文章编号:1007-3701(2007)01-0014-07

新疆阿尔泰可可托海3号伟晶岩脉研究

冷成彪^{1,2},王守旭¹,苟体忠¹,陆丽娜¹,刘红杰¹

(1. 国科学院地球化学研究所矿床地球化学国家重点实验室,贵阳 550002;2. 中国科学院研究生院,北京 100039)

摘要:新疆阿尔泰可可托海3号伟晶岩脉具有非常完美的结构分带,从边部到核心可以划分出 9个共生结构带。本文主要利用前人资料,从该伟晶岩脉的主元素、造岩矿物以及包裹体等角 度对各结构带进行了研究,探讨了稀土元素在各带中的分布模式以及演化特征,并对3号岩脉 的岩浆~岩浆热液演化阶段和地球化学阶段的划分作了修改。

关键 词:元素;包裹体;伟晶岩;可可托海;新疆

中图分类号:P588.13*1 文献标识码:A

新疆阿尔泰可可托海 3 号伟晶岩脉以稀有金 属矿种多,规模大和分异完善而闻名于世,并且日 益引起了国内外地质工作者的广泛关注。自 1960 起,我国许多学者分别从矿物学、岩石学、包裹体、 微量元素、同位素以及岩浆 - 热液演化等不同的 角度,进行了研究工作,并陆续发表了一系列的论 文和专著^[1~19]。本文主要从 3 号伟晶岩脉的岩石 地球化学和包裹体等方面,分析和总结其地质、地 球化学特征,并进而初步探讨其成因和演化机制。

1 地质背景

可可托海3号伟晶岩脉是阿尔泰地区众多花 岗伟晶岩中分异程度最好的岩脉,位于新疆富蕴县 城 NE 约35 km 处。大地构造位置上处于西伯利亚 板块阿尔泰陆缘活动带,离哈萨克斯坦和西伯利亚 板块的缝合线不远。它侵位于阿尔泰加里东 - 海 西褶皱带的轴部一富蕴地背斜褶皱带内的片麻状 黑云母花岗岩顶部凹陷的斜长角闪岩内^[3]。3号伟 晶岩脉形态复杂,由一陡倾斜筒状岩钟和一缓倾斜 板状体组成,形似一实心草帽。岩脉内部分带十分

基金项目:国家自然科学基金项目(40372049).

明显,根据岩石结构特征和矿物共生组合特征,岩 钟部分由外向内依次可分为9个共生结构带(图 1),即:I.文象 - 变文象伟晶岩带;Ⅱ. 糖粒状钠 长石带;Ⅲ. 块体微斜长石带;Ⅳ. 白云母 - 石英 带; V. 叶钠长石 - 锂辉石带; W. 石英 - 锂辉石 带; W. 白云母 - 薄片钠长石带; W. 锂云母 - 薄 片钠长石带; I. 石英和微斜长石核^[1,2]。

2 地球化学特征

2.1 主元素

王贤觉等^[5]从碱的演化角度,划分出 K - Na, Na - Li 和 K 3 个地球化学阶段;邹天人等^[6] 划分 出了 6 个演化阶段,即钾阶段、钠 - 锂阶段、晚期钠 阶段、晚期锂阶段、铯阶段和硅阶段;吴长年^[4]在其 博士学位论文中划分了 4 个地球化学阶段,即 K (Na)阶段、Na(K)阶段、Na - Li 阶段和 Li - Cs 阶 段。本文依据各带的主要造岩矿物以及各带的主 元素特点,对其进行了重新划分(表1)。

表 2 列出了 3 号脉各带所占比例及其主要造 岩矿物的含量,其中微斜长石、钠长石、石英以及锂 辉石和锂云母分别反映了 K,Na,Si 和 Li 的含量, 而这四种元素是伟晶岩的主要组分,可以作为阶段 划分的依据。 I 带 ~ IV带 K 占主导,V带 ~ III带 Na 为主导,III带则显示出高 Li 的特征,而IX带主要 为石英核和微斜长石核。

收稿日期:2006-08-06

作者简介:冷成彪(1982—),男,在读硕士研究生,从事矿床地 球化学方面的研究.

