文章编号: 0258-7106 (2013) 04-0823-20

金矿床中金与黄铁矿和毒砂的关系

卢焕章^{1,2},朱笑青²,单 强³,王中刚²

(1 University of Quebec at Chicoutimi, Quebec G7H 2B1, Canada; 2 中国科学院地球化学研究所,贵州贵阳 550002;
 3 中国科学院广州地球化学研究所,广东广州 510640)

摘 要 卡林型金矿中的金,以肉眼,甚至在显微镜下都看不到,因而称之为"不可见金"。经过金的物相分析, 发现 Au 与毒砂、黄铁矿有关。进一步的问题是:Au 在毒砂、黄铁矿中呈何状态分布,是呈微细的独立矿物?还是类 质同象?是以化学键进入毒砂、黄铁矿的晶格?还是吸附在其表面?进一步的研究表明,世界上其他类型金矿,如浊 积岩型金矿、造山带内太古代绿岩带金矿、变质金矿、与火成岩有关的金矿,甚至含金的块状硫化物矿床,其中的金 除了以自然金(可见金)产出外,在黄铁矿、毒砂、辉锑矿、雄黄等硫化物中还含有不可见金。从不可见金到可见金,需 经过热液蚀变作用,在高 As条件下,温度和硫逸度的升高,可溶出不可见金,在温度下降和还原条件下,Au 以可见金 形式存在于蚀变环带中。这种从不可见金到可见金的转换过程,反映了 Au、As、S 以及 Fe 等元素的地球化学特征。 金矿中的黄铁矿和毒砂具有相似的结构,包括在其原始生长的晶体中含有不可见金,并且在稍后的成矿阶段内形成 赋存有可见金的蚀变环带。蚀变环带以 As含量高为特征,并且,后期的可见金是沿裂隙或毒砂与黄铁矿的粒间分 布。可见金是热液活化了矿物内的不可见金而形成的。

关键词 地球化学;不可见金;可见金;黄铁矿;毒砂;热液;蚀变环带中图分类号: P618.51文章标志码:A

Hydrothermal evolution of gold-bearing pyrite and arsenopyrite from different types of gold deposits

LU HuanZhang^{1,2}, ZHU XiaoQing², SHAN Qiang³ and WANG ZhongGang²

(1 University of Quebec at Chicoutimi, Quebec G7H 2B1, Canada; 2 Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Guizhou, China; 3 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China)

Abstract

This study investigates the microstructures, geochemistry, and hydrothermal evolution of gold-bearing pyrite and arsenopyrite from Carlin type (both in the USA and China), turbidite hosted gold deposits of China, intrusion related gold deposits, epithermal gold deposits and six orogenic gold deposits in the Archean Eastern Goldfields Province, Western Australia. Scanning electron microscope (SEM), EPMA, and LA-ICP-MS analyses show that the gold-bearing pyrite and arsenopyrite possess a number of similar textural features, including the occurrence of invisible gold within initial phases of growth, and later-stage visible gold associated with alteration rims. The alteration rims are characterized by a higher-than-average atomic mass (mainly owing to arsenic enrichment) and are preferentially located along fractures and grain boundaries in the pyrite and arsenopyrite. These observations suggest that visible gold formation is associated with hydrothermal alteration of preexisting

^{*} 本文得到国土资源部公益性行业科研专项经费项目(编号:201011046)资助

第一作者简介 卢焕章, 男, 1940 年生, 教授, 博士生导师, 地球化学专业。Email: hzlu@uqac. ca 收稿日期 2012-08-31; 改回日期 2013-05-02。许德焕编辑。

pyrite and arsenopyrite. Textural observations and LA-ICP-MS data suggest that some invisible gold was remobilized from early-formed pyrite and arsenopyrite to form visible gold during the development of these alteration rims and fractures. Based on sulfide stability relations, the authors hold that the development of arsenopyrite alteration rims associated with late-stage visible gold formation was related to an increase in temperature (maximum increase from 310° to 415°) and up to six orders of magnitude increase in sulfur fugacity. It is suggested that the transform from invisible to visible gold depends on the fluid conditions and chemistry.

Key words: geochemistry, invisible gold, visible gold, pyrite, asenopyrite, hydrothermal fluid, alteration rim

毒砂和黄铁矿中 Au 含量的研究始于毒砂和黄 铁矿的相图研究,后来扩大至辉锑矿、雄黄、雌黄、硫 和金等的相图以及 Au 在这些矿物中的溶解度的研 究。其实践是对卡林型金矿内不可见金的研究。众 所周知,卡林型金矿的样品分析表明其中金的存在, 但是以肉眼,甚至在显微镜下都见不到金的颗粒,因 而称之为"不可见金"。经过物相分析发现,Au 与毒 砂、黄铁矿有关。进一步的问题是,Au 在毒砂、黄铁 矿中呈何状态分布,是微细的独立矿物?还是类质 同象?是以化学键进入毒砂、黄铁矿的晶格?还是 化学吸附在其表面?

世界上的金矿,按照 Robert 等(2007)的分类,除 了卡林型外,还有绿岩带型、浊积岩型、与侵入岩有 关的金矿、浅成热液型、变质岩型、赋存于浊积岩中 的金矿以及古砂金矿等。这些金矿中除了自然金以 外,常伴生有黄铁矿、毒砂、方铅矿、闪锌矿、黄铜矿、 磁黄铁矿等硫化物。以往的研究主要集中于含不可 见金的卡林型金矿,而现在还涉及到其他类型(包括 许多硫化物含量很低的)金矿中金在毒砂和黄铁矿 内的分布。在这些金矿床中,Au 与毒砂、黄铁矿的 关系如何? 是否与其在卡林型金矿中的关系一样? 这是本文要探讨的问题,下文将逐一予以叙述。

1 卡林型金矿床中金的赋存状态

以沉积岩为主要容矿岩石的卡林型金矿是目前 世界上储量最大的金矿类型之一,其中的金以"不可 见金"或颗粒极细(纳米级)金存在,这是该类型金矿 最重要的特点之一。国内外大量研究已证实,金主 要赋存在含砷黄铁矿和毒砂中,但仍有许多问题尚 待解决,其中,金的赋存形式则是目前争论的焦点和 研究的热点。关于"不可见金"的定义,本文把存在 于矿物(特别是黄铁矿和毒砂)晶格中的金称为"不 可见金"。

1.1 中国卡林型金矿中 Au 与毒砂和黄铁矿的关系

中国的卡林型金矿主要分布在扬子古陆边缘的 大陆裂谷带中,尤其密集分布于滇黔桂接壤区、川西 北地区和秦岭地区。其主要特点是:① 以细碎屑岩 及其浅变质岩为容矿岩石;②金的粒度微细,一般 为显微-次显微级金和不可见金;③有一套中-低温 矿物共生组合和围岩蚀变,矿石中常见的金属矿物 为黄铁矿、毒砂、辉锑矿、雄黄、雌黄、辰砂、白铁矿、 磁黄铁矿,次为闪锌矿、方铅矿、硫砷铜矿等,脉石矿 物主要有石英、水云母或绢云母、方解石、(铁)白云 石、重晶石、地开石、伊利石、高岭石、萤石等;④矿 床属浅成中-低温热液成因。最近研究表明,卡林型 金矿中金矿物的成色较高,金粒度微细,其中,滇黔 桂接壤区和川西北地区的金矿物多为次显微金。卡 林型金矿原生矿石中的主要载金矿物是含砷黄铁 矿,其次是毒砂,金以"不可见金"形式赋存于载金矿 物中(Simon et al., 1999a; 1999b; Palenik et al., 2004; Reich et al., 2005; Fleet et al., 1993; 1997). 王奎仁等(1992)、付绍洪等(2004)、苏文超等(2006) 和 Zhou 等(2003) 对中国几个典型卡林型金矿内金 的赋存状态进行了研究,认为金主要以微细(<1 μm)自然金颗粒的形式赋存于黄铁矿、毒砂等矿物 的内部,有少量(7%)为次显微(1~2 μm)可见金颗 粒。对滇黔桂"金三角"的主要矿床,如黔西南的板 其、丫他、金牙、烂泥沟、紫木凼、水银洞矿床(张弘弢 等,2008;Zhou et al., 2003)的研究也得出相似的结 论。但也有部分矿床,不同的研究者得出不同的结 论,例如水银洞金矿,刘建中(2003)认为,金在砷黄 铁矿环带中以亚微米至纳米级的颗粒状不均匀分 布;而李九玲等(1997)则认为,Au以晶格金进入含 砷黄铁矿的结构。

