100% sulfide (580-1,860 ppb Pt, 720-1,450 ppb Pd, 50-120 ppb Ir) and higher in Cu/
Pd ratios (48,000-75,000) relative to the sulfides of the No. 1 orebody and mineralized harzburgites, which have 
2,350 to 4,110 ppb Pt, 3,460 to 5,840 ppb Pd, 130 to 160 ppb Ir and Cu/Pd ratios of 16,000 to 26,000. Addition-
ally, the olivines in the No. 1 orebody and mineralized harzburgites have higher forsterite (Fo) and Ni contents 
than those in the No. 4 orebody. We propose that the sulfide segregation of the No. 4 orebody was associated 
with extensive introduction of crustal sulfur, which is indicated by high δ34S values (1.9−6.1‰) and low Se/S 
ratios (230−390 × 10−6). Reworking of early fractionated massive or net-textured sulfides by the new wave of 
magma containing unfractionated sulfide droplets resulted in the positive correlation between Pd/Ir and Ni/
Ir for the disseminated sulfides of the No. 4 orebody. In contrast, low δ34S values (0.43−1.01‰) and restricted 
range of Pd/Ir ratios indicate that the high PGE contents of the sulfides in the No. 1 orebody and mineralized 
harzburgites resulted from reaction between the sulfides and new pulses of S-undersaturated magmas. The low 
PGE grades of the Heishan sulfides indicate that the sulfides were segregated from PGE-depleted parental 
magmas.

Introduction
Most world-class magmatic sulfide deposits are genetically 
linked with mantle plumes with magmatism close to craton 
margins. Examples include Noril’sk, Jinchuan, and Voisey’s Bay 
(e.g., Naldrett, 2004, 2010; Song et al., 2006, 2009b, 2012; Begg 
et al., 2010; Maier and Groves, 2011; Chen et al., 2013). Not-
withstanding, economic Ni-Cu sulfide deposits and potentially 
economic sulfide mineralization have been also discovered 
in orogenic belts in the past decades, such as the Aguablanca 
deposit in southwestern Spain (Casquet et al., 2001; Piña et 
al., 2006), the Tati and Selebi-Phikwe deposits in Botswanna 
(Maier et al., 2008), and the Duke Island sulfide mineralization 
in Alaska (Thakurta et al., 2008). These discoveries indicate the 
potential of orogenic belts to host magmatic sulfide deposits. 
The mechanisms of the sulfide segregation and emplacement 
in these Ni-Cu-(PGE) sulfides are not fully understood.

At the southern margin of the Central Asian orogenic belt, 
northwestern China, a number of 0.03- to ~5-km2 variable-
sized intrusions host mineralization with a total contained metal 
content of >1.5 million metric tons (Mt) of Ni and >1.2 Mt of 
Cu (Fig. 1, Zhou et al., 2004; Song and Li, 2009; Qin et al., 

2011; Song et al., 2011; Xie et al., 2011; Gao et al., 2012, 2013; 
Sun et al., 2013; Xia et al., 2013; Deng et al., 2014 and refer-
ences therein). Most of the sulfide mineralization is hosted by 
Permian-aged mafic-ultramafic intrusions, such as Kalatonge, 
Huangshandong, Huangshan, Pobei, Baishiquan, and Tianyu 
(270−290 Ma), and these intrusions have been linked to mag-
mas derived from melting of the metasomatized mantle due to 
upwelling of asthenosphere in syn- or postsubduction environ-
ment (e.g., Han et al., 2004; Zhang et al., 2009; Song et al., 2011; 
Tang et al., 2011; Li et al., 2012). Only a few Ni-Cu sulfide min-
eralized intrusions, such as Jingbulake (431 ± 6 Ma) and the 
Tulargen No. 2 and No. 3 intrusions (358 ± 3 and 351 ± 4 Ma), 
were confirmed to be related to early subduction magmatism 
(Yang and Zhou, 2009; San et al., 2010). Widespread volcanics 
and intrusions (349−~330 Ma) at the southern margins of the 
Central Asian orogenic belt (Fig. 1) were proposed to be sub-
duction related (Wang and Xu, 2006; Zhou et al., 2010).

As shown in Figure 1, the Heishan mafic-untramafic intru-
sion is situated in the eastern Beishan fold belt at the south-
ern margin of the Central Asian orogenic belt and contains 
~35 Mt of disseminated sulfide mineralization with average 
grades of 0.6 wt % Ni and 0.3 wt % Cu. Zircon U-Pb ages 
(~357 Ma) and trace element and radiogenic-isotope geo-
chemistry indicate that the magma of the Heishan intrusion 
originated by partial melting of a mantle wedge triggered by 
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upwelling of asthenosphere due to slab break-off in the Late 
Devonian at an active continental margin (Xie et al., 2012). We 
use the Heishan deposit as an example to help to understand 
the features of the magmatic sulfide mineralization produced 
before collision at the southern margin of the Central Asian 
orogenic belt. In this paper, we report data for the chalco-
phile elements (Ni, Cu, as well as platinum-group elements), 
semimetal elements (Se, As, Te, and Bi), and S isotopes of 
the Heishan intrusion to constrain the genesis of a magmatic 
sulfide deposit at an active continental margin.

Geologic Background
The Central Asian orogenic belt extends >5,000 km west to 

east and is a complex collage of continental fragments, island 
arc assemblages, remnants of oceanic crust, and continental 
margins between the Siberian craton to the north and the 
Tarim-North China craton to the south (Fig. 1A). The Cen-
tral Asian orogenic belt was formed by multiple subduction-
accretion and collision processes from the Neoproterozoic to 
the Late Paleozoic (Sengör et al., 1993; Jahn et al., 2004; Xiao 
et al., 2004, 2008, 2010; Windley et al., 2007). The southern 

Central Asian orogenic belt in northwestern China consists, 
from north to the south, of the Chinese Altai, Junggar, Tian-
shan, and Beishan domains (Fig. 1B, Song et al., 2011). The 
Tianshan domain is subdivided by the Aqikkuduk and Nalati-
Kawabulak-Xingxingxia faults into Northern, Central, and 
Southern Tianshan terranes, respectively (Fig. 1B; e.g., Xiao 
et al., 2004; Han et al., 2011; Ge et al., 2012). 