图 1 可可托海 3 号伟晶岩脉内部分带平面图 ^[1-2]
Fig. 1 The geological plan showing the internal zonal struc-
ture of the Koktokay No. 3 pegmatite dykel
1. 斜长角闪岩; 2. 文象、变文象伟晶岩带(I); 3. 糖粒状钠长石带
(Ⅱ); 4. 块状微斜长石带(Ⅲ); 5. 石英 - 白云母带(Ⅳ); 6. 叶钠长
石 - 锂辉石带(V);7.石英 - 锂辉石带(VI);8.白云母 - 薄片钠
长石带(Ⅶ);9.锂云母 - 薄片钠长石带(Ⅷ);10.块状石英核(Ⅳ
1).

表1 3 号伟晶岩脉的岩浆热液演化阶段和地球化学阶段 Table 1 Magma and magmatic fluid evolution stages and

geochemical stages for the No. 3 granitic pegmatite dyke

岩浆热液 演化阶段	3 号脉结构带	地球化学阶段
岩浆阶段	【带:文象、变文象伟晶岩	
岩浆 - 热液 过渡阶段	Ⅱ带:糖粒状钠长石 Ⅲ带:块状微斜长石 Ⅳ带:白云母 - 石英	K - Na 阶段
	V带:叶钠石 - 锂辉石 Ⅵ带:石英 - 锂辉石 Ⅶ带:白云母 - 薄片状钠 长石	Na – Si – Li 阶段
热液阶段	Ⅷ带:薄片状钠长石 – 锂 云母 – 铯榴石	Li – Cs 阶段
	IX ₁ 带:石英核 IX ₂ 带:微斜长石核	Si - K 阶段

表 2 3 号伟晶岩脉各带主要造岩矿物含量

	Table 2	Contents of 1	rock – formi	ng minerals in	various zones	of the No.3 gr	anitic pegmatite	dyke $\omega B/10^{-2}$
带号	占	岩脉的比例	微斜长7	石 钠长石	石英	白云母	建 建辉石	锂云母
I		29.62	43	17	31	6	+	
П		9.35	50	33	10	4	+	,
Ш		20.09	77	7	13	2	+	
IV		8.35	21	8	54	15	+ + +	
v		14.11	1	51	30	5	12	
VI		2.88	1	22	85	4	17	
VII		13.23	2	63	15	12	6	+
VII		0.80	1	31	2		1	64
IX 1		0.32			98	0.5	1	
IX 2		1.25	99			1	+	

注:据文献[1]整理简化;数字表示重量百分比;+少量;+++很多.

华南地质与矿产

2007年

维普资讯 http://www.cqvip.com

Table 3	i The dyke	average	e chemi	cal com	position	is and j	paramet	ers of t	rocks in	differe	ent zone	es of the	No. 3 granit	ic pegmatite
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MgO	MnO	CaO	Na ₂ O	K ₂ O	Li ₂ O	P ₂ O ₅		
带兮	$w_{\rm B}/10^{-2}$								AINKC	AK				
Ι	79.73	0.05	11.69	1.55	0. 54	0.53	0. 13	0.42	2.42	2.02	0.05	0. 48	1.68	2.16
II	65.59	0.04	18.34	0.42	0.34	0.54	0.04	0.41	5.32	7.70	0.26	0.36	1.03	5.54
Ш	67.18	0.04	16.50	0.94	0.44	0. 9 7	0.40	0.35	2.44	7.98	0.06	0.36	1.24	4.24
N	81.09	0.04	9.74	0. 9 7	0.52	0.83	0.46	0.44	2.44	2.11	0.14	0.34	1.37	2.62
V	71.79	0.08	15.57	0.15	1.02	0.71	0.08	0.14	5.20	0.83	1.86	0.12	1.60	2.25
VI	75.90	0.04	14.44	0.13	1.40	1.01	0. 12	0.28	2.73	0.83	2.25	0.04	2.45	1.64
VI	67.86	0.04	18.84	0. 29	0.61	1.01	0.10	0.28	4.66	3.82	1.14	0.16	1.53	2.59
VII	55.15	0.00	22.15	0.26	0.62	0.13	0.42	0.20	3.94	6.88	2.57	0.07	1.55	2.88
IX,	98.61	0.04	0.43	0.20	0.54	0.30	0.05	未测	0. 17	未测	0.04	0.05		2.31
IX ₂	63.50	0.01	18.40	1.00	0.48	未测	0.02	0.12	1.48	14.45	0.07	0.35	1.00	13.30
全脉	72.86	0.05	14.82	0.85	0.60	0.74	0. 19	0.34	3.39	3.98	0.56	0.32	1.48	3.13

