铊在真菌亚细胞中的分布特征

孙嘉龙¹²,肖唐付¹,宁增平¹,贾彦龙¹³,杨 菲¹³,彭景权² (1.中国科学院地球化学研究所 环境地球化学国家重点实验室,贵阳 550002; 2.贵州省环境科学研究设计院,贵阳 550002; 3.中国科学院研究生院,北京 100039)

摘 要:将前期从铊污染区筛选得到的9株高耐受性真菌菌株用于微生物对铊的富集和亚细胞分布实验,采用酶 解和差速离心法分离各亚细胞组分,并检测其中铊的质量分数.结果表明,生物富集量随着铊处理浓度上升而降 低,其影响趋势与对生物量的影响趋势基本一致,最高可达7189 mg/kg,最大富集系数为7.19.在亚细胞水平上, 铊的富集优先顺序为:细胞质一细胞壁一细胞器.亚细胞水平的区隔化作用是真菌对铊的主要耐受机制,细胞质是 赋存铊的主要场所(53.83%~79.45%).

关键词: 铊; 微生物; 真菌; 亚细胞; 分布; 富集 中图分类号: P 593 文献标志码: A 文章编号: 0254 - 0037(2013) 06 - 0941 - 07

Sub-cellular Distribution of Thallium in Fungus

SUN Jia-long^{1,2}, XIAO Tang-fu¹, NING Zeng-ping¹, JIA Yan-long^{1,3}, YANG Fei^{1,3}, PENG Jing-quan² (1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guivang 550002, China; 2. Guizhou Institute of Environmental Science Research and Design, Guivang 550002, China;

3. Graduate School of Chinese Academy of Sciences, Beijing 10039, China)

Abstract: This paper focused on the sub-cellular distribution of thallium in several different fungus strains. The fungus strains were isolated from the Lanmuchang thallium-mineralised area in southwest Guizhou Province , and were used in the bio-concentration experiments. The sub-cellular supernatants including cytoplasmic , cellwall and cell organelles were seperated by the differential centrifuge after treated with snailase. Results show that the bio-concentration rate of thallium in the nine strains decreases with increasing thallium contents in the culture , the maximum at 7 189 mg/kg and the maximum bio-concentration factor (BCF) at 7.19. In the sub-cellular supernatants detected by ICP-OES , the majority of thallium (up to 79.45%) was found in cytoplasmic organelles , and the concentrations of thallium in the order of priority are as follows: cytoplasmic-cellwall-cell organelles. Cytoplasmic supernatant is apparently a major storage site for thallium , which is a possible detoxification of thallium by the fungus. **Key words**: thallium; microbe; fungus; subcellular; distribution; bio-concentration

重金属污染对于多数微生物生长有毒害作用. 但在污染环境中,往往也存在一些对重金属胁迫具 有高耐受性的微生物菌种,它们可用于生物修复、工 业废水处理等实际应用^[1-2].重金属对微生物的毒 害作用及微生物对重金属的耐受性,主要与微生物 对重金属的吸收与运输、重金属在微生物体内各部 位的分配及其与微生物体内物质的结合形态等因素 有关^[3].微生物耐金属毒害的机制较为复杂,包括

收稿日期: 2011-06-28.

基金项目: 国家自然科学基金资助项目(41063005);中国科学院知识创新工程重要方向项目(kzcx2-yw-135). 作者简介: 孙嘉龙(1978—),男,高级工程师,主要从事环境微生物学方面的研究,E-mail: danielsjl@163.com.

通信作者: 肖唐付(1969—) , 用 研究员, 主要从事环境地球化学方面的研究 E-mail: xiaotangfu@ vip. gyig. ac. cn.