The Early Permian magmatic sulfide mineralization occurs 
at the northern margin of the Junggar terrane (Kalatongke), in 
the Central Tianshan terrane (e.g., Tianyu), the Beishan fold 
belt (e.g., Pobei), and the Northern Tianshan terrane (e.g., 
Huangshan, Huangshandong, Tudun; Fig. 1, Mao et al., 2008; 
Qin et al., 2011; Song et al., 2011, 2013; Gao et al., 2012, 2013; 
Sun et al., 2013; Xia et al., 2013; Deng et al., 2014, and refer-
ences therein). A few Ni-Cu sulfide mineralized intrusions, 
such as the Carboniferous Tulargen intrusion (No. 1 intrusion 
301 ± 3 Ma; No. 2 intrusion 358 ± 3 Ma; No. 3 intrusion 351 
± 4 Ma, San et al., 2010, Jiao et al., 2013) and the Silurian 
Jingbulake Alaska-type intrusion (431 ± 6 Ma, Yang and Zhou, 
2009) are located in the Northern and Central Tianshan ter-
ranes, respectively (Fig. 1B, C). 
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The NEE-SWW-trending Beishan fold belt is located to the 
northeast of the Tarim block at the southernmost margin of 
the Central Asian orogenic belt (Fig. 1). It is separated from 
the Tianshan terranes to the northwest by the Xingxingxia and 
Hongliuhe faults (Fig. 1C, BGMRG, 1989; BGMRXUAR, 
1993; Xie et al., 2012). The Devonian Heishan Ni-Cu-(PGE) 
sulfide deposit is located at the eastern part of the Beishan fold 
belt, and the Early Permian Ni-Cu-(PGE) sulfide-mineralized 

Pobei and Hongshishan intrusions are situated in the western 
portion of the fold belt (Fig. 1C, Song et al., 2011).

Geology of the Heishan Deposit
The oval-shaped Heishan mafic-ultramafic intrusion has 

a length of ~800 m, a width of ~470 m, and a thickness of 
~400 m, and dips to the southwest to depths up to 1,300 m 
(Fig. 2). It cuts the Neoproterozoic dolomitic marble and 
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siliceous slate with interlayers of metabasalt and andesite. 
Pyrite and other sulfides are absent in the country rocks. The 
Heishan intrusion is dominantly composed of harzburgite and 
lherzolite (Fig. 2). According to the petrologic observations 
by Xie et al. (2012), the harzburgite comprises 40 to 75 modal 
% olivine (Ol), 15 to 40% orthopyroxene (Opx), <10% plagio-
clase (Pl), and minor hornblende (Hbl) and biotite (Bt). With 
decreasing Ol and Opx upward, the harzburgite grades into 
lherzolite, which consists of 35 to 60% Ol, 20 to 30% Opx, 
10 to 25% Cpx (clinopyroxene), 5 to 20% Pl, and 5 to 10% 
Hbl and Bt (Fig. 3A). Small olivine crystals may be poikiliti-
cally enclosed by Opx or Cpx in these rocks. Both harzburgite 
and lherzolite contain small amounts of chrome spinel, most 
of which are generally enclosed within the olivine. Interstitial 
hornblende and biotite as well as plagioclase (totally less than 
15 vol %) occur between granular olivine and pyroxene. The 
hornblende may also form the reaction rim of the pyroxene. 
Olivine gabbronorite with a thickness of 10 to 30 m overlies 
the lherzolite along the southwestern margins of the intrusion 
(Fig. 2). A 50- to ~300-m-long gabbro dike with a width of 1 
to ~6 m occurs along the southwestern margin of the Heis-
han intrusion and shows sharp contacts with the lherzolite and 
gabbronorite (Fig. 2A).

The cumulus sequence from the base to the top of the Heis-
han intrusion (harzburgite→lherzolite→olivine gabbronorite) 
and the occurrence of the disseminated sulfides of the No. 4 
orebody at the base of the intrusion suggest in situ fractional 

crystallization with gravitational accumulation (Fig. 2B). Xie 
(2012) proposed that the Heishan intrusion was originally sill-
like and was tilted to the southeast on the south limb of an 
anticline formed during following collisional orogeny.

There are two lenticular Ni-Cu sulfide orebodies named 
the No. 1 and No. 4 ore bodies in the lower parts of the intru-
sion (Fig. 2B). The No. 1 orebody, located within the harzbur-
gite, is comprised of sparsely disseminated sulfides (2−7 vol % 
sulfides; Fig. 4A). It is ~400 m long, ~100 to 400 m wide with 
thickness of up to 30 m, and dips southward to depths of 300 
to 560 m; there are a few small mineralized bodies within 
the harzburgite as shown in Figure 2B. The No. 4 orebody is 
hosted in the lherzolite at the base of the intrusion and extends 
from the northwestern end to the middle part of the intru-
sion. The No. 4 orebody is larger and richer in sulfides than 
the No. 1 orebody and mineralized harzburgites. It is ~600 m 
long, ~400 to 600 m wide, and dips to depths of ~300 to 750 m 
southward. The thickness of the No. 4 orebody reaches 120 m 
in drill hole ZK803 at the northwest end and decreases toward 
southeast to reach 50 m in drill hole ZK1603. The orebody is 
dominantly comprised of disseminated sulfides (2−20 vol % 
sulfides; Figs. 2B, 4B). Thin net-textured sulfides and massive 
sulfide as thick as 2 m have been discovered at the base of the 
No. 4 orebody in drill hole ZK 803 in the northwestern part 
of the intrusion.

The sulfide aggregates are interstitial at the triple points 
between grains of olivine and pyroxene (Fig. 4C, E). With 
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increasing sulfide contents, the sulfides form poorly to moder-
ately interconnected patches (up to 5 mm) of net-texture sulfide 
in the No. 4 orebody (Fig. 4E). The sparsely disseminated sul-
fides of the No. 1 orebody and mineralized harzburgites include 
30 to 45 modal % pyrrhotite, 30 to 45 modal % pentlandite, and 
20 to 30 modal % chalcopyrite, together with minor secondary 
magnetite occurring along fractures within the sulfides (Fig. 
4D). The proportions of pyrrhotite, pentlandite, and chalcopy-
rite in the disseminated sulfides of the No. 4 orebody are 50 to 
60 modal %, 20 to 30 modal %, and 15 to 25 modal %, respec-
tively (Fig. 4F). Pentlandite crystals are commonlly subhedral 
or enclosed by anhedral or subhendral grains of pyrrhotite, or 

occur at boundaries or fractures of pyrrhotite grains. Anhedral 
chalcopyrite grains generally occur between the other sulfides 
or as very fine veinlets that crosscut the silicates. Secondary 
magnetite with minor content commonly occurs as small veins 
cutting through base metal sulfides (Fig. 4D, E). Cubanite or 
pyrite has not been found in the sulfides.