表3 3号伟晶岩脉岩钟部分各结构带的平均化学成分及主要参数

注:据文献[1] 略有改动;全脉成分为加权平均数.

要参数,SiO₂含量很高,平均值为72.86;Al₂O₃含 量较高,平均值为14.82,这从ANKC(1.00~2.45) 指数可以看出;全碱含量也较高,最低为3.56,最高 为15.93,平均为7.37,从AR(1.64~13.30)指数 也可以看出;TiO2 含量很低,平均值只有 0.05。显 然,这些氧化物的值都部分地反映了壳源的特征。

2.2 稀土元素

稀土元素数据及其有关比值见表 4, 图 2 为 3 号伟晶岩脉的稀土配分曲线,整体来看(除1号样 品),曲线的形态很相似,都具有 Eu 的强烈亏损,且 轻稀土分馏较好,而重稀土分馏程度不尽相同。因 此可以较好的揭示3号岩脉的演化过程。

1号样为冷凝边,其 Σ REE 明显高于内部各 带;且具有 Ce 正异常,这可能与同化围岩或者表生 氧化有关;Eu显示了弱的负异常,这明显区别于其 它各带样品。2、3 号样采于 I 带, 二者的配分曲线 在轻稀土部分很相似,且都强烈亏损 Eu,但2 号样 的重稀土特征较独特,它显示了 Dy,Ho,Yb 正异常 以及 Er 的负异常。4、5、6 号样的 Eu 极度亏损, δEu 为0.0532~0.0774,其∑REE 也明显降低。7、

表3列出了各结构带的平均化学成分及其主 8号样品采于W带,其 Σ REE 略有回升,Eu 亏损程 度与2、3号样相当。此外,除1号样品外,其余样 品的稀土配分曲线均显示了稀土元素的"四分组效 应"。张辉等^[19]曾报道了3号伟晶岩脉磷灰石矿 物中稀土元素的"四分组效应"。因此是否可以得 出这样的结论:可可托海3号伟晶岩脉稀土元素的 "四分组效应"不是某一稀土副矿物特有的,而是岩 石或者岩脉的"整体"效应?

> 综上所述,3号岩脉的稀土元素显示了2阶段 的演化特征,从Ⅰ带→Ⅲ带→Ⅴ带,∑REE 不断降 低,Eu 亏损程度不断加深;从V带→W带稀土总量 开始回升,并且 Eu 亏损程度开始变弱。从微量元 素在岩浆演化过程中的分配规律来看,稀土元素作 为不相容元素应该随着岩浆结晶分异过程而不断 在残余熔体中富集。前人已经从不同的角度证实 过Ⅰ带是伟晶岩浆直接分异形成^[1,2,4,6],因此Ⅲ带 以及其后的各带都不应该是伟晶岩浆直接分异的 产物,至少是在流体参与的情况下形成的。分析研 究认为3号伟晶岩脉中只有 I 带是伟晶岩浆直接 分异的结果,其后的各带均是在流体存在的情况下 形成的,这一点得到了包裹体资料的进一步证实。

