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Oxygen isotope (d18O) is one of the most commonly used palaeoclimate proxies, and monitoring their
modern evolutionary processes is very significant for palaeoclimate reconstruction. In this study, drip
water samples are daily collected from two drip sites in Liangfeng Cave, Guizhou Province, SW China,
between June 2008 and June 2010. The stable hydrogen and oxygen isotopes of these samples and the
contemporary precipitation samples are measured. The relationships between the isotopes and the local
air temperature, precipitation and relative humidity are analysed. The results show that the hydrogen
and oxygen isotopic compositions of precipitation have obvious seasonal variations in the study area:
lower in the rainy season and higher in the dry season. The local meteoric water line (LMWL) is dD ¼ 8.64
d18O þ 17.44. Precipitation is the only source of cave drip water, and its oxygen isotope signals are re-
flected in the two drip waters (SD: slower drip rate and previously called 1#, and FD: faster drip rate and
previously called 5#). However, the amplitude of the drip water oxygen isotope variation is much smaller
than that of the precipitation, i.e., homogenization occurs to some extent. However, there are signifi-
cantly different responses to precipitation between the two drip sites. The response time of SD to pre-
cipitation is much longer than that of FD. The amplitude of oxygen isotope variation in SD, where the
isotopic data deviate from the LMWL to a higher degree, is much smaller than that in FD. A comparison of
these isotopic differences with previous research in the same cave indicates that the isotopic differences
between the two drip waters result from different flow paths. The oxygen isotope signal in cave drip
water perhaps mainly reflects summer monsoon information in the study area. The speleothems fed by
drip waters (e.g. FD) with shorter response time to precipitation may be more suitable for high-
resolution palaeoclimate research. Moreover, the d-excess from speleothem fluid inclusion has the po-
tential to be used as an indicator of relative humidity of local air.

� 2014 Elsevier Ltd and INQUA. All rights reserved.
1. Introduction

Oxygen isotope (d18O) is one of the most commonly used
palaeoclimate proxies. Significant discoveries using oxygen iso-
topes have beenmade from ice cores, lake sediments, tree rings and
other geological archives, but more important oxygen isotope in-
dicators have been found during speleothem studies (e.g. Yuan
et al., 2004; Wang et al., 2005, 2008; Fairchild et al., 2006; Zhang
et al., 2008; Baker and Bradley, 2010; Orland et al., 2012).
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However, some interesting phenomena have been found during
speleothem and drip water research. For example, the oxygen
isotopic compositions of cave drip waters are significantly higher
than those of local precipitation because of evaporation in semi-
arid regions (Bar-Matthews et al., 1996). There is up to 4& (on
average 1.4&) oxygen isotope difference between two contempo-
rary stalagmites separated by less than 10 m, and the oxygen
isotope differences are up to 5& in Reed’s Cave of the Black Hills in
South Dakota, which was considered to be the result of different
flow paths (Serefiddin et al., 2004). Speleothem oxygen isotopes
show a negative anomaly caused by significant seasonal changes in
precipitation signals (Rowe et al., 2012). However, there is >1&
difference in oxygen isotopic compositions between two contem-
porary stalagmites in a single cave in Italy (Belli et al., 2013). In
summary, in the formation process of speleothems or drip waters
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Table 1
Hydrogeochemical comparisons of two drip sites in Liangfeng Cave.

SD FD References

87Sr/86Sr ratio Lower
(0.708837 � 10)

Higher
(0.709177 � 12)

(Zhu, 2011)

Water head
variation

No Yes (Luo et al., 2013b)

Flow types Matrix flow with
preferential flow

Preferential flow
with matrix flow

(Luo et al., 2013b)

Drip rate Slower Faster (Luo et al., 2013b)
Amplitude of drip

rate variation
Smaller Larger (Luo et al., 2013b)

[SO4
2�] (response
time)

Lower and
invariable
(longer)

Higher and
variable (shorter)

(Yang et al., 2012)
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from atmosphere to cave, different caves, even different drip waters
in the same cave, are not completely consistent with each other.
Thus, monitoring and researching oxygen isotopes in modern cave
drip waters are very important.