Sampling and Analytical Methods
Most of the samples were collected from drill cores ZK803 

and ZK1603 that cross through the Heishan intrusion and a few 
from drill cores ZK1203 and ZK1403 and weakly weathered 
outcrop (Fig. 2). To avoid hand sample-scale heterogeneity, 

Fig. 4.  Photos of drill core hand samples and reflected light photomicrographs from the Heishan intrusion. (A, B). Photos 
of drill core hand samples show that the samples are quite homogeneous. (C, E). Interstitial sulfide aggregates between the 
olivine crystals (×4 times). (D, F). Pentlandite crystals are subhedral or enclosed by anhedral pyrrhotite, anhedral chalco-
pyrite at margins of pyrrhotite or pentlandite, small veins of secondary magnetite cutting through base metal sulfides (×10 
times). Abbreviations: Cp = chalcopyrite, Mt = magnetite, Ol = olivine, Opx = orthopyroxene, Pn = pentlandite, Po = pyr-
rhotite, Sul = sulfide.
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each of our samples was combined by the fragments in ~2 m 
of the left cores and up to 600 to 800 g in weight. The entire 
sample was crushed with steel jaws to −10 mesh, and then 
~200 g of this fraction were ground to −200 mesh powder 
using a tungsten carbide ring mill.

Platinum-group elements (PGE) were determined by iso-
tope dilution (ID)-ICP-MS using an improved Carius tube 
technique (Qi et al., 2004, 2007). Five to 10 g and 3 to 5 g pow-
der of sulfide-poor and sulfide-bearing samples, respectively, 
were used for analysis. The measured results of PGE for the 
reference standards TDB-1 and WGB-1 (Table 1) agree well 
with recommended values reported by Qi et al. (2004). Analyt-
ical precision and accuracy are generally better than 10% and 
the duplicate samples match each other very well (Table 2).

Nickel, Cu, Co, Cr, and Se, Te, As, Bi of the samples 
containing 3 to 20 vol % sulfides were measured using Var-
ian ICP735-ES inductively coupled plasma emission spec-
trometer and Perkin Elmer Elan 9000 inductively coupled 
plasma mass spectrometer (ICP-MS), respectively, at the 
ALS Chemex (Guangzhou) Co. Ltd. Whole-rock S contents 
were measured using a gravimetric method and IR absorp-
tion in the Geological Analysis Central of the Metallogenic 
Geology Bureau of Southwest China with the detection limits 
~0.01 wt %. The analytical precisions are ~8% for S, ~3% for 
Ni, Cu, Co, and Cr, and ~10% for As, Se, Te, and Bi.

Whole-rock sulfur isotope analyses of disseminated sulfides 
were performed on a Finnigan MAT 252 continuous flow iso-
tope ratio mass spectrometry at the Institute of Geochemistry, 
Chinese Academy of Sciences, with an analytical uncertainty 
less than 0.2‰. Analyses of the GBW04414 S standard was 
−0.063‰ (n = 12). All sulfur isotope data are reported rela-
tive to V-CDT in standard δ notation.

Olivine compositions have been determined by wavelength-
dispersive X-ray analysis using an EPMA-1600 electron micro-
probe at the Institute of Geochemistry, Chinese Academy 
of Sciences. The analytical conditions were beam current of 
20 nA, acceleration voltage of 15 kV, and a beam size of 10 µm 
in diameter, and the counting time was 20 to 40 s for major ele-
ments and 40 to 60 s for minor elements. SPI (STRUCTURE 
PROBE Inc., Canada) mineral standards were used for cali-
bration. Table 3 shows representative analyses (the complete 
dataset is available in the online data supplement).

Analytical Results
The forsterite percentages (Fo) of the olivine of the harzbur-

gites (81−87%) are higher than Fo of the olivine of the lherzo-
lites (77−85 %; Fig. 5A). Three evident reversals of Fo values 
of the olivine of the lherzolite and harzburgite can be identi-
fied (Fig. 3), although there is an overlap in olivine Ni contents 
of these rocks because of variable sulfide mineralization. The 

Table 1.  Blank and Analytical Results of Standard Materials WGB-1, TDB-1 for Platinum Group Elements

  WGB-1 (Gabbro)   TDB-1 (Diabase)

 Blank This study Certified1 Certified2  This study Certified1 Certified2

Ir 0.02  0.21  0.33 0.23  0.08 0.15 0.1
Ru 0.09  0.14  0.3 0.16  0.23 0.3 0.2
Rh 0.01  0.20  0.32 0.19  0.48 0.7 0.35
Pt 0.14  3.73  6.1 5.74  4.96 5.8 4.7 
Pd 0.14  13.2  13.9 12  22.9 22.4 20.9 

1 Certified values are from Govindaraju (1994)
2 Certified values are from Qi et al. (2004)

Fig. 5.  (A). Plot of Ni vs. forsterite percentage (Fo) of olivine of the Heishan intrusion. (B). KD ((Ni/Fe)sulfide/(Ni/Fe)olivine) 
as a function of wt % nickel in the sulfide liquid for olivine + sulfide-saturated intrusions (after Barnes et al., 2013). The data 
of Jinchuan and Voisey’s Bay are from Brenan and Caciagli (2000); the data of Mirabela and the position of the KD curves are 
from Barnes et al. (2013).
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olivines in the No. 1 orebody and mineralized harzburgites 
have higher Fo (81.6−86.1%) and Ni (1,940−3,770 ppm) than 
the olivines in the disseminated sulfides of the No. 4 orebody 
(Fo = 77.6−85.1% and Ni = 1,130−2,590 ppm; Figs. 3, 5A).

The whole-rock contents of Ni, Cu, Co, and PGE of the 
Heishan rocks and sulfides are listed in Table 2. The oliv-
ine gabbronorite, lherzolite, and harzburgite contain 840 to 
2,050  ppm Ni, 90 to 450 ppm Cu, and 90 to 150 ppm Co, 
respectively. These rocks generally have <1 ppb Ir, Ru, and 
Rh, <9 ppb Pt, and <15 ppb Pd, respectively (Table 2). Par-
ticularly, the sulfide-poor rocks display positive correlations 
between Ni and MgO and Cr, whereas Ni is negatively cor-
related to MgO and Cr in the sulfides (Fig. 6). Positive cor-
relation between Ni and MgO and Cr suggests that Ni is 
mainly contained by olivine in these rocks (Fig. 6C, D). On 
primitive mantle-normalized diagrams, these rocks have the 
similar pattern with depletion in IPGE (Ir, Ru), enrichment in 

PPGE (Rh, Pt, Pd), and Ni and Cu (Fig. 7A). The metal and 
semimetal elements of the sulfides in the Nos. 1 and 4 ore-
bodies and mineralized harzburgites are much richer than the 
sulfide-poor rocks, indicating that these elements are mainly 
contained by sulfides (Table 2). These elements show good 
positive correlations with S in the sulfides (Fig. 8). The posi-
tive intercepts of Co for both Nos. 1 and 4 orebodies on the 
Co versus S plot is due to Co being compatible to olivine and 
pyroxene (Fig. 8C), whereas the negative intercept of As in 
the diagram of As versus S probably indicates a loss of As dur-
ing analysis (Fig. 8G).