冷成彪等:新疆阿尔泰可可托海3号伟晶岩脉研究

17

维普资讯 http://www.cqvip.com

表4 3号伟晶岩脉部分带样品稀土元素含量及主要参数 Table 4 The REE concentrations and parameters of rocks in various zones of the No.3 granitic pegmatite vein $w_{\rm B}/10^{-6}$ 样品号 1 2 3 4 5 6 7 8 采样地 I带 I带 I 带 Ⅲ带 V带 V带 ₩帯 畑帯 冷凝边 细粒钠 细粒钠 细粒钠 叶钠长 叶钠长 薄片状 薄片状 岩性 长石岩 长石岩 长石岩 石岩 石岩 钠长石岩 钠长石岩 0.94 La 0.20 0.59 0.13 0.06 0.08 0.65 0.36 Ce 3.28 1.16 1.47 0.67 0.49 0.81 1.21 1.00 0.30 0.16 0.14 0.06 0.10 Pr 0.11 0.13 0.13 Nd 1.27 0.53 0.26 0.10 0.06 0.08 0.35 0.15 Sm 0.21 0.09 0.07 0.02 0.02 0.03 0.10 0.05 Eu 0.06 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.22 0.12 0.13 0.03 0.02 0.02 0.09 0.06 Gd 0.04 0.03 0.02 0.00 Th 0.00 0.00 0.01 0.01 0.21 0.29 0.09 0.03 0.01 0.01 0.03 0.02 Dy 0.04 0.06 0.02 Ho 0.01 0.00 0.00 0.01 0.01 Er 0.10 0.11 0.06 0.02 0.01 0.01 0.03 0.02 0.02 0.02 0.01 0.00 0.00 Tm 0.00 0.01 0.00 Yb 0.12 0.19 0.10 0.02 0.01 0.01 0.04 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.00 Lu 0.01 0.87 Y 1.22 0.30 0.10 0.05 0.02 0.12 0.06 $\sum REE$ 7.69 4.20 3.28 1.25 0.78 1.18 2.79 1.90 LREE/HREE 3.71 1.04 3.47 4.65 7.13 13.07 8.47 7.20 δEu 0.69 0.34 0.33 0.05 0.07 0.08 0.30 0.17 2.00 δCe 0.58 1.18 0.39 0.20 0.30 1.26 0.79 (La/Lu)N 55.29 11.11 45.38 38.24 90.00 45.38 46.11 87.84 (La/Sm)N 7.97 4.48 2.22 6.84 3.28 3.19 6.63 7.35 (Ho/Lu)N 2.41 3.11 1.54 2.03 2.00 1.83 1.20 1.48

注:据文献[4]整理简化(标准化数据据 Boynton^[20],1984).

2.3 同位素

2.3.1 氢、氧同位素

⁴环人等^[6]认为从 I 带~ IX带石英中的 δ¹⁸O 的值在 +11.84~13.87‰之间变化,比一般伟晶岩 石英的 δ¹⁸O 的值(+8~11‰)高,属于高 δ¹⁸O 的 伟晶岩。从边部I带到核部块状石英带石英的 δ¹⁸O 值变化不大,并且与 3 号脉的结晶温度梯度变化基 本一致。因此结晶温度是决定氧同位素分馏的主 导因素,此外,挥发份的聚集也可以促进氧同位素 的分馏。

V带和 X 带石英包裹体水中的 8D 值分别为 -86.6%和-48.6%,在 8D-8¹⁸O 图解上,样品投 影于岩浆水区,表明 3 号脉中的流体来源于岩浆分 化产生的岩浆水。

维普资讯 http://www.cqvip.com

2.3.2 锶、铅同位素

邹天人等报道了3号脉的锶、铅同位素。Ⅱ带 的⁸⁷ Sr/⁸⁶ Sr 的初始比值为0.7512±0.014,该带的 磷灰石的⁸⁷ Sr/⁸⁶ Sr 比值为0.7522。这说明伟晶岩 脉可能主要是上地壳物质重溶岩浆分异的产物。 而V带的铀细晶石的铅同位素测定结果表明,矿石 铅属于放射性成因高的异常铅。在²⁰⁷ Pb/²⁰⁴ Pb -²⁰⁶ Pb/²⁰⁴ Pb 图上,其点落在造山带和上地壳铅演化 曲线之间,同样佐证了伟晶岩脉是上地壳物质重溶 岩浆分异的产物,并且可能形成于造山带。