黔西南卡林型金矿的矿石类型包括原生矿石、 蚀变矿石、氧化矿石及红土型矿石;金主要以"不可 见金"赋存在这些矿石内的毒砂和含砷黄铁矿中。 富矿石中硫化物所占比例一般只有 3%~4%,最高 为 6%,但硫化物的含金量却占矿石总含金量的 93%以上,而且,毒砂和黄铁矿颗粒愈细,其金含量 愈高。张弘弢等(2008)通过显微镜下观察和电子探 针显微分析(EPMA)研究了贵州水银洞卡林型金矿 床中金的赋存状态,表明含砷黄铁矿和毒砂是主要 的载金矿物。载金黄铁矿主要以环带状含砷黄铁矿 (图 1)、细粒自形含砷黄铁矿为主。环带状含砷黄铁矿 (图 1)、细粒自形含砷黄铁矿为主。环带状含砷黄铁 矿的核部贫 As、Au,富 S、Fe,而边部环带则相反,且 Au 与 As具有正相关关系。核部贫砷的黄铁矿成因 复杂,既有成矿早阶段的热液成因,又有沉积成因; 核部和环带的黄铁矿是不同成矿阶段的产物。元素 的相关关系表明,环带中的 As 主要取代 S 的位置。 黄铁矿具有多个环带的特点还表明,热液活动是脉 动式的,含矿流体的化学成分也是不断变化的。无 论是核部还是环带,都有 Au 含量高出检出限的测 点,但环带是主要的载金部位。据推测,Au 与富砷 环带是由同期热液活动形成的。毒砂-黄铁矿集合 体中的黄铁矿可分为环带结构和均质结构 2 种;载 金毒砂可细分为 3 个世代,具均质结构和热液成因。 各世代毒砂的 Au 含量均有高出检出限的测点,同 时,Au,As,S,Fe 的含量变化不大。载金矿物的结晶 顺序为:贫砷的沉积成因或早阶段热液成因黄铁矿 →富砷的细粒黄铁矿颗粒和富砷黄铁矿环带→毒 砂。电子探针分析显示,Au 在黄铁矿和毒砂中的分 布都是不均匀的,表明金主要以"不可见"的纳米级 超显微包体金的形式存在,有少量为"不可见"的晶 格金和微米级显微"可见金"。滇黔桂地区的各个卡 林型金矿床,其载金矿物特征和金的赋存状态 无本质区别,说明这些金矿床具有相同的成矿作用

图 1 卡林型金矿床中环带状黄铁矿和毒砂(据 Zacharis et al., 2004)

a. Py-2 黄铁矿的结构,中间为贫 As 和 Au 的原生黄铁矿,边上为高 As 和 Au 的环; b. Py-1 位于黄铁矿的中心,边上的环为 Py-2;

c. 细粒的毒砂(Apy),白色,位于 Py-2 当中或散布在其附近; d. Py-1 和 Py-2 晶体,箭头示 EPMA 分析的位置

Fig. 1 Zoned pyrite and arsenopyrite in Carlin type gold deposits (after Zacharis et al., 2004)

a. Structure of Py-2-pyrite; center—primary pyrite of lower As and Au, rim—pyrite of high As and Au; b. Center—Py-1 pyrite, rim—Py-2 pyrite; c. Fine-grained arsenopyrite, white, located at the center or nearby Py-2-pyrite; d. Crystals of Py-1- and Py-2-pyrite, arrow—location of EPMA

过程和成矿背景。

李九玲等(2002)应用¹⁹⁷Au穆斯堡尔谱分析,确 认了广西金牙金矿原生矿石内含金毒砂和黄铁矿样 品中,存在着不同于自然金的"化学结合金"(即化学 键金或晶格金)。同时,样品的X射线光电子能谱分 析经氩离子清洗样品表面得到了清晰的Au4f谱数 据,显示出结合金的Au4f相对于自然金有明显的负 位移。在这些数据的基础上,结合物理学对金-非过 渡金属合金中电荷转移和价键性质的研究成果以及 前人对含金毒砂和黄铁矿所做的穆斯堡尔谱和电子 顺磁谱等资料,证实了毒砂和含砷黄铁矿中的晶格 金显示出负价态。

在一些毒砂和黄铁矿的晶格中存在着以化学键 形式产出的金,不同于微粒包体金,称之为"化学结 合金"或"结合金"(Wagner et al., 2001; Friedl et al., 1995)。但是,中国的一些学者在研究黔西南卡 林型金矿时,仍强调金呈微细粒自然金即微米或纳 米级金被包裹在硫化物中,而否定晶格金形式的存 在(王奎仁等,1992)。关于"结合金"的化学状态问 题亦存在争论。Friedl 等(1995)根据穆斯堡尔谱实 验资料进行间接对比,支持化学结合金在毒砂和黄 铁矿的晶格中占据铁的位置,同时也指出,黄铁矿中 的金似乎是把砷吸引到它的邻位。胡文瑄等(2001) 根据微束分析提出了晶格金存在的证据,认为 Au³⁺ 占据了晶格中 Fe³⁺的位置。另外,有些学者基于 X 射线电子能谱研究,提出了毒砂和黄铁矿中的金呈 负价态(邱兆明等,1994;李九玲等,2002)。蚀变型 矿石中往往存在微细粒自然金与不可见金以不同比 例共存,氧化矿石及红土型矿石中则以微细粒自然 金为主(呈微米或纳米级)。

广西金牙金矿的品位为 5.3~34.20 g/t。矿石 粉碎后用浮选法选出粒径小于 0.05 mm(< 320 目) 的毒砂和黄铁矿混合矿物样品。对所选矿物样品进 行 X 射线粉末衍射分析,以确认样品由毒砂和黄铁 矿组成。样品的原子吸收光谱分析结果表明,由于 各样品中毒砂和黄铁矿的比例不同,其诸成分的含 量范围为: w(Fe) 37.38%~49.25%; w(S) $23.70\% \sim 48.70\%$; w(As) 1.46% ~ 37.05%; w(Au)的变化范围为19.8×10⁻⁶~649×10⁻⁶。含 金毒砂呈微细针状。应用上海复旦大学的扫描质子 探针(SPM)对金牙金矿的样品进行了测试,并做出 了 Au、As、Sb、S 元素分布图,显示出金牙金矿含金 毒砂中的金呈均匀分布的状态。测试证明,As、Fe、S 等元素在含砷黄铁矿和毒砂中主要以 As1-、Fe2+、 S¹⁻、As³⁺的形式存在。含金黄铁矿都毫无例外地含 有不等量的砷及微量锑,而且往往具次生生长边,环 边次生加大部分的砷含量高于中心部分。图1显示 金矿中的黄铁矿有2期,其中间的核为早期的贫As 和 Au 的黄铁矿(Pv-1);稍晚的是边上呈环带的由蚀 变形成的黄铁矿(Py-2),该环带中的 As 和 Au 含量 较高,且有毒砂产出。图2显示金牙金矿内黄铁矿、 毒砂和雄黄中金的含量,金含量较高的是毒砂,其次 是黄铁矿,雄黄的w(Au)平均为 0.68×10^{-6} (表 1 和图 2)。该矿床内有 3 种不同类型的黄铁矿,即粗 粒的、多孔的和细粒的。其w(Au)由细粒→多孔→ 粗粒黄铁矿依次减少。

表 1 金牙金矿雄黄中显微颗粒金含量(据 Zhou et al., 2003) Table 1 Micrograin of gold in realgar from the Jinya gold deposit (after Zhou et al., 2003)

雄黄颗粒号	1	2	3	4	5	6	7	8	9	10	11	12	13	平均
w(Au)/10 ⁻⁶	0.44	0.51	0.65	0.65	0.85	0.37	0.65	0.72	0.72	0.37	0.44	0.72	1.70	0.68

苏文超等(2006)研究了贵州水银洞金矿。该矿 床位于灰家堡背斜 Au-Hg-Tl 矿田的东段,是黔西南 地区发现较晚、品位较富(6~18 g/t)的大型(55 t)隐 伏卡林型金矿床,现已大规模开采。在显微岩相学 系统研究的基础上,应用电子探针(EMPA)背散射 电子图像(BSE)、波谱(WDS)和能谱(EDS)分析技 术,对水银洞卡林型金矿床原生富矿石中不同类型 含砷黄铁矿和毒砂的矿物学、地球化学及金的赋存 状态等进行了较系统的研究,取得了如下主要认识:

(1)水银洞金矿床原生矿石具有去碳酸盐化 (decarbonation)、硅化、硫化物化(sulfidation)等典型 卡林型金矿的热液蚀变特征,其主要载金矿物为含 砷黄铁矿,其次为毒砂。

(2)根据含砷黄铁矿和毒砂的形态及结构特征,将含砷黄铁矿分为生物碎屑状、细粒状、环带状和细脉状4种类型;将毒砂分为板状和针状2种类型。毒砂的形成晚于含砷黄铁矿。

(3) 电子探针分析表明:含砷黄铁矿中w(Au) 较高,一般为(300~3800)×10⁻⁶,还含有As (0.65%~14.11%)、Sb(0.03%~0.12%)、Co (0.03%~0.08)等元素;毒砂中Au含量较低,一般 w(Au)为(300~1500)×10⁻⁶。

(4)研究表明,含砷黄铁矿中As与S的含量具 有明显的负相关关系,认为As替代S进入了含砷黄 铁矿和毒砂的结构;Au与As之间不是一种简单的 线形正相关关系,而是分布于一个楔形空间。结合 前人研究成果,认为含砷黄铁矿中的"不可见金",可 能主要以化学结合态金(Au¹⁺)的形式进入含砷黄铁 矿和毒砂的结构。

(5)金的赋存状态研究表明,其有 2 种赋存形 式:①"不可见金",主要赋存在黄铁矿的含砷黄铁 矿环带中;②显微-次显微(0.1~6 μm)自然金颗 粒,主要分布在呈细脉或集合体的含砷黄铁矿内。 这些自然金颗粒也有 2 种赋存形式: a. 粗粒(1~6 μm)自然金颗粒,主要分布于早世代粗粒含砷黄铁 矿颗粒的表面或晚世代细粒含砷黄铁矿颗粒的边 缘,偶见于含 Fe 碳酸盐矿物的溶蚀空洞中,被解释 是热液中的 Au 局部过饱和的产物; b. 细粒(0.1~ 0.2 μm)自然金颗粒,偶见于早世代粗粒含砷黄铁矿 的环带内或其溶蚀空洞的边缘,被解释是含砷黄铁 矿环带中的 Au 再溶解过饱和沉淀的产物。

(6)根据原生矿石的显微岩相学特征、含砷黄铁矿的矿物学和地球化学特征,认为含砷黄铁矿中的Fe,可能主要来源于赋矿围岩中含Fe碳酸盐矿物 (含铁方解石和白云石)溶解而释放出来的Fe;认为 含Fe碳酸盐赋矿围岩是形成高品位、大型卡林型金 矿床最有利的岩性;提出了与去碳酸盐化有关的碳 酸盐脉,是寻找深部隐伏卡林型金矿体的重要找矿 标志之一。

Chen(2011)在研究秦岭地区卡林型金矿黄铁 矿、毒砂内金含量的过程中,发现有3种黄铁矿,即 细粒、粗粒和草莓状黄铁矿。细粒黄铁矿有一个相 对贫As和Au的核,其边部有一个Au含量较高(可 达17×10⁻⁶~83×10⁻⁶)的环带。粗粒黄铁矿的核 部贫As和贫Au(<12×10⁻⁶)。草莓状黄铁矿的 w(Au)可达(11~800)×10⁻⁶。毒砂的w(Au)为 (160~1799)×10⁻⁶,并且可见到粒度为0.3~6 μ m 的可见金。

综上所述,中国的卡林型金矿中存在2种金:不可见金和微粒可见金。

1.2 美国卡林型金矿中 Au 与毒砂和黄铁矿的关系

对美国卡林型金矿中 Au 与毒砂和黄铁矿的关 系已做过许多研究(图 3)(Hofstra et al., 2000; Hinchey et al., 2003; Maddox et al., 1998; Arehart, 1996)。Wells等(1973)应用电子显微镜研究了美国 卡林型金矿中金的分布,认为金分布在毒砂和黄铁 矿中,而且,金在这2种矿物内的含量占整个矿床金 总量的 90%。Radtke(1985)认为,卡林型金矿中的 金不仅分布在黄铁矿和毒砂中,而且产在有机物中。 Arehart等(1993)应用二次离子质谱对内华达州 5 个卡林型金矿的矿石进行了研究,其 Au 品位为 3~ 100 g/t。图 4 是这 5 个矿区的矿物共生顺序图,由 该图可知,金与含砷黄铁矿关系最为密切,其次是毒 砂、石英、绢云母、雄黄、雌黄、重晶石和辉锑矿等。 加拿大西安大略大学应用 IMS-3f SIMS 方法测定了 这些卡林型金矿内毒砂和黄铁矿中Au、As、S和Fe

图 3 美国卡林型金矿的分布(Arehart et al., 1993) Fig. 3 Location map for Carlin type deposits in the USA (after Arehart et al., 1993)

的含量。其w(Au)平均值:粗粒黄铁矿为 0.35×10⁻⁶;多孔黄铁矿为1.39×10⁻⁶;细粒黄铁矿为6.03

×10⁻⁶; 粗粒毒砂为 86.39×10⁻⁶; 多孔状毒砂为 100.98×10⁻⁶; 细粒毒砂为 55.5×10⁻⁶。从粗粒黄 铁矿到多孔黄铁矿到细粒黄铁矿, w(As)平均为 481.91×10⁻⁶→8933.39×10⁻⁶→38 276.24×10⁻⁶; w(Au)平均为 0.35×10⁻⁶→1.39×10⁻⁶→6.03× 10⁻⁶。细粒黄铁矿中 As 和 Au 的含量都相对较高 (图 5)。由此可见, 当 As 含量增高时, Au 的含量也 相应增高。表 2 显示了卡林型金矿硫铁矿物中 Au 和 As 的含量关系。

图 6 显示了美国 7 个卡林型金矿中 As 与 Au 的 关系,一般而言,As 含量高时 Au 含量也高。图 7 显 示了运用 SIMS 和 EMPA 方法获得的世界上卡林型 金矿的 As-Au 分析结果,表明 As 含量越高则金含量 也越高。图 8 显示了运用 SIMS、EMPA 和 LA-ICP-MS 方法获得的卡林型和浅成热液型金矿的 Au-As 分析结果,表明 Au 有 2 种价态,即 Au⁰ 和 Au¹⁺,而 且,当 As 含量增高时 Au 含量亦增高。

由表 3 可知, Lower Post 金矿的 w(As) 平均为 1.75%, w(Au)平均为 117×10⁻⁶; Mule Canyon 金 矿的 w(As) 平均为 1.02%, w(Au) 平均为 64× 10⁻⁶; Kirazli 金矿的 w(As) 平均为 0.16%, w(Au) 平均为 21×10⁻⁶。显示出 As 含量越高, Au 含量相 应也高。

含砷黄铁矿常呈环带状,中间的核贫 As 和 Au, 边部的环带富 As 和 Au。这 2 部分含砷黄铁矿的成 因是不同的,其中的核被认为是沉积或早期的产物, 而环带则是后期热液作用的产物。Fleet 等(1997) 研究了美国 Deep Star 卡林型金矿含砷黄铁矿,白铁

表 2	卡林型金矿	的硫铁矿	物中	Au和	As 的含量	甛	Arehart et al.,	1993)

Tabl	e 2	As-Au a	analyses of	iron sulfides	from Ca	rlin type (deposits (after A	Arehart et a	al. , 199	J 3)
------	-----	---------	-------------	---------------	---------	-------------	------------	---------	--------------	-----------	-------------

样号	$w(Au)/10^{-6}$	w(As)/%	矿物	样号	w(Au)/10 ⁻⁶	w(As)/%	矿物
1203-1	70.0	1.9	黄铁矿	1567-11	210.0	1.7	毒砂
1203-3	83.0	1.6	黄铁矿	1567-10	385.0	2.8	毒砂
1203-2	116.0	3.4	毒砂	1567-12	285.0	1.4	毒砂
1203-4	265.0	1.4	毒砂	SED86/1277B	66.0	0.98	黄铁矿
1567-6	55.0	1.5	黄铁矿	SED86/1277C	75.0	1.9	黄铁矿
1567-7	94.0	1.9	黄铁矿	SED86/1277A	92.0	5.4	毒砂
1567-8	70.0	2.2	黄铁矿	SED86/1277D	245.0	2.0	毒砂
1567-9	385.0	3.8	毒砂	QRC391/1650A	4.0	0.22	黄铁矿
1567-2	690.0	3.8	毒砂	QRC391/1650B	2.5	0.03	黄铁矿
1567-4	570.0	4.0	毒砂	QRC391/1650C	45.0	3.7	毒砂
1567-5	470.0	4.4	毒砂	QRC391/1650D	62.0	5.4	毒砂
1567-1	220.0	2.0	毒砂	QRC391/1650E	4.8	0.40	黄铁矿
1567-3	290.0	2.8	毒砂				