Before the 100% sulfide recalculation using the methods 
proposed by Barnes et al. (2011), silicate nickel in the dissemi-
nated sulfides has been calculated based on the correlation 
between the contents of Ni and MgO of the sulfide-poor sam-
ples containing <1 vol % sulfide and <200 ppm Cu (Fig. 6C). 
The sparsely disseminated sulfides of the No. 1 orebody and 

Table 3.  Representative Olivine Contents from the Heishan Sulfide-Poor and Sulfide-Bearing Rocks

 Depth  SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO NiO CaO Total Fo Ni
Spot m Situation (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (mol %) (ppm)

Olivine gabbronorite
GHH-84
OL-6 105 Sil-contact 39.3  0.01  0.02  0.02  17.0  0.24  41.4  0.21  0.11  98.3  81.1 1,683
OL-9 105 Sil-contact 39.2  0.03  0.02  0.01  14.8  0.20  44.0  0.22  0.13  98.6  83.9 1,723

Lherzolite
GHH-87
OL-10 126 Sil-contact 40.9  0.01  0 0.03 14.4  0.24  43.9  0.22  0.19  99.9  84.2 1,691
OL-11 126 Sil-contact 39.9  0.03  0 0.07  16.2  0.21  42.7  0.22  0.21  99.6  82.3 1,707

Harzburgite
GHH-101
OL-5 199 Sil-contact 41.3  0.03  0 0.04  13.5  0.21  45.0  0.19  0.14  100.5  85.4 1,495
OL-6 199 Sil-contact 40.3  0.02  0.02  0.01 14.1  0.20  43.5  0.23  0.13  98.5  84.4 1,841
GHH-94
OL-1 410 Sil-contact 40.6  0.01  0  0.01  12.1  0.19  45.8  0.24  0.13  99.1  86.9 1,888
OL-6 410 Sil-contact 40.2  0.03  0 0 13.1  0.18  45.6  0.27  0.09  99.5  86.0 2,124

Harzburgite, sparsely disseminated
GHH-89
OL-4 480 Sil-contact 40.1  0.01 0.01  0.02  14.6  0.27  44.5  0.32  0.14  100.0  84.2 2,486
OL-10 480 S-contact 40.0  0.05  0  0.01  17.0  0.21  42.6  0.43  0.07  100.3  81.6 3,367
GHH-111
OL-1 600 Sil-contact 40.5  0.03  0 0.04  12.9  0.16  45.3  0.31  0.09  99.3  86.1 2,423
OL-12 600 Sil-contact 40.2  0.03  0 0  14.2  0.13  43.9  0.37  0.10  98.9  84.5 2,934

Lherzolite, disseminated
GHH-106
OL-2 687 S-contact 40.3  0.13  0.00  0.02  16.6  0.22  41.6  0.25  0.12  99.4  81.5 1,988
OL-5 687 S-contact 40.5  0.03  0.01  0.03  15.4  0.21  43.0  0.27  0.16  99.7  83.1 2,130
GHH-105
OL-2 690 Sil-contact 41.0  0.02  0  0.03  13.9  0.20  44.9  0.24  0.16  100.4  85.1 1,849
OL-4 690 S-contact 38.7  0 0.01  0 17.7  0.22  41.6  0.28  0.14  98.6  80.6 2,171
GHH-131
OL-2 464 S-contact 39.6  0.04  0.05  0.03  17.6  0.25  40.6  0.20  0.14  98.5  80.2 1,532
OL-4 464 S-contact 40.0  0.03  0.03  0.02  15.9  0.20  42.8  0.23  0.17  99.4  82.6 1,784
GHH-124
OL-4 513 S-contact 39.8  0.01  0.00  0.02  18.2  0.26  39.7  0.27  0.14  98.5  79.3 2,153
OL-5 513 S-contact 39.5  0.06  0.04  0.09  17.9  0.21  43.6  0.20  0.18  101.9  81.1 1,595
GHH-119
OL-1 535 S-contact 39.5  0.04  0.02  0.02  18.5  0.26  39.0  0.15  0.19  97.7  78.8 1,163
OL-3 535 S-contact 40.1  0.00  0.02  0.03  19.9  0.25  39.2  0.23  0.19  99.9  77.6 1,831

S-contact = olivines are contact with sulfides, Sil-contact = olivines are contact with silicate minerals



 HEISHAN MAGMATIC Ni-Cu-(PGE) DEPOSIT, GANSU, NW CHINA 1571

Fig. 6.  Plots of MgO vs. Ni (A, C) and Cr vs. Ni (B, D) for the mineralized and sulfide-poor rocks from the Heishan 
intrusion.
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Primitive mantle values of Ni, PGE and Cu used in the normalization are from Barnes and Maier (1999). The field for dis-
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mineralized harzburgites contain as high as 11.2 to 15.6 wt % 
Ni, 8.1 to 10 wt % Cu, 130 to 160 ppb Ir, 2,350 to 4,110 ppb 
Pt, and 3,460 to 5,840 ppb Pd, with 16,000 to 26,000 Cu/Pd 
ratios on a 100% sulfide base (Fig. 9). Although the dissem-
inated sulfides of the No. 4 orebody contain more sulfides, 
they contain relatively lower chalcophile elements and higher 
Cu/Pd ratios (48,000−75,000) on a 100% sulfide basis, such as 
6.9 to 10.5 wt % Ni, 5.4 to 8.4 wt % Cu, 50 to 120 ppb Ir, 580 
to 1,860 ppb Pt, and 720 to 1,450 ppb Pd (Fig. 9). The No. 1 
sparsely disseminated sulfides and mineralized harzburgites 
also are higher in Se, Bi, and Te than the No. 4 disseminated 
sulfides.