图 2 3 号伟晶岩脉稀土配分曲线(标准化数据 据 Boynton^[20],1984)

Fig. 2 The REE distribution patterns of rocks in various zones of the No. 3 granitic pegmatite dyke

3 包裹体

关于 3 号伟 晶 岩 包 裹 体 研 究 的 报 道 很 多^[2,4,6,7-12,19],脉中发现的包裹体主要有硅酸盐熔 融包裹体、流体 - 熔融包裹体以及流体包裹体三 类,它们提供了伟晶岩脉形成过程中存在的熔体和 流体的信息,从而成为研究伟晶岩脉形成的物理化 学条件以及演化过程的重要媒介。各带中发现的 包裹体见表 5。

3.1 熔融包裹体

卢焕章等^[11-12]报道了在 I 带和 Ⅲ 带的绿柱 石、长石和石英中发现了硅酸盐熔融包裹体,朱金

初等^[2]也在边壳带细粒钠长石花岗岩的石榴石和 石英中, I 带伟晶岩的石英中和Ⅲ带微斜长石内的 石英中发现了这种包裹体。硅酸盐熔融包裹体分 为两类,主要是由硅酸盐晶体 + 气泡组成的包裹 体,大小一般不超过 25um;偶尔见到一些脱玻化的 包裹体,主要由玻璃质、结晶质和气泡组成。根据 已测定的温度数据,边壳带、I 带和Ⅲ带包裹体的 均一温度为 610℃~900℃^[2]。

表 5 3 号伟晶岩脉中的包裹体

 Table 5
 Fluid and melt inclusions in minerals of various zones of the No. 3 granitic pegmatite dyke

包裹体类型	产状
硅酸盐熔融包裹体	I带和Ⅲ中的绿柱石、长石和 石英中
流体~熔融包裹体	Ⅲ~ ₩带中的绿柱石、锂辉石 和石英中
流休句裏休.	
高盐度多相流体	Ⅱ~Ⅵ带的绿柱石、锂辉石和
包裹体	石英中
CO2或CO2 + H2O	Ⅱ~Ⅵ带和Ⅳ带的石英和锂辉
流体包裹体	石中
低盐度流体包裹	Ⅱ~Ⅵ带和Ⅳ带中的绿柱石、
体	石英和锂辉石中

注:据文献[11~12],有增改.

硅酸盐熔融包裹体也被称作岩浆包裹体,是矿 物从岩浆中结晶时捕获的岩浆形成的,它主要见于 I带和Ⅲ带中,表明伟晶岩结晶的早期是处于岩浆 演化阶段的,由于Ⅲ带中还发现了为数不少的流体 - 熔融包裹体,因此只能肯定I带是由伟晶岩浆直 接分异形成的,而Ⅲ带应该是在流体参与的情况下 形成的。

3.2 流体 - 熔融包裹体

流体 ~ 熔融包裹体由硅酸盐熔融体和流体两 部分组成。其形成机制有两种可能:一种是俘获了 均一的硅酸盐熔体相,但在圈闭后的结晶演化过程 中,结晶出了硅酸盐晶体相,并分离出流体相;另一 种是在矿物生长过程中,同时捕获了硅酸盐熔体和 并存的岩浆流体两相^[2]。准确地区分和识别这两 种机制是很困难的,但是第一种情况似乎比较理 想,伟晶岩浆作为残余岩浆应该表现出一定的不均 一性。一般认为流体 - 熔融包裹体是伟晶岩浆从 4 岩浆阶段到热液阶段的过渡,通常称为岩浆 - 热 液过渡阶段^[2]。这一阶段区别于其它阶段的特征 为体系中同时存在熔体相、晶体相和流体相,且三 从 相处于平衡状态。流体 - 熔融包裹体主要分布在 球 Ⅲ带~Ⅶ带中,均一温度范围为480℃~550℃^[2]。 四