细胞壁钝化、跨膜运输减少、主动外排、区隔化分布、 螯合、合成逆境蛋白等,但其中最主要、最普遍的机 制是通过诱导金属配位体的合成,形成金属配位体 复合物,并在器官、细胞和亚细胞水平呈区隔化分 布^[4]. 近年来,许多学者对微生物吸附重金属离子 的现象和机理进行的大量研究^[5-6]表明 微生物吸附 重金属存在静电吸引、络合、沉积和主动运输等作 用^[7]. 但是这些研究大多以死菌体为研究对象 而 对于活菌体的研究报道较少. 铊是一种典型的有毒 有害重金属元素 国内外有关这方面的研究主要集 中在铊的毒理、环境地球化学等方面^[89],关于铊与 微生物之间相互作用的相关研究较少.本论文以前 期筛选出的耐铊性真菌菌株为研究对象 ,采用差速 离心法(differential centrifugation),分离并检测各亚 细胞组分中铊和其他常量元素的质量分数,初步揭 示亚细胞水平上铊的分布特征,并探讨真菌细胞对 铊的耐受机理,为进一步阐明微生物对铊的解毒/耐 毒机制提供理论依据 以期应用这些菌株进行矿山 废水处理.

1 研究方法

1.1 富集实验

以前期筛选得到的9株铊高耐受性真菌菌株为研究对象^[10] .依次编号为T01~T09 ,其中T01、T02、T04、T08 和T09 为木霉属(*Trichoderma*) ,T03 为马利亚霉(*Mariannaea*),T05 为拟青霉属(*Paecilomyces*),T08 和T09 为青霉属(*Penicillium*).

采用液体培养的方式进行真菌对铊的富集实验 液体培养基选择马铃薯葡萄糖(potato dextrose, PD)液体培养基. 根据预实验结果,设置3个处理水平 在三角瓶添加适量 TINO₃(Merck, Germany)和 PD 配成铊质量浓度分别为1000、1200和1500 mg/L 的培养液.

将9株菌株依法配制成1×10⁴个/mL 孢子悬 液. 混匀后 取1 mL 孢子悬浮液接入三角瓶中,每 个处理均设3个平行处理. 然后,置于摇床培养(26 ℃ 250 r/min).

培养结束后,将发酵液用定性滤纸过滤,并用 200 mL 0.05% Twin-80 溶液反复冲洗,然后称取 0.2 g 菌丝体(A) 置于4℃冰箱,备用.剩余菌丝体 (B) 置于80℃的烘箱内烘干至恒重,用于分析生物 样品中对铊的富集量.

 1.2 亚细胞组分分离 采用蜗牛酶酶解法对真菌细胞破壁处理,剩下 的为仅由细胞膜包裹着的细胞(称为原生质体),含 细胞质、细胞核等亚组分,然后采用差速离心的方法 分别收集各亚细胞组分.

称取适量溶壁酶(Snailase,美国 Ameresco 公司) 配制成 20 g/L 酶液. 然后,按质量体积比 1:10 往菌丝体(A) 加入酶液 30 ℃ 80 r/min 酶解 3 h.

将酶解后的溶液转入 5 mL 离心管中,采用差速 离心法分离不同大小的细胞组分. 首先在 4 ℃、 1 600 r/min 离心 15 min,所得沉淀为细胞壁组分,上 层液备用;此后在 4 ℃、18 000 r/min离心 45 min,上 层液为细胞液,所得沉淀为细胞器组分.

1.3 样品处理与测定

将分离后的各亚细胞组分移入 Teflon 管(此前 用超纯 HNO₃ 煮洗过),加入 0.8 mL HF + 1 mL HNO₃(将 Teflon 管放置于钢罐中密封)烘箱中加热 (180~190℃)24~30 h,冷却.将 Teflon 管取出,放 置在电热板上蒸干(140℃),再加入少许 HNO₃ (<1 mL)蒸干(干透),加入 2 mL HNO₃ + 3 mL Millipore 超纯水 密封,烘箱内加热(140℃)4~5 h, 冷却,然后定容到 100 mL.另将烘干后的菌丝体 (B)多次研磨至 200 目,同样方法消解,备用.

分析仪器为中国科学院地球化学研究所 Perkin Elmer 电感耦合等离子体质谱仪(inductively coupled plasmas mass spectrometry ,ICP-MS), 铊的检测限为 0.005 μ g/L,其他常量元素采用电感耦合等离子发 射光谱仪(inductively coupled plasmas optical emission spectrometry ,ICP-OES)(Vista MPX型,美 国 Varian 公司)进行测定.通过重复样、空白样和标 样的 QA/QC 控制测试,分析结果误差在 95% 置信 度水平上均控制在 ± 10% 以内; 空白样测试结果都 低于检测限; 标样测试结果与推荐值的误差为 ±10%.