图 5 美国 5 个卡林型金矿内 3 种黄铁矿中 Au 和 As 的含量及相互关系(Arehart et al., 1993) Fig. 5 As-Au concentration for three different morphological types of pyrite grains from five Carlin type deposits in the USA (after Arehart et al., 1993)

矿和毒砂中的 Au 含量,发现含砷黄铁矿中w(Au) 为0.37%,而且,毒砂和白铁矿中也含有一定量的 Au。Au 在含砷黄铁矿、毒砂和白铁矿中含量的多寡

取决于其中 As 的含量, As 含量越高则 Au 含量相应 也高, 且与 Fe 的缺失有关。含砷黄铁矿中的 As 则 是置换了黄铁矿中的 S。

图 6 美国 7 个卡林型金矿中 Au-As 的 SIMS 和 EMPA 分析结果(据 Reich et al., 2005) Fig. 6 Plot of As-Au SIMS and EMPA analyses from 7 Carlin type deposits in the USA (after Reich et al., 2005)

图 7 世界上卡林型金矿的 Au-As 分析结果(据 Reich et al., 2005) Fig. 7 As-Au plot of SIMS and EMPA analyses for various Carlin type deposits in the world (after Reich et al., 2005)

图 8 卡林型和浅成热液金矿内 Au 和 As 的 SIMS、EMPA 和 LA-ICP-MS 分析结果(据 Reich et al., 2005) Au 呈 Au⁹和 Au⁺¹存在

Fig. 8 As-Au plot showing all SIMS, EMPA and LA-ICP-MS analyses of arsenian pyrite from Carlin type and epithermal deposits (after Reich et al., 2005)

表 3 三个卡林型金矿含砷黄铁矿中的 As 和 Au 含量 (据 Reich et al., 2005)

 Table 3
 As and Au SIMS analyses of three Carlin type gold deposits (after Reich et al., 2005)

金矿床	测定数		w(As)/%	$w(Au)/10^{-6}$
		最大值	13.43	2392.00
Lower Post	290	最小值	0.01	0.15
		平均值	1.75 ± 0.13	117.48 ± 15.18
		最大值	5.50	1691.10
Mule Canyou	73	最小值	0.01	0.40
		平均值	1.02 ± 0.17	64.13 ± 24.27
		最大值	0.70	115.00
Kirazli	49	最小值	0.003	0.30
		平均值	0.16 ± 0.03	21.67 ± 4.03

Simon 等(1999a)、Palenik 等(2004)和 Reich 等(2005)认为,美国几个卡林型金矿内含砷黄铁矿中的 Au 有 2 种赋存形式:① 化学结合态金(structural bound),以 Au¹⁺进入含砷黄铁矿的结构,并有一个溶 解度极限(Au/As=0.02),这种状态的金被解释为可 能与热液中金不饱和有关;② 纳米级(5~10 nm)自 然金(Au⁰)颗粒,其形成过程被解释为 Au 含量超过其 在含砷黄铁矿中的溶解度极限,或者是 Au 从亚稳相 含金的含砷黄铁矿中出溶出来。以这 2 种形式存在的 Au 用肉眼是看不到的。

2 浊积岩型金矿床中金的富集状态

湘西地区的浊积岩型金矿床内,除自然金外,金 也高度富集在黄铁矿、毒砂和辉锑矿中(表 4)。艾国 栋等(2010)认为,黄铁矿有早,晚 2 期。黄铁矿的 S/ Fe 值小于 2,w(Au)为 0.27%~0.53%,As 含量越高, 则 Au 含量也相对较高。黄铁矿中金含量变化较大, w(Au)为(1~973)×10⁻⁶。沃溪金矿:早期粗粒黄铁 矿的w(Au)为(8~63)×10⁻⁶,平均为 29×10⁻⁶;晚 期热液细粒黄铁矿的w(Au)为(93~153)×10⁻⁶,平 均为 134×10⁻⁶。毒砂也是载金矿物。产于石英脉中 的毒砂,w(Au)为(87~125)×10⁻⁶;产于蚀变板岩中 的毒砂,w(Au)为(62~184)×10⁻⁶。泥潭冲金矿:产 于石英脉中的毒砂,w(Au)为 73×10⁻⁶;产于蚀变板 岩中的毒砂,w(Au)为 184×10⁻⁶。辉锑矿的w(Au)为(0.25~110)×10⁻⁶,平均为 14×10⁻⁶。早期产于 Sb-Au成矿期的细粒辉锑矿的w(Au)为(0.74~110)×

表 4 湘西金矿中黄铁矿、毒砂和辉锑矿中 Au 的含量及分布率 Table 4 Au concentrations in pyrite, arsenopyrite and sibnite of western Human turbidite hosted gold deposits

TO* 12:	20-12-米田		$w(Au)/10^{-6}$			分布率/%	率/%	
19 14	初林失望	黄铁矿	毒砂	辉锑矿	黄铁矿	毒砂	辉锑矿	
黄金洞	Au-As	51	130	0	15	61	0	
杏枫山	Au-As	0	122	0	0	93	0	
沃溪	W-Sb-Au	77058	0	45	20	0	67	
泥潭冲	Au-As	40	166	36	19	79	2	
江东湾	Sb-As-Au	14	155	0.3	4	91	1	
白竹坪	Au-As	14	24	0	4	94	0	
龙山	Au-As	69	326	15	1	50	23	
康家湾	Pb-Zn-Ag-Au	6	38	0	65	12	0	

注: 据艾国栋等(2010)。

10⁻⁶;晚期粗粒板状辉锑矿的w(Au)为(0.42~17)× 10⁻⁶,含量相对较低。这些载金的硫(砷)化物各具特 征性标型。由于黄铁矿尤其是毒砂中的金,大多属于 质点小于 0.1 µm 的不可见金,不仅在光学显微镜下 无法找到,即使运用电子探针或在高倍电镜下进行 Au 的特征 X 射线扫描,亦未发现金矿物富集区。由此引 起了这类矿物中的金是呈超微细粒形式存在,还是以 类质同像存在于矿物晶格中的不同看法。所以,查明 金的赋存状态,对金的利用而言十分重要。据多项实 验研究及选矿试验结果,认为黄铁矿和毒砂中既有不 可见金,也有次显微金和"纳米金"的可见金。

贵州八克金矿是产于浊积岩中的含金石英脉型 金矿床。该矿床以矿体和围岩中广泛出现毒砂为典 型特征。对矿体及围岩中的毒砂、黄铁矿进行了显微 镜下观察和电子探针分析,获得了硫化物和硫砷盐类 矿物的w(Au)为(*n*~*n*×10)×10⁻⁶;Au 主要以不可 见金形式存在,可呈固溶体分布于硫化物主晶的晶格 中。

Au 在硫化物晶格中处于氧化状态,即呈 Au³⁺、 Au¹⁺,或者与 Au⁰一起存在(Simon et al.,1990b),Au 是与 Fe 进行交换的。在含砷黄铁矿的边部,As 和 Au 的含量很高,而 Fe 含量则下降。对围岩中的毒砂、黄 铁矿进行了成矿实验(吴学益等,2007),表明金可以从 围岩的毒砂、黄铁矿中出溶出来而形成可见金。

3 造山带太古代绿岩型金矿床中金与 毒砂、黄铁矿的关系

太古代绿岩型金矿产在剪切带内,可分为石英大脉型和蚀变岩型。这类矿床在加拿大和澳大利亚均 有产出,共生有少量黄铁矿,并见少量毒砂、闪锌矿、 方铅矿、黄铜矿和磁黄铁矿;金常呈自然金产出(图9)。

图 9 太古代金矿内毒砂和金的分布(据 Morey et al., 2008)