由于Ⅲ带中既有硅酸盐熔融包裹体也存在流 体~熔融包裹体,笔者认为Ⅲ带形成时的伟晶岩浆 为不均一岩浆,并且很可能已经分离出独立的流体 相。据王登红等^[21]可可托海 3 号伟晶岩脉 I 带白 云母⁴⁰Ar/³⁹Ar 坪年龄为 177.9±0.03 Ma,IX₂ 带钾 长石⁴⁰Ar/³⁹Ar 坪年龄为 148±1 Ma,也就是说 3 号 岩脉的形成与演化至少经历了约 30 Ma。因此无法 排除Ⅲ带本身即经历了岩浆阶段和岩浆 – 热液过 渡阶段的可能性。但是可以肯定的是Ⅲ带 ~ №带 是在岩浆 – 热液过渡阶段形成的。

3.3 流体包裹体

流体包裹体是最常见的一种包裹体,它主要分 布在Ⅱ带~Ⅵ带和Ⅳ带中,卢焕章等识别出3种不 同的类型:高盐度多相流体包裹体、CO₂或 CO₂ + H₂O 流体包裹体和低盐度流体包裹体。流体包裹 体的均一温度为 300℃~500℃^[11]。

流体包裹体的存在反映了体系中存在独立的 流体,由于Ⅱ带中发现了大量的流体包裹体,因此 认为Ⅱ带(至少是部分Ⅱ带)是在流体参与的情况 下形成的。此外由于Ⅱ带呈巢状,并且分布在Ⅰ带 和Ⅲ带的不同部位,分析和讨论比较困难,但是可 以这样推测,即分布在Ⅰ带的部分可能是岩浆阶段 形成的,而分布在Ⅲ带的部分可能是岩浆 – 热液过 渡阶段形成的。

由于WI带和IX带中都没有发现流体 - 熔融包 裹体,因此岩浆 - 热液过渡阶段只持续到VI带, WI 带和IX带为热液作用形成的。

综上所述,3 号伟晶岩脉的形成过程是较为复杂的,因为它涉及到岩浆作用、岩浆 – 热液作用以及热液作用,并且三者的界线是不确定的。本文认为 I 带和部分 II 带为岩浆阶段的产物, III 带 ~ Ⅶ 带以及部分 II 带为岩浆 – 热液过渡阶段的产物, 而Ⅷ带 ~ №

4 结 论

(1)3 号伟晶岩脉具有非常完美的结构分带,
从造岩矿物和主量元素的角度,可以划分为4个地球化学阶段,即:K - Na阶段,Na - Si - Li阶段,Li - Cs阶段和 Si - K阶段,分别对应 I ~ VI带、V ~ VI带、W带和IX带。

(2)从Ⅰ带~Ⅳ带,稀土元素显示了两阶段的 演化特征,∑REE 经历了由高→低→高的变化规 律,8Eu 经历了相对亏损→强烈亏损→极度亏损→ 强烈亏损的演化过程。

(3)氢、氧同位素的比值可以证明3号脉中的 流体来源于岩浆分化产生的岩浆水;而锶、铅同位 素比值则证明了3号伟晶岩脉是上地壳物质重溶 岩浆分异的产物,并且可能形成于造山带。

(4)根据包裹体的研究可以把3号岩脉的岩浆 热液演化过程简单的划分为3个阶段(见表1),即: 岩浆阶段、岩浆 - 热液过渡阶段和热液阶段,分别 对应Ⅰ带、Ⅲ带 ~ Ⅶ带和��ሞ带 ~ Ⅳ2带,Ⅱ带兼 有岩浆阶段和过渡阶段的部分。