1.4 数据处理

本研究中得出的数据分析结果均采用 SPSS 11.5 软件完成方差分析和最不显著差异法(least significant difference LSD) 多重比较 P < 0.05 为差 异显著性.

2 结果分析

2.1 各菌株铊的富集量比较

各菌株富集铊的结果见表 1. 在 1 000 mg/L 处 理中,各个菌株对铊的富集量为 255.96~7 189.06 μg/g,平均富集量为 2 309.18 μg/g;在 1 200 mg/L 处理中 9 株菌株中仅存 3 株菌株继续生长,各个菌

株对铊的富集量为 930.72~6 165.42 μ g/g,平均富 集量为 2 428.58 μ g/g;在 1 500 mg/L 处理中 9 株菌 株中仅存 3 株菌株继续生长,各个菌株对铊的富集 量为 189.60 ~ 5 819.13 µg/g,平均富集量为 2915.01 µg/g.

表1 不同铊处理各菌株铊的富集量(干质量)比较 Table 1 Concentrations of thellium in individual strain

	Tuble 1 Concentrations of thankan in introduct strain				
	1 000 mg/L	1 200 mg/L	1 500 mg/L		
T01	2 217 ± 175. 53 ^{BC}				
T02	2 775 ± 296. 88 ^c				
Т03	$1\ 657\ \pm\ 199.\ 35^{aB}$	931 ± 62.03^{bA}	669 ± 58.76^{bA}		
T04	$2\ 662\ \pm\ 199.\ 48^{\mathrm{aBC}}$	2257 ± 13.29^{bA}	$190 \pm 19.60^{\circ B}$		
T05	2.042 ± 384.19^{BC}				
T06	$1\ 639\ \pm\ 159.\ 53^{\mathrm{B}}$				
T07	$345 \pm 64.31^{\text{A}}$				
Т08	$256 \pm 43.82^{\text{A}}$				
Т09	$7\ 189\ \pm\ 300.\ 83^{\mathrm{D}}$	$6\ 165.\ 42\ \pm\ 433.\ 41^{\text{B}}$	5 819. 13 ± 196. 75 [°]		

注:同一行肩标不同小写字母和同一列肩标大写字母表示差异显著(P<0.05).

利用 SPSS 软件对实验数据进行 LSD 法多重比 较分析结果(表1)表明: 3 个处理水平对 TO3 和 TO4 富集量的影响具有明显差异,而对 TO9 菌株则不明 显.随着处理浓度的变化,其富集量都不同程度地 表现出下降,这表明随着处理浓度的增大,菌株的生 长受到抑制,生物量也随之下降,导致富集量也随之 下降.

2.2 各菌株生物富集系数比较

为了有效地评价此次分离到的各菌株对铊的富 集能力,计算了各菌株不同处理批次的生物富集系 数(BCF = 微生物体内铊质量浓度/培养基中铊质量 浓度),如表2所示.

表 2 不同铊处理各菌株铊的 BCF 比较 Table 2 BCF of thallium inindividual strain

菌株	$1\ 000\ \mathrm{mg/L}$	$1\ 200\ \mathrm{mg/L}$	$1\;500\;\mathrm{mg/L}$
T01	2.22		
T02	2.78		
T03	1.66	0. 78	0.45
T04	2.66	1.50	0.60
T05	2.04		
T06	1.64		
T07	0.34		
T08	0.26		
T09	7.19	5.14	3.88
109	7.19	5.14	5.00

* 在1200和1500mg/L处理中 部分菌株不能生长 故 无数据. 在 1 000 mg/L 处理水平,除 T07 和 T08 菌株的 生物富集系数低于 1 以外,其他菌株均在 1 以上,其 中 T09 菌株的 BCF 最高(7.19);在 1 200 mg/L 处理 水平,除 T03 菌株低于 1 以外,其他菌株均在 1 以 上,其中 T09 菌株的 BCF 最高(5.14);在 1 500 mg/ L 处理水平,除 T03 和 T04 菌株低于 1 以外,其他菌 株均在 1 以上,其中 T09 菌株的 BCF 最高(3.88). 从以上分析结果可看出,随处理浓度的上升,各菌株 的 BCF 均有不同程度的下降.