In a primitive mantle-normalized diagram, the No. 1 sparsely 
disseminated sulfides and mineralized harzburgites are similar 
to the No. 4 disseminated sulfides; they are enriched in Cu 
and PPGE and depleted in Ni and IPGE (Fig. 7B). The Heis-
han disseminated sulfides are less depleted in PGE relative to 
Ni and Cu than the disseminated sulfides of the Kalatongke, 
Tulargen, Tianyu, Huangshandong, and Tulargen deposits 
(Fig. 7B, C; Song and Li, 2009; Tang et al., 2011; Gao et al., 
2012; Jiao et al., 2012; Li et al., 2012; Sun et al., 2013; Deng 
et al., 2014). The PGE contents of the Heishan sulfides are 
similar to those of the disseminated sulfides of the Tati deposit 
(Maier et al., 2008) and slightly higher in abundance than 
those of the Aguablanca deposit (Piña et al., 2008; Fig. 7D).

The sparsely disseminated sulfides of the No. 1 ore-
body and mineralized harzburgites have lower δ34S values 
(0.43−1.01‰) and higher Se/S ratios (590−640 × 10−6) than 
the sulfides of the No. 4 orebody, which have δ34S of 1.9 to 
6.1‰ and Se/S of 230 to 390 × 10−6 (Fig. 10A, B; Table 2). In 
conclusion, the sulfides of the No. 1 orebody and mineralized 
harzburgites are characterized by higher contents of PGE and 
semimetal elements, lower Cu/Pd ratios, lower δ34S values, 
and higher Se/S ratios than those of the No. 4 orebody.

Discussion
Economically extractable metals in magmatic Ni-Cu-

(PGE) deposits have been discovered in a few orogenic belts 
around the world; these include the Tati and Selebi-Phikwe 
deposits in Botswanna, and the Aguablanca deposit in south-
western Spain, indicating exploration opportunity in con-
vergent tectonic settings (Casquet et al., 2001; Piña et al., 
2006; Maier et al., 2008). The discovery of the Heishan Ni-
Cu-(PGE) deposit hosted in a Late Devonian intrusion (357 
± 4 Ma) indicates that the magmatic sulfide mineralization 
along the southern margin of the Central Asian orogenic belt 
can be formed in subduction environments, although most 
of the magmatic Ni-Cu-(PGE) deposits hosted in Permian 
mafic-ultramafic intrusions were concerned to be associated 
with postsubduction magmatism (Song and Li, 2009; Song 
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et al., 2011, 2013; Li et al., 2012; Xie et al., 2012; Sun et al., 
2013; Xia et al., 2013). 

Devonian-Carboniferous calc-alkaline basaltic andesite, 
dacite, and rhyolite as well as 378 to 328 Ma gabbro-diorite 
intrusions are widespread in the Beishan fold belt at the north-
ern Tarim (BGMRG, 1989; Chen et al., 1999; Hu et al., 2000; 
Charvet et al., 2007; Zhang and Guo, 2008; Liu et al., 2011). 
The Devonian calc-alkaline andesites located at ~50  km to 
the east of the Heishan intrusion show extensive Nb and Ta 
depletion and enrichment of large ion lithophile elements and 
plot in the field of island-arc basalts in the Th-Hf-Nb diagram, 
indicating the subduction-related magmatism (Xie et al., 
2012). This again demonstrates that the Beishan fold belt was 
an active continental margin in the Devonian-Carboniferous 
and the calc-alkaline volcanics was associated with S-dipping 
subduction of the South Tianshan Ocean in the Late Paleo-
zoic (Chen et al., 1999; Charvet et al., 2007; Zhang and Guo, 
2008; Liu et al., 2011). Our recent SHRIMP U-Pb dating (357 
± 4 Ma) and ID-TIMS U-Pb dating (356.4 ± 0.6 Ma) of zir-
cons from gabbros confirmed that the Heishan intrusion was 
formed concurrently with the Devonian calc-alkaline volca-
nics in the Beishan fold belt (Xie et al., 2012). The Heishan 
intrusive rocks also show enrichments of large ion lithophile 
elements, strong negative Nb (Ta) anomalies, and positive K 
and Pb anomalies in an N-MORB normalized trace element 
diagram (Xie et al., 2012). Additionally, The Heishan intru-
sive rocks plot together with volcanics of active continental 
margins, such as the volcanics along the Pacific margins of 
the Americas, in the diagrams of εNd(t) versus (87Sr/86Sr)t and 
diagrams of lead isotopes (Xie et al., 2012). Clinopyroxenes 
of the Heishan sulfide-free rocks fall in the overlay region 
of N-MORB and back-arc basin basalt, indicating that the 
magma was derived from partial melting of the asthenosphere 
and mantle wedge triggered by upwelling of asthenosphere 
due to break-off of subduction slab (Xie et al., 2012). 

The chalcophile element abundance of magmatic sulfides 
is controlled by several processes; the important factors are 
(1) the concentrations of these elements in the parental sili-
cate magma, (2) partitioning of these elements between sul-
fide liquid and silicate magma, (3) fractional crystallization of 

the sulfide liquid, and (4) late hydrothermal alteration (e.g., 
Campbell and Naldrett, 1979; Naldrett and Barnes, 1986; 
Keays, 1995; Ebel and Naldrett, 1996; Barnes et al., 1997; 
Naldrett, 1999; Crocket, 2002; Barnes and Lightfoot, 2005). 
In the following parts, we focus on the factors controlling the 
formation of the Heishan sulfide mineralization using the data 
described above.

The data presented so far indicate that the correlation of 
Pt versus Pd in sulfide-poor mafic-ultramafic rocks is domi-
nantly controlled by original crystallization and accumulation 
of olivine and in disseminated sulfides by the abundance of 
sulfide regardless of degree and style of alteration (Barnes et 
al., 2009; Barnes and Liu, 2012). Although the occurrence 
of secondary magnetite occurring along fractures within the 
sulfides indicates that the Heishan sulfides have been modi-
fied by hydrothermal alteration (Fig. 4D, E), the positive cor-
relation of Pt and Pd of the Heishan disseminated sulfides 
(Fig. 9D) indicates that they are controlled by the abundance 
of sulfide. In addition, the ratios of Ir/(Ir + Ru) and Pt/(Pt + 
Pd) (0.26−0.39 and 0.37−0.6, respectively) are typical of mag-
matic sulfide (Ir/(Ir + Ru) = 0.3−0.7, Pt/(Pt + Pd) = 0.3−0.7; 
Naldrett et al., 1982), indicating that hydrothermal alteration 
has a limited effect on the PGE compositions of the Heishan 
disseminated sulfides.