A. 剪切带石英脉中的毒砂(Apy)呈行分布; B. New Boddington 金矿中毒砂(Apy)、钛铁矿(Ilm)和自然金(Au)的分布,反光镜下 Fig. 9 Representative image of arsenopyrite dominated ore samples from Archean gold deposits (after Morey et al., 2008) 在澳大利亚的太古代 Yilgarn 地块,沿 Bardoc 构 造带,从北至南展布有 Yunndaga、New Boddington、 Nerrin Nerrin、Talbot South 和 Paddington 绿岩型金 矿(图 10),以及位于最南侧的产在 Boorara 剪切带中 的 Golden Ridge 金矿(图 11)。这些矿床中的金以自 然金形式产出。剪切带内金矿(Golden Ridge 金矿) 中的黄铁矿具有核和蚀变边。此类黄铁矿的蚀变 边,除了 Au、As 含量高和 Fe 含量低之外,还有自然 金产出。除黄铁矿含金外,毒砂和伊利石中也有自 然金产出。Morey 等(2008)对澳大利亚 5 个太古代 剪切带金矿中的黄铁矿应用扫描电镜(SEM)、电子 探针和 LA-ICP-MS 方法进行了分析,结果表明,黄 铁矿核部的 Au 为不可见金,而后期生长的黄铁矿蚀变环带中的 Au 为可见金。

石英大脉型金矿与蚀变岩型金矿的不同是,前 者的主要硫化物是黄铁矿,而后者除了黄铁矿外还 有毒砂和含砷黄铁矿。后者的自然金产于毒砂和黄 铁矿的裂隙中和颗粒之间。通常认为,黄铁矿蚀变 环带内的金可能来自早期结晶的黄铁矿的核部及毒 砂。蚀变和未蚀变的黄铁矿与毒砂,Au的含量是不 一样的,例如澳大利亚的 Sunrise Dam 金矿,黄铁矿 的 w(Au)为 3067 × 10⁻⁶(n = 224),而毒砂的 w(Au)为 5767×10⁻⁶(n = 19)(Sung et al., 2009)。 并且发现,Au在黄铁矿和毒砂中有2种存在形式:

图 10 澳大利亚 5 个太古代金矿的位置,3 个成矿阶段的矿物共生组合及背散射电子影像图(据 Morey et al., 2008)
A. 金矿中毒砂和黄铁矿组合; B. 图 A 的局部放大,显示自然金产于蚀变带附近; C. 同 B, 蚀变带的黄铁矿中见自然金; D. 颗粒之间见有 蚀变带; E. 图 D 的局部放大,颗粒间的蚀变带中见有自然金; F. 蚀变带也见于港湾状颗粒界面间 Apy一毒砂; Au-自然金; Ccp-黄铜矿; Gn-方铅矿; Ilm-钛铁; Po-磁黄铁矿; Py-黄铁矿; Rt-金红石; Sp-闪锌矿 Fig. 10 Location map of five Archean gold deposits in Australia, three mineralization stages and the relationship between gold, pyrite and arsenopyrite (after Morey et al., 2008)

图 11 澳大利亚 Golden Ridge 金矿中黄铁矿的蚀变带和未蚀变带的 LA-ICP-MS 分析结果(据 Morey et al., 2008) A. 黄铁矿的蚀变带,数字表示 LA-ICP-MS 分析的位置; B. 黄铁矿蚀变带中的自然金; C. LA-ICP-MS 分析结果 图例 1~4 为未蚀变带,5~8 为蚀变带

Fig. 11 Images and geochemistry of altered and non-altered pyrite from the Golden Ridge gold deposit, Australia (after Morey et al., 2008)

① Au 呈离子进入黄铁矿和毒砂的晶格;② 呈自然 金分布在后期的蚀变环带中,该带的 As 含量也高, 这是后期温度升高(310~415℃)时热液与黄铁矿和 毒砂发生蚀变作用所致。

金在黄铁矿和毒砂中呈双峰式分布。原生的黄 铁矿核部与后生的黄铁矿边部(或蚀变带),其 Au 含 量截然不同。图 11 是 Golden Ridge 金矿内含砷黄 铁矿的电子探针分析位置和测得的 Ni、Co、As、Au、 Ag、Sb、Bi、Ba、Te、Pb 和 Sn 的含量。该矿床内的黄 铁矿有 2 种:① 原生黄铁矿;② 后期生长在原生黄 铁矿 边 部 的 称 之 为 蚀 变 边 或 蚀 变 带 的 黄 铁 矿 (Py-2)。黄铁矿蚀变边(含 As 很高)的 w(Au)可达 1000×10⁻⁶, 而原生黄铁矿 的 w(Au)一般小于 10× 10⁻⁶。另外, 在原生黄铁矿 与蚀变黄铁矿 的交界处

可见有自然金产出。

金与毒砂的关系颇为密切。毒砂常呈平行状分 布于石英脉中。在产于Bardoc 剪切带的含金石英脉 内,见有自然金分布于毒砂中。图 10 是澳大利亚 Yilgarn 地区 5 个金矿的位置及其 3 个成矿阶段和不 透明矿物共生组合。由该图可见,毒砂也有一个蚀 变环带,自然金即产于蚀变环带的石英与毒砂之间。 毒砂原来与磁黄铁矿共生,在第 2 成矿阶段,后期热 液在毒砂核的外面形成了一个毒砂蚀变环带,在毒 砂核和蚀变环带中含有不可见金,而蚀变环带内也 有自然金产出。当后期热液与黄铁矿和毒砂发生作 用时会形成一个 As 含量较高的蚀变环带,其中含有 不可见金;在蚀变的毒砂、黄铁矿的小裂隙中可见有 自然金产出。运用 LA-ICP-MS 方法对未蚀变的和 蚀变的黄铁矿进行了测试,发现 Sb、Bi、Ba、Te、Pb 和 Sn 的含量在未蚀变部分相对较高,且分布均匀,而 在蚀变带中其含量变低(图 11)。对未蚀变的和蚀变 的毒砂进行了同样的测试,显示出未蚀变的毒砂含有 较多的 Au 和 Co,而 Mo、Bi 和 Sb 的含量则较低。由此 可见,热液蚀变不仅改变了 Au 在黄铁矿和毒矿中的 含量,同时也改变了一些微量元素在其中的分布。

4 与火成岩有关的砂卡岩金矿床中金 与黄铁矿、毒砂的关系

欧洲 Bohemian 高地的 Boudny 金矿是与火成岩 有关的矽卡岩金矿。发现其中有4种黄铁矿和2种 毒砂:粗粒黄铁矿(Py-1),不含金;细粒黄铁矿 (Py-2),含金;与碳酸盐有关的黄铁矿(Py-3、Py-4); 第1期毒砂;第2期毒砂。

无论何种黄铁矿,如果具有一个后来生长的环 带(即含砷黄铁矿,As含量可高达2%~4.5%),那 么,其 Au含量可高达20×10⁻⁶,也可含有220× 10^{-6} (偶见1500×10⁻⁶)的Pb和大于600×10⁻⁶(偶见1350×10⁻⁶)的Sb。在所研究的样品中,Au与As 呈正相关关系,而与Fe的亏损无关。这与卡林型金 矿的情况是不一样的。在Boudny金矿中,富As的 黄铁矿(Py-2)常与富As的毒砂一起沉淀,这种毒砂 的Au含量一般为(40~150)×10⁻⁶,而晚期毒砂的 Au含量中通常为(0~70)×10⁻⁶。在该金矿的矿物 中,只观察到黄铁矿具环带状,这种现象代表了成矿 流体化学成分的演化(图12,表5~8)。

图 12 Boudny 金矿内黄铁矿的分析结果(据 Zacharis et al., 2004) a. 含砷黄铁矿中 As和 S的关系; b. 黄铁矿(Py-2)中 As与 Au 的关系 Fig. 12 As-Au analyses of pyrite from the Boudny gold deposit (after Zacharis et al., 2004)

表:	5 Boudny	金矿毒砂中	Sb、Au、Ag、	Pb、Bi元	素的 LA-I	ICP-MS 分	·析结果(据	Zacharis et al.	, 2004)
	Table 5	Analyses of S	Sb, Au, Ag	, Pb, and	d Bi of ars	ænopyrite	from the B	oudny gold depo	osit
			,						

(after Zacharis et al., 2004)

121 ² - Hom	w(Sb)		w(B)	/10-6		Tit Han	w(Sb)	$w(B)/10^{-6}$			
10 120	/%	Bi	Au	Ag	Pb	19 120	/%	Au	Ag	Pb	Bi
第1期毒砂	0.67	55	37	56	25	第2期毒砂	0.296	24	22	50	31
第1期毒砂	0.93	120	53	45	20	第2期毒砂	0.319	40	22	58	18
第1期毒砂	0.99	39	21	27	11	第2期毒砂	0.351	7	24	23	19
第1期毒砂	1.27	133	54	44	17	第2期毒砂	0.355	30	25	35	22
第1期毒砂	1.60	120	59	45	14	第2期毒砂	0.383	31	26	.34	44
第1期毒砂	1.67	115	59	32	12	第2期毒砂	0.420	69	30	66	7
第1期毒砂	1.83	148	59	48	15	第2期毒砂	0.495	26	34	145	73
第1期毒砂	2.22	152	73	55	20	第2期毒砂	0.555	24	40	38	10
第2期毒砂	0.005	nd	nd	nd	nd	平均检出限	0.007	10	5	11	9