2.3 铊在细胞内各亚细胞组分中的分布

铊在真菌细胞中各亚细胞分布实验结果(表3) 表明 細胞内一半以上的铊集中在细胞质 ,其次是细 胞壁和细胞器.但由于各菌株之间的物种差异 ,铊 在亚细胞水平上的分布也有所差别.

在 1 000 mg/L 铊处理水平,铊在细胞质组分中 的质量分数为 4.62 ~ 50.41 μ g/g,平均质量分数为 22.41 μ g/g,所占比例为 56.76%;铊在细胞壁组分 中的质量分数为 2.87 ~ 29.98 μ g/g,平均质量分数 为 4.94 μ g/g,所占比例为 29.94%;铊在细胞器组 分中的质量分数为 1.23 ~ 12.55 μ g/g,平均质量分 数为 11.41 μ g/g,所占比例为 13.30%.在 1 200 mg/L 铊处理水平,铊在细胞质组分中的质量分数为 35.55 ~ 49.89 μ g/g,平均质量分数为 42.93 μ g/g, 所占比例为 71.34%;铊在细胞壁组分中的质量分 数为 6.30 ~ 30.80 μ g/g,平均质量分数为 14.59 μ g/ g,所占比例为 21.11%;铊在细胞器组分中的质量

茵灶	铊处理/	铊质量分数(0.2g鲜重菌丝体) /(μg•g⁻¹)					
困怀	(mg•L ⁻¹)	细胞壁	细胞器	细胞质	总铊		
T01	1 000	10. $3 \pm 0.82^{\text{bBC}}$	4. 33 \pm 1. 05 ^{cAB}	15. 45 $\pm 1.15^{\text{bA}}$	30.04 ± 2.57^{B}		
T02	1 000	$15.95 \pm 1.51^{\text{bDE}}$	4. 49 $\pm 1.35^{cAB}$	30. 05 \pm 0. 68 ^{aBC}	50. 48 \pm 3. 53 [°]		
T03	1 000	16. 28 \pm 1. 07 ^{bDE}	8. 70 $\pm 2.27^{eBCD}$	25. 56 \pm 3. 46 ^{aB}	50. 54 \pm 6. 81 [°]		
	1 200	6. 50 \pm 0. 20 ^{bAB}	1.62 \pm 0.97 ^{cA}	48.65 $\pm 1.24^{aD}$	56. 78 $\pm 2.01^{\circ}$		
	1 500	4. 04 \pm 0. 94 ^{bA}	2. 25 \pm 0. 14 ^{bA}	48. 53 $\pm 1.48^{aD}$	54. 82 \pm 2. 29 [°]		
T04	1 000	16. 83 $\pm 0.07^{\text{bE}}$	9.75 $\pm 2.80^{\text{bCD}}$	35. 87 $\pm 2.50^{\text{aBCD}}$	62. 44 \pm 5. 24 [°]		
	1 200	7. 73 $\pm 0.68^{\text{bAB}}$	3. 83 \pm 0. 53 ^{cAB}	37. 58 $\pm 2.03^{\text{aBCD}}$	49. 14 \pm 1. 89 [°]		
	1 500	14. 77 $\pm 2.00^{\text{bCDE}}$	2. 80 \pm 1. 29 ^{cA}	34. 71 \pm 1. 04 ^{aBCD}	52. 28 \pm 1. 74 [°]		
T05	1 000	6. 50 \pm 0. 47 ^{aAB}	1. 79 $\pm 0.56^{bA}$	8. 34 \pm 1. 80 ^{aA}	16.63 $\pm 0.77^{AB}$		
T06	1 000	14. 27 $\pm 0.18^{\text{bCDE}}$	6. 09 $\pm 0.83^{\text{cABCD}}$	44. 72 \pm 3. 63 ^{aCD}	$65.08 \pm 3.63^{\circ}$		
T07	1 000	3. 84 \pm 0. 52 ^{bA}	2. 13 \pm 0. 26 ^{bA}	9. 17 $\pm 0.96^{aA}$	15. 14 \pm 0. 73 ^{AB}		
T08	1 000	3.71 ± 0.43^{bA}	1.91 ± 0.43^{caA}	6. 51 \pm 1. 13 ^{aA}	12. 13 \pm 1. 08 ^A		
T09	1 000	29. 41 \pm 0. 54 ^{bF}	10. 71 \pm 1. 78 ^{cD}	46. 11 \pm 4. 30 ^D	86. 23 \pm 6. 61 ^D		
	1 200	29. 53 $\pm 1.27^{\rm bF}$	9.87 $\pm 0.85^{\circ CD}$	42. 55 $\pm 2.76^{aCD}$	$81.94 \pm 3.18^{\text{D}}$		
	1 500	11. 19 $\pm 2.79^{\text{bBCD}}$	5. 33 $\pm 1.43^{\text{cABC}}$	74. 89 \pm 7. 45 ^{aE}	91. 40 \pm 9. 71 ^D		