Different sulfide liquids of the No. 1 and No. 4 orebodies

Although the No. 4 orebody has higher sulfide contents 
than the No. 1 orebody and mineralized harzburgites (Fig. 
8), the PGE content in 100% sulfides of the No.4 orebody 
(50−120 ppb Ir, 580−1,860 ppb Pt, and 720−1,450 ppb Pd) 
are lower than those of the No.1 orebody (130−160 ppb Ir, 
2,350−4,110 ppb Pt, and 3,460−5,840 ppb Pd; Table 2, Fig. 
9). The sulfides from these two orebodies and mineralized 
harzburgites have different compositions and plot in the 
trends having different slopes to the origin in the diagrams 
of Ni, Cu, PGE, Se, and Bi against S (Fig. 8). On a 100% sul-
fide basis, the sulfides from the No. 1 orebody and mineral-
ized harzburgites show positive correlations between PPGE 
and IPGE, indicating the sulfide liquids have not experi-
enced evident fractionation (Fig. 9). In contrast, the negative 
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correlations between PPGE and IPGE of the No. 4 orebody 
indicate fractional crystallization of monosulfide solid solu-
tion (MSS; Fig. 9C).

It is well known that both Fo and Ni contents of olivine 
decrease during fractional crystallization, whereas equilibration 
of olivine with coexisting sulfide liquid will result in elevation 
of Ni contents of the olivine according to the exchange par-
tition coefficient KD = (Ni/Fe)sulfide/(Ni/Fe)olivine (e.g., Barnes  
and Naldrett, 1985; Li and Naldrett, 1999; Brenan and Cacia-
gli, 2000). The correlations between Ni and Fo of olivines in the 
Heishan sulfides indicate Fe-Ni exchange between the olivine 
and the sulfide (Fig. 5A). The relatively higher Fo and Ni con-
tents of the olivine crystals in the No. 1 orebody and mineral-
ized harzburgites (Fo = 81.6−86.1%; Ni = 1,930−3,770 ppm) 
are higher than those of the olivines in the No. 4 orebody (Fo = 
77.6−85.1% and Ni = 1,130−2,590 ppm) indicate that the for-
mer reacted with a sulfide liquid more enriched in Ni through 
reaction with more primitive magmas (Fig. 5A). 

Sulfide segregation resulted from assimilation of  
crustal sulfur

Previous studies have confirmed that assimilation of crustal 
sulfur is critical for sulfide immiscibility of mantle-derived 
magma and the formation of magmatic Ni-Cu-(PGE) depos-
its (e.g., Naldrett, 1999, 2010; Ripley and Li, 2003; Barnes 
and Lightfoot, 2005 and references therein), although the 
sulfides of some magmatic sulfide deposits (such as the Nebo-
Babel deposit) have mantle-like sulfur isotope values (Seat et 
al., 2009, 2011). Despite the δ34S data of the No. 1 orebody 
and mineralized harzburgites (0.43−1.01‰) fall within the 
accepted mantle range of 0 ± 2‰ (Fig. 10A), higher δ34S val-
ues (1.9−6.1‰) of the disseminated sulfides of the No. 4 ore-
body indicate that crustal sulfur has played a more important 
role in the formation of the sulfides (Fig. 10A).

Typically, the Se/S ratios of mantle-derived rocks are ~230 
to 350 × 10−6, whereas crustal rocks tend to have much lower 
values of Se/S (<50 × 10−6; Eckstrand et al., 1989; McDonough 
and Sun, 1995; Peltonen, 1995; Lorand et al., 2003). Sulfides 

which contain a large contribution of crustal sulfur tend to 
have low Se/S ratios at relatively high sulfide contents and low 
Pt + Pd contents in 100% sulfides due to more extensive sulfide 
segregation (e.g., Peltonen, 1995; Thériault and Barnes, 1998; 
Lorand et al., 2003; Godel and Barnes, 2008; Queffurus and 
Barnes, in press) because Se can substitute for S in sulfide as 
a chalcophile element (Paktunc et al., 1990; Czamanske et al., 
1992; McDonough and Sun, 1995; Dare et al., 2010b). In the 
case of the Heishan sulfides, crustal assimilation is indicated 
by the negative correlations between S and Se/S, although the 
Se/S ratios (230−640 × 10−6) are comparable with those of 
the mantle (Fig. 10B). Sulfides from the Aguablanca deposit 
in southwestern Spain and the Tati deposit in Botswanna also 
have high Se/S ratios (Fig. 10B; Maier et al., 2008; Piña et al., 
2008). The negative correlation between Se/S and δ34S and 
the positive correlation of Se/S and Cu/Pd in the disseminated 
sulfides of the No. 4 orebody indicate the synergistic effect of 
crustal sulfur input and variable degrees of the sulfide segre-
gation and fractionation (Fig. 11A, B).

Fractional crystallization under S-unsaturated conditions, 
ratios of PPGE and incompatible elements in magma, such 
as Pt/Zr, remain constant because PPGE are also incompat-
ible to silicates, whereas the PPGE/Ti ratio increases before 
crystallization of Fe-Ti oxides because Ti is moderately incom-
patible for pyroxene (Puchtel and Humayuan, 2001; Righter 
et al., 2004; Song et al., 2008, 2009a; Fiorentini et al., 2010). 
Once S saturation is achieved in the magma, the ratios of Pd/Ti 
and Pt/Zr will be dramatically reduced because of the removal 
of dense sulfide (e.g., Keays and Lightfoot, 2007; Song et al., 
2009a; Fiorentini et al., 2010). Correlations between Pd/Ti and 
Pt/Zr in the barren rocks of the Heiahan intrusion indicate that 
their parental magma experienced sulfide segregation at dif-
ferent stages in the evolution of the magma (Fig. 12A).