表 6	Boudny 金矿毒砂中 Au, Pb, Ag, Bi, Sb 元素
	的相关因子(据 Zacharis et al.,2004)

 Table 6
 Correlation coefficients for trace elements in arsenopyrite of the Boudny gold deposit

(after Zacharis et al., 2004)

	Sb	Au	Ag	Pb	Bi
Sb	1	0.894	0.908	-0.128	-0.314
Au		1	0.915	-0.083	-0.348
Ag			1	-0.005	-0.227
\mathbf{Pb}				1	0.734
Bi					1

Cepedal 等(2008)研究了 El Valle 砂卡岩型金矿 中 Au 与 As 的关系。该金矿中的主要矿石矿物为 4 种黄铁矿、3 个世代的毒砂,金呈不可见金产出。运 用 EPMA 和 SEM 方法对其进行了测试,黄铁矿 (Py-2)内的w(As)达 9.5%、w(Au)为 800×10⁻⁶、 w(Sb)为(5000~18 000)×10⁻⁶、w(Ni)为(1000~ 2000)×10⁻⁶,金主要赋存在细粒黄铁矿中。所有世 代的毒砂均含有 $w(Au)(1250~3000)×10^{-6}$,还含 有 $w(Cu)(200~1300)×10^{-6}、w(Sb)9000×10^{-6}、$ $w(Tl)(3000~4500)×10^{-6}。该矿区内金品位最高$ 的地段是由 Py-2 和毒砂组成的富 As 带。在 Py-2 和毒砂中,Au 与 Fe 呈负相关。有人认为,金是被吸附在黄铁矿和毒砂中。

由表 6 可知, w(Au)和 Ag 的相关因子为 0.915, Au 和 Sb 的相关因子是 0.894; 而 As 和 Au 的相关因 子是 0.643(表 8)。

5 变质岩型金矿床和块状硫化物矿床 (VMS)中金与硫砷化合物的关系

位于加拿大安大略省的 Hemlo 金矿是产在受变 质的泥质岩中的金矿。Lu 等(2002)曾对其进行了研 究。该矿床除 Au 外,还存在 As、Hg 和 Sb 等元素及 有关矿物;自然金与辉锑矿、黄铁矿、雌黄、雄黄、毒

表 7 Boudny 金矿黄铁矿(Py-2)的 As、Au、Sb、Pb、Bi 元素含量(据 Zacharis et al., 2004) Table 7 Analyses of Sb, Au, Ag, Pb, and Bi of pyrite from the Boudny gold deposit (after Zacharis et al., 2004)

序号	w(As)		w(B)	/10 ⁻⁶		应日	w(As)		$w(B)/10^{-6}$			
厅写	/%	Sb	Au	Pb	Bi	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	/%	Sb	Au	Pb	Bi	
1	0.40	415	3	159	11	15	1.6	250 ·	15	152	11	
2	0.70	571	5	182	13	16	1.6	58	16	25		
3	0.80	553	5	182	11	17	1.6	286	17	129	13	
4	0.90	744	3	716	10	18	1.7	98	14	65	2	
5	1.0	394	10	210	9	19	1.8	127	6	137	4	
6	1.2	433	13	222	10	20	1.8	1353	8	1506	18	
7	1.3	62	6	52	2	21	1.8	267	17	102	12	
8	1.3	103	6	91	1	22	1.9	61	14	28	1	
9	1.3	118	8	129	2	23	2.1	134	8	103	3	
10	1.3	129	8	189	2 .	24	2.2	67	17	26	1	
11	1.3	209	12	131	4	25	2.2	67	18	28	1	
12	1.4	1013	5	1032	13	26	2.5	112	13	88	2	
13	1.4	38	12	18	-	平均检出限	0.001	5	0.5	0.5	0.2	
14	1.6	53	14	25	_							

表 8 Bouday 金矿黄铁矿(Py-2)中 As、Au、Sb、Pb 和 Bi 的相关系数(据 Zacharis et al., 2004)

Table 8Correlation coefficients for trace elements in Py-2of the Boudny gold deposit (after Zacharis et al., 2004)

	As	Sb	Au	Pb	Bi
As	1	-0.322	0.643	-0.103	-0.397
Sb		1	-0.457	0.932	0.840
Au			1	-0.396	-0.285
Pb				1	0.655
Bi					

砂、磁黄铁矿、石英、绢云母等矿物共生(图 13)。有 人认为,该矿床在变质作用前就已形成(Tomkins, 2006;Lu et al., 2002)。表9列出了 Hemlo 金矿 4 件样品的分析结果。该金矿内黄铁矿的w(Au)一般 为(80~160)×10⁻⁶,毒砂的w(Au)为(0~700)× 10⁻⁶。同时,辉锑矿、雄黄和雌黄中也含少量 Au (<10×10⁻⁶)。认为在 Hemlo 金矿的变质过程(变 质温度 600~650℃,压力 600~700 MPa)中,存在一 个富As和Sb的熔体,该熔体中熔入了金,但从流体

图 13 加拿大 Hemlo 金矿的矿物共生组合(据 Tomkind et al., 2006; Lu et al., 2002) A. Hemlo 金矿的矿石; B. 黄铁矿(Py)、毒砂(Apy)、辉锑矿(Ste)共生组合,见极小的雄黄; C. 自然金(Au)产于毒砂中; D. 银金矿(Au-Ag alloy)、含金锑银矿(Au-Dys)、辉锑银铅矿(Fizelyite)与方铅矿(Gn)共生

Fig. 13 Mineral paragenesis of the Hemlo gold deposit, Canada (after Tomkind et al., 2006; Lu et al., 2002)

表 9 变质岩型金矿床和块状硫化物矿床中的毒砂、黄铁矿、锑银矿、黄铜矿、方铅矿、雄黄、磁黄铁矿、辉锑矿等矿物中 Au 和微量元素的含量(w(B)/%)(据 Tomkins et al., 2006)

Table 9 Au and trace elements (w(B)/%) in arsenpyrite, pyrite, dyscrasite, chalcopyrite, galena, realgar, pyrrhotite and sibnite in metamorphic gold deposit and volcanic massive sulfide deposits (after Tomkins et al., 2006)

-	Hemlo				Challenger			Mantauban				
	UC14636 毒砂	UC14636 辉锑矿	Hem013b 黄铁矿	Hem015e 雄黄	AGT014 毒砂	AGT024 自然金	AGT034 磁黄铁矿	Mnt011 锑银矿	Mnt011 毒砂	Mnt011 方铅矿	Mnt011 金银矿	Mnt011 辉锑银铅矿
S	20.60	28.39	52.73	20.66	18.33		39.48	0.9	20.11	13.13	0.16	19.35
As	41.79	1.81	0.05	60.27	47.13		0.01	0	41.15	0	0	0
Sb	0.03	69.94	0	0.76				23.05	0.10	1.02	0.61	32.16
Pb	0	0	0	0				0	0	82.70	0	38.24
Cu	0.01	0.01	0	0		0.06	0	0.03	0	0.02	0	0.14
Ag	0	0	0.03	0.06		1.70		58.68	0.03	0.45	39.90	6.19
Au	0	0.08	0	0		98.27	59.95	14.80	0	0	57.15	0
Fe	35.99	0.25	46.42	0	31.54		0	0.02	34.09	0.01		0.03
Co					1.26		0.24					
Ni					0.89							
Zn	0	0.06	0.03	0			0.28					
Hg	0.15	0.27	0.09	0.28		0						
合计	98.57	100.81	99.35	82.03	99.15	100.03	99.96	97.48	95.48	97.33	97.82	96.11

包裹体测得的均一温度最高为 350℃,远低于所估计的熔体的温度(Lu et al.,2002)。

表 9 中的 Hemlo 和 Challenger 为变质型金矿, Montauban 为块状硫化物矿床(VMS)。Wagner 等 (2001)认为,在 VMS 矿床的早期细粒毒砂中,赋存 有高含量的不可见金,而在变质高峰期(400~ 450℃,500 MPa)形成的晚期粗粒重结晶毒砂中,则 金含量很低,但有可见金与其共生。