Studies of hydrogen and oxygen isotopes in cave drip water
were carried out as early as 1985 (Yonge et al., 1985), and many
important research achievements have been published (e.g. Cruz
et al., 2005; Cobb et al., 2007; Pape et al., 2010; Wackerbarth
et al., 2010; Riechelmann et al., 2011; Feng et al., 2012; Madonia
et al., 2013). There are many complex factors influencing speleo-
them oxygen isotopes, including various isotopic effects (air tem-
perature and relative humidity), effects from evaporation and
mixing in the soil and the epikarst zone and the rate of deposition
(Lachniet, 2009). The uniqueness and complexity of cave systems
lead to great uncertainty of in the response of cave drip waters (or
speleothems) to the climates overlying the caves (Bradley et al.,
2010). Therefore, it is necessary to monitor and study cave drip
waters in those regions in which many stalagmites studies have
been carried out. However, in these cave monitoring processes,
sampling frequencies are quarterly (e.g. Cobb et al., 2007), monthly
(e.g. Li et al., 2000; Cruz et al., 2005; Luo and Wang, 2008; Pape
et al., 2010; Riechelmann et al., 2011; Treble et al., 2013) or
biweekly (e.g. Yonge et al., 1985; Oster et al., 2012). These sampling
frequencies cannot accurately reveal the real information preserved
in speleothems or drip waters in some regions, in which precipi-
tation isotope signals and speleothem depositional rates strongly
vary with time (seasonally or even an event time).

Therefore, we carried out a daily monitoring for two hydrolog-
ical years in the Liangfeng Cave (LFC), which is situated approxi-
mately 8 km southeast of Dongge Cave (Yuan et al., 2004; Wang
et al., 2005) in Guizhou Province, to identify the climate informa-
tion contained by oxygen isotopes in cave drip waters more accu-
rately. This cave has been monitored and studied for more than ten
years (Zhou and Wang, 2005; Zhou et al., 2005; Luo et al., 2007,
2013a, 2013b; Luo and Wang, 2008, 2009; Xie et al., 2008).
Through sampling drip water once every day, collecting precipita-
tion during the sampling period and measuring the amount of
precipitation, the air temperature and the air relative humidity, we
analyse the response processes of the cave drip water to precipi-
tation, and explore its palaeoclimatic significance by comparing the
isotopic correspondence relationships between precipitation and
cave drip water.

2. Materials and methods

2.1. Sampling site and local climate

The LFC (26�160N, 108�030E) is located in Yaosuo Village, Dong-
tang Town, Libo County, Guizhou Province, SW China. Background
information on the cave can be found in a previous study (Luo and
Wang, 2008). The lithology is mainly biogenic limestone of middle
and late Carboniferous age, the thickness of the rock overlying the
cave ceiling is approximately 100 m, and the soil is 0 cme135 cm
thick, with an average of approximately 27 cm. Rock fractures are
well developed, and the vegetation type is primary karst forest. The
mean annual temperature in Libo is approximately 18.6 �C, with hot
summers and cold winters. Primary rainfall events occur fromMay
to September (rainy season), and less than 14% of annual precipi-
tation occurs between October and April of the following year (the
dry season) in this study region. Drip site SD (previously called 1#)
and FD (previously called 5#) (Luo et al., 2013a) are located in the
main channel of the cave, and are separated by less than 20 m
(Fig. 1). Their hydrological and geochemical characteristics are
significantly different from each other (Table 1). Compared with FD,
SD has a longer response time to precipitation, a slower drip rate
and smaller amplitude of drip rate variation, a lower 87Sr/86Sr ratio
and no water head variation. The flow type of SD is mainly matrix
flow, but that of FD is preferential flow.
2.2. Sampling

From 24 June 2008 to 15 June 2010, drip water samples were
daily collected at the SD and FD drip sites of the LFC. These samples
were sealed in 10 ml glass bottles and stored at a low temperature
(approximately 4 �C) until being processed. Simultaneously, rain-
water samples were collected near the cave at every event by
placing a rainwater harvesting anti-evaporation device on the roof
of a local resident. Processing of precipitation samples was similar
to that of drip water.

In addition, we monitored the monthly microenvironmental
parameters (cave air relative humidity and temperature) in the cave
from April 2011 to January 2013 (Fig. 2). We found that the cave air
temperature was basically stable at approximately 15 �C except for
January to April, which had lower temperatures. The relative hu-
midity of the cave air was more than 95%, except for January to
March, which had significantly lower values. There are no signifi-
cant inter-annual changes in the cave air temperature and the cave
air relative humidity.

2.3. Isotope measurements

The hydrogen and oxygen isotopic compositions of water sam-
ples were measured by using a stable isotope mass spectrometer
(MAT 253) of the Finnigan Company performed in the State Key
Laboratory of Environmental Geochemistry, Institute of Geochem-
istry, Chinese Academy of Sciences. All samples were continuously
measured in batches in 2011. Two Standard Mean Ocean Water
(SMOW) samples were inserted every ten samples to control
measuring errors (2s), which are <0.5& for hydrogen isotopes and
<0.2& for oxygen isotopes. These isotope data are reported here in
per mil units relative to SMOW.