表 3 不同菌株亚细胞组分中铊的分布 Table 3 Sub-cellular distribution of thallium inindividual strain

注: 同一行肩标不同小写字母和同一列肩标大写字母表示差异显著(P<0.05).

分数为 0.65 ~ 10.72 μg/g,平均质量分数为 5.11 μg/g,所占比例为 7.55%.

析. 因此,可认为在不同菌株中,铊的亚细胞分布存 在着显著差异,如表4所示.

利用 SPSS 软件对实验数据进行单因素方差分

Table 4 Oneway ANOVA of thallium in the sub-cellular fractions						
亚细胞组分	差异源	平方和(SS)	自由度(df)	均方(MS)	F _{0.05}	Р
	组间变异	2 998. 744	1	2 998. 744	174. 178	0.000
细胞壁	组内变异	275.465	16	17.217		
	总变异	3 274. 209	17			
	组间变异	298. 477	1	298. 477	37.072	0.000
细胞器	组内变异	128. 819	16	8.051		
	总变异	427. 296	17			
	组间变异	11 723. 467	1	11 723. 467	533. 596	0.000
细胞质	组内变异	351. 531	16	21.971		
	总变异	12 074. 998	17			

表4 铊在亚细胞水平分布的单因素方差分析表

随着铊处理水平的上升,细胞质中铊的质量分数也随着上升,而细胞壁和细胞器中铊的质量分数则随之下降. 这表明,在高铊环境背景中,微生物细胞中细胞质显然是吸附铊的一个重要储存部位.

2.4 各常量元素与亚细胞组分中铊分布之间的关系 表 5 为样本数 n = 42 时,亚细胞组分中各常量 元素与铊的相关系数.研究表明,铊在农作物内的 富集常与钙呈密切相关^[11].本研究发现,在细胞壁 中铊与钙呈显著相关关系(*r* = 0.2820),这与前人 研究结果一致^[12].

此外,在细胞壁中,铊与钙呈显著相关关系(r= 0.2820),与钠呈极显著相关(r=0.7929),而与镁

Table 5 Person's matrix of Ca, Fe, K, Mg, Na and 11 in the sub-central fractions						ons
	亚细胞组分	Са	Fe	K	Mg	Na
	细胞壁(n=42)	0.2820^{*}	0. 045 7	0. 127 2	-0.1644	0. 792 9**
	细胞器(n=42)	-0.1843	0. 224 3	0. 399 9**	-0.1367	0. 445 0**
	细胞质(n=42)	0.0757	- 0. 039 0	-0.1693	-0.0179	0. 362 4*

表 5 亚细胞组分中各常量元素与铊的相关系数 r

able 5 Person's matrix of Ca, Fe, K, Mg, Na and Tl in the sub-cellular fraction

* 显著水平 P < 0.05; * * 显著水平 P < 0.01.

呈负相关;在细胞器中,铊与钾、钠呈极显著相关,r 分别为0.3999和0.4450,与镁也呈负相关;在细胞 质中,铊与钠呈极显著相关,r=0.3624,与铁、钾和 镁均呈负相关性.