6 讨 论

在卡林型金矿中,不可见金和可见金都与黄铁 矿和毒砂相关。不可见金是指存在于黄铁矿、毒砂 晶格中的金。含砷黄铁矿和毒砂中的金主要是微细 粒金,而晶格金所占的比例相对较少。

在浊积岩型金矿中,金主要呈自然金产于石英 脉中。矿床中也有黄铁矿和毒砂产出,且都有2期: ①分布于浊积岩中的早期毒砂和黄铁矿,②分布 于石英脉中的毒砂和黄铁矿。早期的毒砂和黄铁矿 中存在有不可见金。研究表明,浊积岩中黄铁矿和 毒砂内的金,经热液活化迁移至石英脉中呈自然金 产出。

在浅成热液金矿中,金以自然金、银金矿产出, 但黄铁矿和毒砂中也含有金。

在造山带太古代绿岩型金矿中,Au以自然金产 于石英脉和剪切带内。但其中第一阶段的黄铁矿、 毒砂内,Au则以不可见金存在;后来,由于热液蚀 变,在温度升高和硫逸度(fS₂)也相应升高的条件 下,导致黄铁矿形成了蚀变环带,同时,原来赋存在 毒砂和黄铁矿中的不可见金,变成了可见金分布在 蚀变环带内或充填于其裂隙中。

在与火成岩有关的金矿中,除自然金外,也有不可见金存于黄铁矿和毒砂中。黄铁矿和毒砂的蚀变 环带含有较高的 As 和相对较低的 S,其微量元素含量也因蚀变而发生系统变化。

在变质岩金矿中,Au以自然金存在于黄铁矿、 毒砂、雌黄、雄黄和辉锑矿中。例如,Olympiada 金矿 的毒砂中所含的 Au 就是自然金。

Au 在硫化物晶格中处于氧化状态,即呈 Au³⁺、 Au¹⁺,或者与 Au⁰一起存在(Simon et al., 1990b)。 Au 是与 Fe 进行交换的。在含砷黄铁矿的边部,As 和 Au 的含量很高,但 Fe 含量则下降。

由上述可知,从不可见金到可见金的过程,一定

要有热液存在(卢焕章,2011),此热液导致第一阶段 的黄铁矿和毒砂发生蚀变,出溶出其中的不可见金, 并在新的条件下形成了可见金。

从不可见金到可见金这个过程是否可能?现在 来看看 Fe-As-S-Au 相图(图 14)。

毒砂(FeAsS) 经受的反应如下:

 $FeAsS + S_2 = FeS + As + S$

矿物的稳定范围为: log f(S₂)为(-12~-4) ×10⁵ Pa,温度为 250~700℃。

Clark(1960)发现,金和毒砂在一起时会发生下 列反应:

3FeAsS+Au=FeAs₂+2Fe_{1-x}S+As-Au-S(熔体)

即存在一个 As-Au-S 熔体。毒砂(FeAsS)中的 Co、Ni、Au 可交换其中的 Fe。根据热力学,毒砂的熔 化温度为 670℃(100~300 MPa),雄黄和雌黄的熔 化温度为 310~321℃(100 MPa)。

Reich 等(2005)研究了 Au 在含 As 黄铁矿中的 溶解度, Au 的浓度(C_{Au})可用下式表示:

 $C_{Au} = 0.02C_{As} + 4 \times 10^{-5}$

式中, C_{Au} 为 Au 的浓度, C_{As} 为 As 的浓度,这表明最大的 Au/As 克分子比为 0.02。

此公式的适用温度范围为 150~250℃。也就是 说,如果样品中 w(As)为1%,则样品中最大 w(Au) 为 0.02%。Au 含量很高。

同时,Au、As、Fe和S的关系可用相图和矿物共 生组合(图14、15)予以说明。

即: 毒砂+磁黄铁矿+不可见 Au→毒砂+黄铁 矿±磁黄铁矿+可见金

产在澳大利亚 Boorara 和 Bardoc 剪切带中的 6 个太古代绿岩带金矿,其矿物共生组合和金的成矿 作用十分相似。不可见金赋存在毒砂和黄铁矿的原 始生长带中,而可见金则分布于黄铁矿和毒砂的蚀 变环带内或充填在后期的裂隙中。这是以黄铁矿和 毒砂为主要硫化物的金矿床的普遍特征之一。实际 上,卡林型金矿、浅成热液 Au-Ag 矿和块状硫化物矿 床中的黄铁矿也有这样的蚀变环带。一些块状硫化 物(VMS)矿床中的毒砂也有生成蚀变环带这一现 象,例如瑞典的 Boliden 块状硫化物矿床、加拿大安 大略省的 Campbell 矿床,以及表 9 所列的矿床。挪 威 Gressli 块状硫化物矿床中的黄铁矿也有蚀变环带 (Wagner et al.,2001)。

背散射电子图像表明,晚期生成的可见金与黄铁

矿和毒砂的化学成分的改变有关。Arehart 等(1993) 认为,当温度下降、pH值降低时,在还原条件下增高 H₂S的活度,能导致黄铁矿和毒砂中的 As 和 Au 富集 起来。Palenik 等(2004)发现,富砷的黄铁矿中有 Au⁰ 存在,并认为此 Au⁰(自然金)可能是原生的,也可能是 次生的。在浅成热液 Au-Ag 矿床中,pH 值和 S 活度 的变化导致其中的黄铁矿受到蚀变,尤其是,这类矿 床的成矿流体因压力骤降而发生沸腾,或者局部的成 分发生变化,均可使黄铁矿形成蚀变环带。

形成金矿的过程是在还原环境下进行的,这可 从矿床的硫同位素和矿物共生组合得到证实。金矿 床中很少见到赤铁矿和硫酸盐。从毒砂中析出可见 金不会是在氧化条件下,而是当温度下降,使金在毒 砂中的溶解度降低,从而析出自然金。毒砂的蚀变 作用及其与金的关系,可由其相图(图 14)来阐明。 图 14显示了硫化物和硫化砷(毒砂)之间的温度计 及平衡条件,并且可以把矿物的共生组合建立起来, 即,磁黄铁矿(作为固体包裹体产于毒砂中)+ 未蚀 变的毒砂(含有不可见金)→蚀变毒砂(富 As)+黄 铁矿±磁黄铁矿 + 可见金。蚀变毒砂(富 As)+黄 铁矿±磁黄铁矿 + 可见金。蚀变毒砂(富 As)+黄 铁矿±磁黄铁矿 + 可见金。蚀变毒砂→黄铁矿+可见 金,需要升高温度 75~100℃,并且,f(S₂)要增加 6 个数量级。金与毒砂的关系是有阶段性的,亦即,其 阶段性比连续性更为重要。因而,矿物的化学交代 作用也有阶段性。并且,在高温下形成蚀变环带时, 其流体的流通量是很低的。

图 15 显示出在热液作用下,黄铁矿、毒砂中 Au 的活化。在第一阶段形成的黄铁矿和毒砂中,Au 呈 不可见金存在,且分布很均匀。在蚀变环带(一般只 是蚀变了原来的晶体)形成的过程中,Au 从毒矿和 黄铁矿中出溶出来,进入热液而形成了可见金。由 此可知,可见金是形成于第三阶段。这种情况不仅 在造山带型金矿中见到,而且在变质金矿中也可见 到,例如 Hemlo 金矿、Challenger 金矿(表 9)以及 Mt. York 金矿,等等。

7 结 论

综上所述,可得出如下结论:

(1) 卡林型金矿内的金主要以不可见金和可见 金存在于黄铁矿、毒砂等硫化物中。在含 Au 和 As 的蚀变环带(Py-2)中有微细粒金存在。

(2) 在与火成岩有关的砂卡岩型金矿中,金以 可见金存在。但在硫化物中含有不可见金。

(3)在变质岩型金矿中,金除了以自然金产出 外,还在毒砂、黄铁矿、辉锑矿和雄黄中以不可见金 形式存在。

(4) 在浊积岩型金矿中,金以可见金存在。但 在毒砂、黄铁矿、辉锑矿等硫化物中含有不可见金。

(5) 在造山带金矿(以太古代绿岩带金矿为例) 中,金主要以自然金产出,但在毒砂和黄铁矿中存在 不可见金,后期的热液作用可使不可见金从毒砂和 黄铁矿中出溶出来,在黄铁矿的高 As 蚀变环带内或 其裂隙中呈自然金产出。

(6) 从不可见金到可见金需经过热液蚀变作 用,在高As含量条件下,温度和硫逸度升高,可出溶 出不可见金,在温度下降和还原条件下,以可见金形 式赋存于蚀变环带中。这种从不可见金到可见金的 转换过程,反映了Au、As、S及Fe等元素的地球化学 特征。金矿中的黄铁矿和毒砂具有相似的结构,包 括在其原始生长的晶体中含有不可见金,并且在稍 后的成矿阶段中形成了赋存有可见金的蚀变环带。 蚀变环带以高As含量为特征,并且,后期的可见金 沿裂隙或毒砂与黄铁矿颗粒之间分布。可见金是热 液活化了矿物中的不可见金而形成的。

参考文献/References

- 艾国栋,戴塔根,陈明辉.2010.金矿床中黄铁矿-毒砂-辉锑矿标型 及金的赋存状态——以湖南省金矿床为例[J].地质与资源,19 (2):158-163.
- 付绍洪,顾雪祥,王 乾,夏 勇,张兴春,陶 琰. 2004. 黔西南 水银洞金矿床载金黄铁矿标型特征[J]. 矿物学报, 24(1): 75-80.
- 胡文宣,张文兰,胡受奚,华仁民,朱建民. 2001. 含金毒砂中晶格 金的确定及其形成机理研究[J]. 地质学报, 75(3): 410-422.