Variable chalcophile element composition of  
parental magmas

The Ni/Cu and Pd/Ir ratios of the Heishan sulfides ranging 
from 1.06 to 1.65 and from 7.5 to 35.6, respectively, which 
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indicates that the sulfides segregated from a high Mg basal-
tic magma (Fig. 13; e.g., Barnes et al., 1988; Naldrett, 2004; 
Barnes and Lightfoot, 2005). The sulfides of the No. 1 and 
No. 4 orebodies have Cu/Pd ratios of 16,000 to 26,000 and 
48,000 to 75,000, respectively. Correspondingly, the cal-
culated Cu/Pd ratios of their parental magmas according 
to the equation proposed by Campbell and Barnes (1984) 
should be as high as 18,000 to 93,000 and 48,000 to 214,000, 
respectively, which is much higher than Cu/Pd ratio of the 
primitive mantle (7,000−10,000, Barnes et al., 1993). Our 
model calculation uses the equation proposed by Campbell 
and Naldrett (1979). The model indicates that the dissemi-
nated sulfides of the No. 1 and No. 4 orebodies and miner-
alized harzburgites are plausibly segregated from the same 
parent magma weakly depleted in PGE, which contained 
120 ppm Cu, 0.04 ppb Ir, and 1 ppb Pd under R factors of 
700 to 1,600 and 4,000 to 8,000, respectively (Fig. 14A, B; 
where the R factor is mass ratio of silicate magma to sulfide 
melt). This is consistent with evidence that the olivines in 
the No. 1 orebody and mineralized harsburgite have higher 
Ni contents than those in the No. 4 orebody (Fig. 5A). In  
the calculations, the partition coefficients of Cu, Ir, and 
Pd (Di

sul/sil) are assumed to be 1,000, 30,000 and 40,000, 

respectively (Peach et al., 1990; Stone et al., 1990; Fleet et 
al., 1993; Bezmen et al., 1994; Crocket et al., 1997; Ripley et 
al., 2002; Sattari et al., 2002). 

Based on the characteristics of whole-rock trace elements, 
Sr-Nd-Pd isotopes and composition of clinopyroxene, Xie et 
al. (2012) proposed that the Heishan magma was generated 
by partial melting of the asthenosphere and mantle wedge 
due to slab break-off at an active continental margin. Cop-
per may be enriched in the mantle wedge because of upris-
ing of Cu-enriched fluids and/or melts from subducted slab 
(McDonough and Sun, 1995; Heinrich et al., 1999; Seedorff 
et al., 2005; Sun et al., 2011). Arc lavas other than boninites 
produced by melting of the mantle wedge are commonly 
high in Cu and low in PGE contents, probably because of 
sulfide retention in the mantle due to the low degree of par-
tial melting or originally PGE depletion in the mantle wedge 
(Brandon et al., 1996; Rehkämper et al., 1997; McInnes et 
al., 1999). For instance, the Grenada and Izu-Bonin arc pic-
rites contain much lower PGE (<0.2 ppb Ir, 1−4 ppb Pd) 
than komatiites and plume-related picrites (Woodland et al., 
2002). The magmas derived from the mantle wedge along 
arcs or active continental margins are commonly high in oxy-
gen fugacity relative to the intraplate magmas and middle 
oceanic ridge basaltic magmas (e.g., Botcharnikov et al., 2010; 
Evans et al., 2012). The mantle-like δ34S values of the sulfides 
(0.43−1.01‰) from the No. 1 orebody and mineralized har-
zburgites and high Fo olivine contained in the harzbiurgites 
indicate that the sulfides were segregated from weakly crustal 
contaminated and more primary magma (Figs. 5A, 10). The 
KD values of the No. 1 orebody and mineralized harzburgites 
and No. 4 orebody indicatethe the fO2 of the Heishan parental 
magma is within a log unit of QFM (Fig. 5B), which is well 
within the limit for S to dissolve in the magma as sulfide. Such 
oxygen fugacity range is similar to that of the Jinchuan sul-
fides and higher than that of the Voisey’s Bay sulfides (Brenan 
and Caciagli, 2000). This indicates that the Heishan sulfides 
were segregated from the evolved magma with normal oxygen 
fugacity.

Therefore, the PGE depletion of the Heishan parental 
magma was probably inherited from the primary magma 
derived from the asthenosphere and mantle wedge or resulted 
from prior weak sulfide segregation. The low Cu/Pd ratios of 

Fig. 12.  (A). Ratio plot of Pd*103/Ti vs. Pt*103/Zr for the Heishan sulfide-poor rocks. (B). Plot of Pd vs. Cu/Pd for the 
sulfide-poor rocks and the sulfides of the Heishan intrusion.
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the harzburgites relative to the lherzolites and gabbros are 
because the former contains minor sulfides (Fig. 12B). Li 
et al. (2012) assumed that the parental magma of the Early 
Permian Kalatongke intrusion at the southern margin of the 
Central Asian orogenic belt contains ~1 ppb Pt, ~1 ppb Pd, 
and ~0.03 ppb Ir, whereas Song and Li (2009) proposed the 
PGE depletion resulted from prior sulfide removal. The PGE 
depletion of the Voisey’s Bay parental magma (0.005 ppb Ir, 
0.3 ppb Pt, 0.6 ppb Pd) was also attributed to retention of 
sulfide in the mantle source (Lightfoot et al., 2012).

Upgrading of sulfide and fractionation of sulfide melt

Experimental and empirical research has indicated that Os, 
Ir, Ru, and Rh tend to partition into MSS, whereas Pt, Pd, 
Au, and semimetals (Bi, Te, Sb and As) behave incompatibly 
and tend to concentrate in the residual Cu-rich sulfide liquid 
(e.g., Li et al., 1996; Mungall et al., 2005; Godel and Barnes, 
2008; Helmy et al., 2010 and references therein). Relative to 
the sulfides of the No. 4 orebody, the sulfides of the No. 1 ore-
body and mineralized harzburgites are characterized by evi-
dently high PGE concentrations and Se/S ratios as well as low 
Cu/Pd ratios and limited variation of δ34S (Figs. 9−11). The 
positive correlation between Pd and Ir (Fig. 9C), decrease 
of the Ni/Ir ratios, and limited variation of the Pd/Ir ratios of 
the sparsely disseminated sulfides of the No. 1 orebody and 
mineralized harzburgites (Fig. 15) indicate that the sulfide 
liquids experienced upgrading of PGE by reaction with suc-
cessive pulses of more primary S-unsaturated magma, rather 
than fractional crystallization of MSS (Lesher and Burnham, 
2001). Such processing also resulted in elevation of the R fac-
tor, enrichment of metal elements, and decrease of Cu/Pd 
(Figs. 12, 14; e.g., Li et al., 2000, 2003; Lorand et al., 2003; 
Godel and Barnes, 2008; Song et al., 2008). In contrast, the 
negative correlation between Pd and Ir and the positive cor-
relation between Ni/Ir and Pd/Ir of the disseminated sulfides 
of the No. 4 orebody again indicates the potential role of MSS 
fractional crystallization (Figs. 9C, 15). The fractionation of 
MSS has resulted in negative correlations of Ru versus Se, 
Te, and Bi in the No. 4 orebody, whereas no differentiation 
between Pt and the semimetal elements (Fig. 16), low PGE 
contents, high Cu/Pd ratios, and δ34S values of the sulfides of 

the No. 4 orebody suggest extensive sulfide segregation due 
to more addition of crustal sulfur (Figs. 9−12B). An unavoid-
able problem is how the sulfide fractionation occurred in the 
disseminated sulfides containing only up to 20% sulfides in 
the No. 4 orebody.