3. Results

3.1. Precipitation isotopes

The hydrogen and oxygen isotopic compositions of precipitation
of 114 samples from 2008 to 2010 (Fig. 3) were between �106&
and 21& (average value �38&), and �15.1& and 0.1& (average
value �6.4&), respectively. There is significant seasonal variation:
values were lower in the rainy seasons and higher in the dry sea-
sons (Fig. 4a). The local meteoric water line (LMWL) obtained by
these precipitation samples is very close to the LMWL of Guilin
from IAEA (International Atomic Energy Agency) from 1983 to 1990



Fig. 2. Cave air relative humidity (%) and temperature (�C) in Liangfeng Cave.

Fig. 1. Sketch of location and drip sites of Liangfeng Cave.
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(dD ¼ 8.52 d18O þ 17.11), as well as that from Li et al. (2000)
(dD ¼ 8.8 d18O þ 19.5).

3.2. Hydrogen and oxygen isotopes of cave drip waters

The oxygen isotope values in the two drip waters are
between �7.8& and �6.6& (Figs. 4b,c and 5a,b), and the hydrogen
isotope values are between �54& and �44& (Fig. 5a and b). There
are very significant correlations (Fig. 5c and d) between the
hydrogen isotopes and the oxygen isotopes of all precipitation and
drip water samples.

From comparative analysis of contemporary meteorological re-
cords (average daily temperature, daily precipitation and air rela-
tive humidity) and the precipitation isotope values, we found the
Fig. 3. Relationship (LMWL) between hydrogen and oxygen isotopes of precipitation in
the study area.
following results: (1) Overall, oxygen isotope values are correlated
between the two drip waters and precipitation, i.e., isotopes are
lighter in the rainy seasons and heavier in the dry seasons (Fig. 4ae
c). (2) The amplitude of variation in the SD drip water oxygen
isotopes is slightly smaller than that in FD, and its response to
precipitation is significantly slower (approximately a month) than
that of FD (Fig. 4aec). (3) The d-excess values of drip waters are
mostly near to or less than 10&, showing an increasing trend with
time (Fig. 4d and e). (4) The isotopes of all drip waters are
concentrated within a very small range of precipitation isotope
values (Figs. 5c and 4d). (5) The majority of the drip water isotopic
data were plotted on the low right of the LMWL (Fig. 5a and b). The
deviation from the LMWL in SDwas greater than that in FD, and the
slope of the regression line of SD was significantly greater than that
of FD (Fig. 5a and b). (6) The oxygen isotopes in FD gradually
become heavier with time, which is similar to the changes in the d-
excess in all drip waters. However, this is not true for SD (Fig. 4cee).

4. Discussion

4.1. Cave drip water sources

Although the isotopes in the SD and FD plot almost on an
approximate straight line of precipitation isotopes (correlation
coefficient >0.98) (Fig. 5c and d), very significant differences are
still present (Fig. 5a and b). Those isotopes of the two drip waters
mostly plot on the low right of the LMWL, especially SD. This
suggests that the cave drip waters are derived from the local
meteoric water (Luo andWang, 2008). However, there are different
extends of hydrogeochemical impacts on different drip sites
(Table 1) in the process from the surface to the cave, which results
in the abovementioned isotopic differences. This confirms that
hydrological geochemical processes affect the hydrogen and oxy-
gen isotopic compositions of drip waters to varying degrees
(Riechelmann et al., 2013; Treble et al., 2013; Luo et al., 2013a).



Fig. 4. Relationships between oxygen isotope and d-excess in precipitation and drip waters and precipitation amount and temperature in the study area (shaded areas indicate the
wet season, the other for the dry season) (a: d18O values of precipitation; b: d18O values of SD drip water; c: d18O values of FD drip water; d: d-excess of SD drip water; e: d-excess of
FD drip water; f: d-excess of precipitation; g: daily amount of precipitation; h: air relative humidity; i: average daily temperature).
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It is well known that d-excess ¼ dD � 8d18O (Dansgaard, 1964),
and that the d-excess values of precipitation depend on the tem-
perature and air relative humidity in the moisture source region
(Merlivat and Jouzel, 1979). Fig. 4f indicates that the d-excess
values of precipitation show significant seasonal variation in the
Liangfeng Cave area, being lower in the rainy seasons and higher in
the dry seasons. The lowest d-excess values occurred during July,
and the highest during January. In addition, the d-excess values of
precipitation are substantially greater than the global average
(10&), except when they are less than or approximately equal to
10& (Craig, 1961) in the middle of the rainy season (JuneeAugust).
This suggests that precipitation mainly originates from marine air
masses in the rainy season, and local moisture sources gradually
increase until the dry season. However, the d-excess values of drip
waters are mostly in the vicinity of or less than 10& (Fig. 4d and
e), which suggests that drip waters of different periods mainly
originate from precipitation during the rainy season (lower d-
excess).