在成文和修改过程中得到了导师张兴春研究 员的悉心指导和帮助,表示衷心的感谢。

参考文献

- [1] 王贤觉, 邹天人, 徐建国, 等. 阿尔泰伟晶岩矿物研究[M]. 北京: 科学出版社社. 1981.1—140.
- [2]朱金初,吴长年,刘昌实,等.新疆阿尔泰可可海3号伟晶岩脉岩浆 热液演化和成因[J].高校地质学报,2000(1):39-52.
- [3] 张辉. 岩浆 热液过渡阶段体系中不相容元素地球化 学行为及其机制 - 以新疆阿尔泰3号伟晶岩脉研究为 例[D]. 中国科学院地球化学研究所,2001.
- [4] 吴长年. 新疆可可托海 3 号伟晶岩脉地球化学演化与成 矿作用研究[D]. 南京大学申请博士学位论文. 1994.
- [5] 王贤觉. 新疆阿尔泰三号伟晶岩脉碱的演化与地球化学 阶段的划分[J]. 地球化学,1980(2):186—191.
- [6] 邹天人,张相宸,贾富义,等.论阿尔泰3 号伟晶岩脉的 成因[J].矿床地质,1986.5(4):34--48.
- [7]吴长年,朱金初.刘昌实,等.阿尔泰伟晶岩锂辉石中包裹体研究[J].大地构造与成矿学,1994,18(4):353—

362.

- [8] 吴长年,朱金初,刘昌实,等. 阿尔泰伟晶岩中流体熔融 包裹体成分研究[J]. 地球化学,1995,24(4):351— 358.
- [9] 吴长年,朱金初,刘昌实,等.新疆珂尔泰库威和可可托 海伟晶岩绿柱石中包裹体研究[J].南京大学学报, 1995.31(2):350—356.
- [10] 卢焕章. 流体熔融包裹体[J]. 地球化学,1990(3): 225-229.
- [11] 卢焕章,王中刚,李院生. 岩浆 ~ 热渡过渡和阿尔泰三 号伟晶岩脉之成因[J]. 矿物学报,1996,16(1):1--7.
- [12] 卢焕章,范洪瑞,倪培,等. 流体包裹体[M]. 北京:科学 出版社,2004,286-293.
- [13] 王贤觉,牛贺才,郭国章.阿尔泰三号伟晶岩脉岩浆演 化过程中铌、钽示踪的研究[J].地球化学,1998,27 (1):1-11.
- [14]张爱铖,王汝成,胡欢,等.阿尔泰可可托海3号伟晶岩 脉中铌铁矿族矿物环带构造及其岩石学意义[J].地质 学报,2004,28(2):181—189.

- [15]张爱铖,王汝成,胡欢.阿尔泰可可托海3号伟晶岩脉重 钽铁矿研究[J].高校地质学报,2003,9(2):268—272.
- [16]张爱铖,王汝成,谢磊,等. 阿尔泰可可托海3号伟晶岩 脉中的铪质锆石[J]. 矿物学报,2003,23(4):327— 332.
- [17]夏芳,安银祥,赵云长.新疆阿尔泰地槽成矿元素分布 特征[J].地质地球化学,2001,29(3):50—54.
- [18]张辉,刘丛强.阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素"四分组效应"及其意义[J].地球化学, 2001,30(4):323—334.
- [19]李兆麟,张文兰,李文.云南哀牢山和新疆可可托海伟 晶岩矿物中熔融包裹体电子探针研究[J].高校地质学 报,2000,6(4):509-522.
- [20] Boynton W. V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed.), Rare earth element geochemistry[C]. Elservier, 1984, 63-114.
- [21] 王登红, 邹天人, 徐志刚等. 伟晶岩矿床示踪造山过程 中的研究进展[J]. 地球科学进展, 2004, 19(4):614— 620.

A Review of the Research on the Koktokay No. 3 Granitic Pegmatite Dyke, Altai, Xinjiang

LENG Cheng – biao^{1,2}, WANG Shou – xu¹, GOU Ti – zhong¹, LU Li – na¹, LIU Hong – jie¹ (1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China)

Abstract: The Koktokay No. 3 granitic pegmatite dyke, Altai area of Xinjiang is characterized with a series of developed zones of mineral assemblages. From the edge to the core of the pegmatite dyke, 9 zones of paragenetic mineral assemblages were divided. This paper has discussed the characteristics of major elements, rock – forming minerals and fluid inclusions based on the predecessors date. It deal with the distribution patterns and evolution characteristics of REE of the various zones of paragenetic mineral, assemblages in the pegmatite dyke and has slightly modified the classification of the magma – magmatic hydrothermal fluid evolution stages for the No. 3 Koktokay granitic pegmatite dyke.

Key words: elements; fluid inclusions; pegmatite; Koktokay, Xinjiang