The massive and net-textured sulfides containing more 
than 30% sulfides at the base of the northwestern part of the 
No. 4 orebody, as mentioned above, should have experienced 
fractional crystallization of MSS. When new pulses of magma 
containing unfractionated sulfide droplets entered the intru-
sion, the sulfide slurry containing early crystallized MSS may 
be disrupted. We believe that the disseminated sulfides of the 
No. 4 orebody are the product of reworking and mixing of the 
early sulfides and the new wave of magma containing unfrac-
tionated sulfide droplets. The mixture of the fractionated and 
unfractionated sulfides in variable proportions resulted in dif-
ferentiation between IPGE and PPGE in the disseminated 
sulfides (Figs. 9C, 10). The previous net-textured and mas-
sive sulfides would be consumed gradually or even disappear. 
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Fig. 16.  Binary plots of platinum group and semimetal elements of the Heishan sulfides (No. 1 orebody and mineralized 
harzburgites ahd No. 4 orebody) on a 100% sulfide basis.
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The formation of the disseminated sulfides in the leopard 
troctolite and varied-textured troctolite in the feeder sheet at 
Voisey’s Bay, Canada, were attributed to a similar mechanism 
proposed by Li and Naldrett (1999), Naldrett et al. (2000), 
and Lightfoot et al. (2012).

Although it was recently proposed that most of the PGE 
(Ir, Rh, Pt ± Os, and Ru) formed sulfarsenide phases before 
or during the crystallization of MSS in the Creighton deposit, 
Sudbury (Dare et al., 2010a, b), the exsolution of PGE sulfarse-
nides from base metal sulfides is more common (Hanley, 
2007; Barnes et al., 2008). Piña et al. (2008, 2012) proposed 
that small-sized tellurides and bismuthides in the dissemi-
nated sulfides of the Aguablanca Ni-Cu deposit (southwest-
ern Spain) were formed by Pd, Pt, Te, and Bi exsolved from 
pyrrhotite and pentlandite as temperature decreased. On 
the other hand, Bi-Te phases, such as michenerite and tsu-
moite, are commonly formed and stable at late magmatic and/
or hydrothermal stage (<540°C; Elliott, 1965; Hoffman and 
MacLean, 1976). 

Similar to the disseminated sulfides of the Aguablanca and 
the Pechenga Ni-Cu deposits (Piña et al., 2008; Hanski et al., 
2011), the disseminated sulfides of the Heishan No. 1 and 
No. 4 ore bodies show no correlation of As with Pt and Ru 
(Fig. 16A, B), positive correlations of Se, Te, and Bi with Pt 
(Fig. 16C, E, G), and negative correlations with Ru (Fig. 16D, 
F, H), indicating a fractional crystallization of MSS without 
PGM removal. On the other hand, the positive correlations 
of Se, Te, Bi, and Ru for the sulfides of the No. 1 orebody 
and the mineralized harzburgites are consistent with the reac-
tion of the sulfide liquids with S-unsaturated magma (Fig. 
16D, F, H). Although experimental work proposed that sper-
rylite may crystallize at high temperature ~1,400°C (Hansen 
and Anderko, 1958; Bennett and Heyding, 1966), saturation 
of arsenide and telluride in the sulfide melt requires at least 
~0.1  wt % As and ~0.2 wt % Te, respectively (e.g., Mako-
vicky et al., 1992; Fleet et al., 1993; Helmy et al., 2007). Very 
low contents of As, Te, and Bi and no discoveries of arsenide, 
telluride, and bismuthide in the Heishan sulfides probably 
suggest that these minerals did not reach saturation during 
fractionation of the sulfide liquids (Table 2).

Sulfide concentration in the Heishan intrusion

Magma conduits in magmatic plumbing systems are favor-
able sites for S-saturated magmas to form magmatic sulfide 
deposits (e.g., Naldrett, 1999, 2010; Arndt et al., 2005; Song 
et al., 2008, 2009b, 2012; Lightfoot et al., 2012 and references 
therein). The Heishan intrusion contains a very large propor-
tion of ultramafic rock (>90%) and several reversals in olivine 
composition (Fig. 3), indicating that the intrusion was a stag-
ing magma chamber or a wider part of a plumbing system 
and that several pulses of magmas injected into the intrusion. 
Sr-Nd isotope values of the intrusive rocks and wall rocks 
at Heishan are consistent with the crustal contamination at 
depth (Xie et al., 2012) as the wall rocks are barren of sulfide. 
This model requires that the crustal sulfur addition and sul-
fide segregation occurred at depth.

We propose when the magma containing sulfide droplets 
entered the Heishan intrusion, the sulfide droplets and olivine 
and pyroxene settled down because of decrease of the flow 
velocity of the magma. Sulfide liquid accumulated at the entry 

of the intrusion formed the massive and net-textured sulfides, 
which experienced fractional crystallization of MSS in the drill 
hole ZK803. When new pulses of magma containing unfrac-
tionated sulfide droplets entered the intrusion, the MSS slurry 
may have been disrupted and mixed with the unfractionated 
sulfide droplets in variable proportions and deposited at the 
base of the intrusion to form the disseminated sulfides of the 
No. 4 orebody. We infer that a magma feeder conduit prob-
ably is close to drill hole ZK 803 at the northwestern part of 
the Heishan intrusion. On the other hand, the sulfide droplets 
remaining in the deep-seated staging magma chamber were 
upgraded in PGE by reaction with new S-unsaturated magma 
and were carried to the Heishan intrusion later to form the 
No. 1 orebody and the mineralized harzburgites in higher lev-
els of the intrusion.

Conclusions
The Late Devonian Heishan magmatic Ni-Cu-(PGE) 

deposit was formed in a magma plumbing system at an 
active continental margin. The associated magmas were 
generated by partial melting of mantle wedge and uprising 
asthenosphere that were originally Cu-enriched and weakly 
PGE-depleted. The sulfides of the No. 4 orebody were 
formed by settling of the mixtures of unfractionated sulfide 
liquids and previously fractionated MSS slurry at the base 
of the intrusion. The sulfide segregation was triggered by 
addition of crustal sulfur during contamination at a deep-
seated magma chamber. Whereas, the sulfides upgraded in 
chalcophile elements by reaction of the sulfide droplets with 
the new pulses of S-unsaturated magma in the deep-seated 
magma chamber were brought to the Heishan intrusion and 
formed the No. 1 orebody and the mineralized harzburgites 
in higher levels.
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