3 讨论

3.1 富集能力与生物量的关系

金属元素对微生物来说,是生长所需的微量元 素,又是具有抑制作用的有毒物质,特别是一些重金 属离子,对于多数微生物有毒害作用,但从另一角度 来看,一些具高耐受性的微生物菌种也正被用于生 物修复、工业废水处理等实际应用^[1-2].

本研究也得出类似的结果,在1000 mg/L处理 中,各个菌株均能生长,但在1200和1500 mg/L处 理中9株菌株中仅存3株菌株能继续生长,且随着 处理质量浓度的上升,菌株生物量显著减少,这表明 铊对真菌菌株有着明显的毒害作用.同时,随着处 理浓度的变化,其富集量都不同程度表现出下降,这 表明随着处理浓度的增大,其生长受到抑制,生物量 也随之下降,导致富集量也随之下降.

此外,生物富集系数表征生物对某种重金属元 素的富集能力,富集系数越大,其富集能力越强.有 研究者指出,只有富集系数大于1的元素,才能谈得 上在生物体内富集^[13].在本研究中,随处理浓度的 上升,各菌株的 BCF 均有不同程度的下降.这也从 侧面表明外围环境高浓度的 TI⁺对真菌菌株产生了 较大了的抑制作用,其正常代谢机理不能加以维持, 从而导致富集系数的下降.

从应用前景的角度,本研究中所筛选到的具有 高耐受性的真菌菌株可用于铊矿区废水或含铊废水 处理、铊污染土壤的生物修复等应用研究.

3.2 从亚细胞分布特征探讨真菌对铊的耐受机制

多数重金属作为生物生长的一种非必需元素, 进入细胞后可扰乱生物的正常代谢,产生毒害作用. 目前有关植物对重金属的耐受机制研究较多,许多 研究都表明,无论是在植物细胞还是微生物细胞中, 液泡(亚细胞细胞器中的一部分)除具有生物大分 子的降解、代谢物的储存和维持氢离子浓度的平衡 外 还具有解除金属离子毒害的作用^[14].

微生物的这种耐重金属毒害机制与植物很相 似. 有研究表明 酵母在抗重金属离子的毒害中 液 泡主要利用的是液泡 H⁺-ATPase,而不是以前认为 的线粒体 F_1F_0 -ATPase,并提出了一个以液泡 H⁺-ATPase 为能量来源的重金属离子跨膜机制假 说^[15].

以往的研究只发现铊可在植物中大量富 集^[16-7],并对植物(主要是甘蓝)富集铊的机理作了 探讨^[18],但是对微生物与铊相互作用的研究相对 较少.

本研究通过对真菌菌株的研究,也得出与前人研究相类似的结论,在1000 mg/L 铊处理水平, 53.83%的铊富集于细胞质中;在1200 mg/L 铊处理 水平,71.34%的铊富集于细胞质中;在1500 mg/L 铊处理水平,79.45%的铊富集于细胞质中. 这表 明在3个处理水平上,细胞质中的铊质量分数都维 持在一个较高水平上,而细胞器中的铊质量分数一 直维持在较低水平.因此,在微生物亚细胞水平上, 铊的富集优先顺序为:细胞质一细胞壁一细胞器.

3.3 细胞壁上有关 TI⁺通道的探讨

细胞壁是防止细胞外物质进入细胞的屏障,大 多数的金属离子等都是通过主动运输或协同运输通 过细胞壁进入细胞内的,如 Na⁺、K⁺是通过钠-钾泵 进入细胞的,Ca²⁺是通过钙离子泵进入细胞内的. 除此之外,细胞壁上还存在专门对 Na⁺、K⁺、Ca²⁺的 通道^[19].

铊的毒理学实验表明,由于 Tl⁺和 K⁺的离子半 径非常相近(Tl⁺150 nm, K⁺151 nm)^[20] 细胞壁可 能无法准确分辨 K⁺和 Tl^{+[21]} 因此, Tl⁺很容易混入 细胞内,代替 K⁺参加某些生物化学反应,与 K⁺发 生竞争,影响有 K⁺参与的生理活动如神经冲动的 传导等^[22-24].在浮萍(*Lemna minor*)水培实验中,当 水培溶液中 K⁺浓度从 0.93 mmol/L 逐步升高到 50 mmol/L 时,在 2、24 和 48 h 的暴露时间内 植物里面 Tl⁺的质量分数分别降低了 60%、75% 和 69%^[25].