李九玲, 亓 锋, 徐庆生, 张桂兰. 1997. 矿物中金呈负价态存在及

841

其转换的研究[J]. 中国地质科学院矿床地质研究所所刊,(1): 1-123.

- 李九玲, 亓 锋, 徐庆生. 2002. 矿物中呈负价态之金——砂和含砷 黄铁矿中"结合金"化学状态的进一步研究[J]. 自然科学进展, 12(9):952-958.
- 刘建中.2003.贵州水银洞金矿床矿石特征及金的赋存状态[J].贵 州地质,20(1):30-34.
- 卢焕章. 2011. 地球中的流体[M]. 高等教育出版社. 354 页.
- 卢焕章,王中刚,吴学益.2012. 浊积岩型金矿地质[M].北京:科学 出版社.202页.
- 邱兆明, 穰 玫, 邱隆伟. 1994. 黄铁矿及毒砂中负氧化数金的发现 及判定[J]. 长春地质学院学报, 24(2): 168-173.
- 苏文超,张弘弢,夏 斌,张兴春,胡瑞忠,周国富,夏 勇.2006. 贵州水银洞卡林型金矿床首次发现大量次显微-显微可见自然金 颗粒[J]. 矿物学报,26(3):257-260.
- 王奎仁,周有勤,李凡庆,孙立广,王俊新,任炽刚,周世俊,汤家 镛,杨福家.1992.广西金牙金矿微细粒金赋存状态的质子探针 和扫描电镜研究[J].科学通报,9:832-835.
- 吴学益, 卢焕章, 王中刚. 2007. 黔东南锦屏金矿成矿模式的模拟实 验[J]. 地质通报, 26: 1536-1548.
- 张弘弢,苏文超,田建吉,刘玉平,刘建中,刘川勤.2008.贵州水 银洞卡林型金矿床金的赋存状态初步研究[J].矿物学报,28 (1):17-24.
- Arehart G B, Chryssoulis S L and Kesler S E. 1993. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits: Implications for depositional processes [J]. Econ. Geol., 88: 171-185.
- Arehart G B. 1996. Characteristics and origin of sediment-hosted gold deposits: A review[J]. Ore Geology Review, 11: 383-403.
- Cabri L J, Newville M, Gordon R A, Crozier E D, Sutton S R, Mcmann G and Jiang DT. 2004. Chemical speciation of gold in arsenopyrite[J]. Canadian Mineralogist, 38: 1265-1281.
- Cepedal A, Fuertes-Fuente M, Martin-Izard A, Gonzalez-Nistal S and Barrero M. 2008. Gold bearing As-rich pyrite and arsenopyrite from the El Valle gold deposit, Asturias, N W Spain[J]. Canadian Mineralogist, 46(1): 233-247.
- Chen L. 2011. Occurrence and distribution of gold in the Qinling Carlin type gold deposit, wstern Qinling orogen, China [A]. In: 2011 GSA Annual meting in Minneapolis[C]. paper No. 190-7.
- Clark L A. 1960. The Fe-As-Ssystem: Phase relations and applications [J]. Econ. Geol., 55: 1345-1381.
- Fleet M E, Chryssoulis S L, MacLean P J, Davidson R and Weisener C G. 1993. Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface

oxidation by XPS and LIMS[J]. Canadian Mineralogist, 31: 1-17.

- Fleet M E and Mumin A H. 1997. Gold-bearing arsenian pyrite and marcasite from Carlin Trend deposits and laboratory synthesis[J]. American Mineralogist, 82: 182-193.
- Friedl J, Wagner F E and Wang N. 1995. On thores: Conclusions from mossbauer source e chemical state of combined gold[A]. In: Sulfidicexperiments. Neues Jahrbuch fur Minralogie[C]. Abhandlungen, 169: 279-290.
- Hinchey J G, Wilton D H C and Tubrett M N. 2003. A LA-ICP-MS study of the distribution of gold in arsenopyrite from the Lodestar prospect, New Foundland, Canada[J]. Canadian Mineralogist, 41: 353-364.
- Hofstra A H and Cline J S. 2000. Characteristics and models for Carlintype gold deposits[J]. J. Rewiews in Econ. Geol. , 13: 163-220.
- Lu H Z, Guha J and Harris D C. 2002. Hg and As minerals in fluid inclusions from the Williams mine, Hemlo, and their genetic implications[J]. Chinese J. Geochemistry, 21(1): 1-18.
- Maddox L M, Bancroft G M, Scaini M J and Lorimer J W. 1998. Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite [J]. American Mineralogist, 83: 1240-1245.
- Morey A A, Tomkins A G, Bierlein F P, Weinberg R F and Davidson G J. 2008. Biomodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, western Australia[J]. Econ. Geol., 103: 599-614.
- Palenik C S, Utsumomiya S, Reich M, Kesler S E, Wang L and Ewing R C. 2004. Invisible gold revealed: Direct imaging of gold nanoparticles in a Carlin type deposit [J]. American Mineralogist, 89: 1359-1366.
- Radtke A S. 1985. Geology of the Carlin gold deposit, Nevada, U S [M]. Geol. Survey Prof. Paper 1267. 124p.
- Reich M, Kesler S, Utsunomiya S, Palcnik C S, Chryssoulis S L and Ewing R C. 2005. Solubility of gold in arsenic pyrite[J]. Geochimica et Cosmochimica Acta, 69(11); 2781-2796.
- Robert F, Brommecker R, Bourne B T, Dobak P J, et al. 2007. Models and exploration methods for major gold deposit types[A]. In: Milkereit K, ed. Proceedings of exploration[C]. 691-711.
- Simon G, Kesler S E and Chryssoulis S. 1999a. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposit ion of gold in Carlin-type deposist[J]. Econ. Geol., 94: 405-421.
- Simon G, Huang H P, Hahn J E and Kesler S E. 1999b. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J]. American Mineralogist, 84: 1071-1079.

Sung Y H, Brugger J, Ciobanu C L, Pring A, Skinner W and Nugus

M. 2009. Invisible gold in arsenian pyrie and arsenopyrite from a multistage Archean gold deposit: Sunrise Dam, Eastern Goldfield Province, Western Australia [J]. Mineralium Deposita, 44(7): 765-791.

- Tomkins A G, Frost B R and Pattison D R M. 2006. Arsenopyrite melting during metamoprphism of sulfide ore deposits[J]. Canadian Mineralogist, 44: 1045-1062.
- Wagner T and Jonsson E. 2001. Mineralogy of sulfosalt-rich vein type ores, Boliden massive sulfide deposit, Skellefte district, northern Sweden[J]. Canadian Mineralogist, 39: 855-872.
- Wells J D and Mullens T E. 1973. Gold bearing arsenian pyrite determind by microprobe analysis, Cortz and Carlin gold mines, Nevada [J]. Econ, Geol., 68: 187-201.
- Zacharias J, Fryda B, Paterova B and Mihakjevic M. 2004. Arsenopyrite and As-bearing pyrite from the Roudny deposit, Bohemian Massif[J]. Mineralogical Magazine, 68(1): 31-46.
- Zhou Y and Wang K. 2003. Gold in the Jinya Carlin-type deposit: Characterization and implications[J]. Journal of Minerals & Materials Characterization & Engineering, 2(2): 83-100.