Fig. 5. Relationships between isotopic compositions of drip waters and local meteoric water line (LMWL) (red boxes are ranges of isotopic compositions in the drip waters; LEL is
the local evaporation line; a: relationship between LMWL and SD drip water isotopes; b: relationship between LMWL and FD drip water isotopes); c: relationship between pre-
cipitation isotopes and SD drip water isotopes; d: relationship between precipitation isotopes and FD drip water isotopes. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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4.2. Response of cave drip water to precipitation

The response of drip water to precipitation mainly depends on
the effect of the flow path (Tooth and Fairchild, 2003). In this study,
the responses of the two drip waters to precipitation are, overall,
similar to each other (Fig. 4). The oxygen isotope variations in the
two drip waters are less than 1.5&, i.e. there is a high degree of
homogenization; however, these drip waters also roughly record
seasonal variation signals in precipitation isotopic compositions
with very significant seasonal variations (heavier in the dry season
and lighter in the rainy season).

The bedrock in the study area has a very low 87Sr/86Sr ratio (Zhu,
2011). This ratio is also low in the SD drip water (Table 1). The
unchanged water head, the main flow type being matrix flow, the
smaller drip rate and the longer response time by the SO4

2� tracer
(Table 1) indicate that the response of SD to precipitation is slower
than that of FD, and the storage capacity of the reservoir overlying
SD may be much larger than that of FD. Comparing the isotope
response relationships to precipitation with the hydrogeochemical
characteristics of the two drip sites (Table 1), we found that FD
could very quickly respond to the precipitation changes, but SDwas
relatively slow (approximately a month), with a relatively small
magnitude of isotopic changes. In other words, the information
from the isotope response of drip water to precipitation is entirely
consistent with these conclusions, which are drawn from various
hydrologic and geochemical indicators during previous studies
(Zhu, 2011; Yang et al., 2012; Luo et al., 2013b). This suggests that
the different hydrogeochemical processes of the two drip sites are
likely responsible for their different response times and oxygen
isotope values.

4.3. Implications for speleothem palaeoclimatic studies

The responses of the two drip waters in the LFC to precipitation
are significantly different, which is highly consistent with previous
findings. This suggests that the oxygen isotopic compositions of
drip waters from different flow paths differ to varying degrees,
which is of great significance for comparative studies of oxygen
isotopes of different stalagmites from the same cave. The drip
waters of different stages mainly originate from precipitation in the
middle of the rainy season, which suggests that, regardless of
whether speleothems are formed in the rainy or dry season, their
oxygen isotopic compositions will still mainly record the summer
precipitation signal. The oxygen isotope signals from stalagmites
and other deposits mostly reflect information on the summer
monsoon in this study area.

This study also shows that the oxygen isotope compositions of
FD (but not SD) drip water are significantly heavier after August
2009, but the d-excess values of the two drip waters have similar
characteristics (Fig. 4cee). This may be associated with the longer
dry season and lower air relative humidity during the second hy-
drological year (Fig. 4g and h). On the one hand, the stalagmites fed
by drip sites with a faster response to precipitation (e.g. FD) might
retain better high-resolution (such as seasonal) climatic informa-
tion. On the other hand, despite the finding of a previous study (Luo
et al., 2013a) that the d-excess value from dripwaters (or stalagmite
fluid inclusions) may not be suitable as an indicator of water source
and temperature, in this study we found that the d-excess value
may be a good indicator of air relative humidity. Furthermore, the
deviation in the SD isotopic data from the LMWL was greater than
that of FD (Fig. 5), which may result from greater evaporation in-
tensity caused by lower drip rates (Table 1) (Day and Henderson,
2011).

5. Conclusions

In the LFC area, the hydrogen and oxygen isotopic compositions
of precipitation show obvious seasonal variations (lighter in the
rainy season and heavier in the dry season), and the LMWL is
dD¼ 8.64 d18Oþ 17.44. Precipitation is the only source of drip water
in the study cave. The isotopic signals from the two drip waters
reflect seasonal variations in precipitation isotopes, but the mag-
nitudes of the changes are much smaller than those of precipita-
tion. The response patterns between the two drip sites are
significantly difference: the response time of SD is much slower
than that of FD, which has a larger change in the magnitude of
isotopes with time. In addition, the deviation in the SD isotopic data
from the LMWL is greater than that in the FD data, which suggests
that it results from greater evaporation intensity caused by the
lower drip rate in the SD. Comparing the results with previous
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studies, the isotopic differences between the two drip waters
mainly resulted from different flow paths. We also found that the
drip water oxygen isotopes mainly reflected summer monsoon
information in the study area, and speleothems fed by those drip
waters that have a faster response to precipitation (e.g. FD) may be
more suitable for high-resolution palaeoclimate research by
comparative analysis. In addition, the d-excess value stored in
stalagmite fluid inclusions may be a good indicator of local air
relative humidity.
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