本研究结果显示,在细胞壁组分中, 舵与 Na⁺的 极显著正相关表明,可能是由于细胞壁无法准确分 辨 K⁺和 Tl⁺,细胞壁上的钠-钾泵(Na⁺-K⁺ATPase, 每一循环转运出 3 个 Na⁺、转进 2 个 K⁺并消耗 1 个 ATP)参与了对 Tl⁺的运输.与此同时, 舵与钾的相 关系数只为 0.127 2,这可能是因为细胞壁上除了 钠-钾泵运输 K⁺外,还存在另外一种 K⁺通道— 电位门通道(voltage gated channel), 它能在细胞内 外的离子浓度发生变化时, 致使其构象变化,"门" 打开, K⁺进入细胞内,以维持正常生理代谢^[19].因 此, 舵与钾在细胞运输方式上并无相互竞争作用 (图 1).

图1 真菌细胞转运铊的假想机制

铊与钙呈显著相关性也表明,它们之间存在一 种协同关系. 曾有研究表明,在 Ca²⁺活化的 K⁺通 道里面,Tl⁺和 K⁺的离子选择性非常类似^[12].

综上所述,可以初步推断,Tl⁺主要是以其与 K⁺的相似性,通过细胞壁的 Na⁺-K⁺ATPase 和 K⁺-电位门通道进入细胞内从而影响细胞的正常代谢 的,而 Ca²⁺的活化更有助于这一过程. 同时,由于电 位门通道受胞内外浓度差变化的影响,当胞内浓度 高于胞外浓度时,它又成为细胞将铊外排出细胞的 一种通道,从而降低铊对细胞的胁迫,维持正常生理 代谢.

4 结论

1)本研究将前期从铊污染区筛选得到的9株
 高耐受性菌株用于微生物对铊的富集实验,在1000
 mg/L处理中,各个菌株对铊的富集量为255.96~

7 189.06 μg/g ,平均富集量为 2 309.18 μg/g ,生物 富集系数最高可达 7.19.

2) 亚细胞组分实验表明,在亚细胞水平上,铊 的富集优先顺序为:细胞质一细胞壁一细胞器.关 于铊的耐受机制,本文提出亚细胞水平的区隔化作 用是微生物对铊的主要耐受机制,细胞质是赋存铊 的主要场所(53.83%~79.45%).

3) 在此基础上,本文探讨了真菌细胞壁的 TI⁺ 通道,认为 TI⁺主要是以其与 K⁺ 的相似性,通过细 胞壁的 Na⁺-K⁺ ATPase 和 K⁺-电位门通道进入细胞 内从而影响细胞的正常代谢的,而 Ca²⁺ 的活化更有 助于这一过程.

参考文献:

- ANAND P , ISAR J , SARAN S , et al. Bioaccumulation of copper by *Trichoderma viride* [J]. Bioresource Technology , 2006 , 97(8): 1018-1025.
- [2] BOSECKER K. Bioleaching: metal solubilization by microorganisms [J]. FEMS Microbiology Reviews, 1997, 20(3/4): 591-604.
- [3] ABOU-SHANAB R A I, VAN BERKUM P, ANGLE J S. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of *Alyssum murale* [J]. Chemosphere, 2007, 68(2): 360-367.
- [4] 荚荣,裴明军,史银,等. 真菌(Aspergillus sp.)吸附 Cu²⁺的研究[J]. 中国环境科学,2003(3): 263-266.
 JIA Rong, PEI Ming-jun, SHI Yin, et al. Studies on adsorption of Cu²⁺ by the fungus Aspergillus sp [J]. China Environmental Science, 2003(3): 263-266. (in Chinese)
- [5] 杜爱雪,曹理想,张仁铎.高抗铜青霉菌的筛选及其对 重金属的吸附[J].应用与环境生物学报,2008,14 (5):650-653.

DU Ai-xue, CAO Li-xiang, ZHANG Ren-yi. Screening of *Penicillium* strain with high copper resistance and its adsorption of heavy metals [J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(5): 650-653. (in Chinese)

- [6] AKSU Z, BALIBEK E. Chromium (VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters [J]. Journal of Hazardous Materials, 2007, 145 (1/2): 210– 220.
- [7] DACERA D D M , BABEL S. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes [J].

Bioresource Technology , 2008 , 99(6): 1682-1689.

- [8] AMIRI A , FATEMI S , FATEMI S. Removal of thallium by combining desferrioxamine and deferiprone chelators in rats [J]. BioMetals , 2007 , 20(2): 159–163.
- [9] JACOBSON A R , KLITZKE S , MCBRIDE M B , et al. The desorption of silver and thallium from soils in the presence of a chelating resin with thiol functional groups [J]. Water , Air , & Soil Pollution , 2005 , 160(1): 41– 54.
- [10] 孙嘉龙,肖唐付,邹晓,等. 黔西南滥木厂铊矿化区 铊污染的微生物效应[J]. 地球与环境,2009,37 (1):62-66.
 SUN Jia-Jong, XIAO Tang-fu, ZOU Xiao, et al. Microbial effects induced by thallium accumulation in the Lanmuchang Tl mineralised area, southwest Guizhou province [J]. Earth and Environment,2009,37(1):
- [11] XIAO T F, GUHA J, BOYLE D, et al. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China [J]. The Science of the Total Environment, 2004, 318 (1-3): 223-244.

62-66. (in Chinese)

- [12] GORMA A L F , WOOLUM J C , CORNWALL M C. Selectivity of the Ca^{2+} -activated and light-dependent K⁺ channels for monovalent cations [J]. Biophysical Journal , 1982 , 38(3) : 319-322.
- [13] PEREL Man A и. 后生地球化学[M]. 龚子同,译. 北 京:科学出版社,1975.
- [14] YANG X , FENG Y , HE Z L , et al. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation [J]. Journal of Trace Elements in Medicine and Biology , 2005 , 18(4): 339–353.
- [15] HAMILTON C A , TAYLOR G J , GOOD A G. Vacuolar H⁺—ATPase , but not mitochondrial F₁F₀—ATPase , is required for NaCl tolerance in *Saccharomyces cerevisiae* [J]. FEMS Microbiology Letters , 2002 , 208(2): 227– 232.
- [16] LEBLANC M, PETIT D, DERAM A, et al. The

phytomining and environmental significance of hyperaccumulation of thallium by *Iberis intermedia* from southern France [J]. Economic Geology, 1999, 94(1): 109–113.

- [17] WIERZBICKA M, SZAREK-LUKASZEWSKA G, GRODZINSKA K. Highly toxic thallium in plants from the vicinity of Olkusz (Poland) [J]. Ecotoxicology And Environmental Safety, 2004, 59(1): 84-88.
- [18] 何立斌. 甘蓝(Brassica oleracea L. var. capitata L.)吸收富集铊的环境地球化学研究[D]. 北京: 中国科学院研究生院,2008.
 HE Li-bin. Environmental geochemistry study on high uptake of thallium by green cabbage (Brassica oleracea L. var. capitata L.) [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2008. (in Chinese)
- [19] 翟中和. 细胞生物学[M]. 北京: 高等教育出版社, 2007.
- [20] SHANNON R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751-767.
- [21] MULLINS L J , MOORE R D. The movement of thallium ions in muscle [J]. Journal of General Physiology , 1960 , 43: 759-773.
- [22] MULKEY J P. A review of thallium toxicity [J]. Veterinary and Human Toxicology, 1993, 35(6): 511.
- [23] SIEGEL B Z , SIEGEL S M. Thallium antagonism toward potassium dependent systems [J]. Bioinorganic Chemistry , 1976 , 6(3): 229-232.
- [24] BRISMAR T, ANDERSON S, COLLINS V P. Mechanism of high K⁺ and Tl⁺ uptake in cultured human glioma-cells [J]. Cellular and Molecular Neurobiology, 1995, 15(3): 351-360.
- [25] KWAN K H M , SMITH S. Some aspects of the kinetics of cadmium and thallium uptake by fronds of *Lemna minor* L
 [J]. New Phytologist , 1991 , 117(1): 91-102.

(责任编辑 吕小红)