2.0 GPa,850~1070℃条件下多硅白云母 榴辉岩脱水熔融研究

一一对大别早白垩富 K 埃达克岩成因的约束

闻卫军^{1,2,3},周文戈¹,范大伟¹,李 朋^{1,2},胡贤旭^{1,2}

中国科学院 地球化学研究所,地球内部物质高温高压实验室,贵阳 550002;2.中国科学院大学,北京 100049;
 3.安徽省化工地质勘查总院,安徽 马鞍山 243000

摘 要:以产出于大别新店高压变质杂岩带的含角闪石多硅白云母榴辉岩(XD963)为实验源岩,使用 YJ-3000t 紧装式六面顶 压机装置,在 2.0 GPa,850~1070℃条件下,进行了脱水部分熔融实验研究。结果显示,在 850~950℃下,多硅白云母通过不 一致脱水熔融反应产生了≤12%的过铝质(铝饱和指数 ASI>1.2)的高 K 钙碱性(K₂O/Na₂O=1.2~1.4)花岗质熔体,与其 共存的残留相为石榴子石+绿辉石+石英+多硅白云母+角闪石+Fe-Ti 氧化物+蓝晶石土金红石。1000~1070℃时,熔体 比例陡然增大(>35%),成分变为准铝质的钙碱性花岗闪长质,残留相组合以石榴子石+绿辉石+普通辉石为主。实验熔体 与早白垩世富 K 埃达克岩的主微量元素对比结果表明:除 ASI 以及 Eu/Eu*值特征外,低温熔体(900~950℃)与富 K 埃达克 岩具有很好的相似性。此外,本次实验源岩在相对低温(900 和 950℃)条件下形成的熔体具备富 K 埃达克岩的两个主要特 征一高 K 钙碱性和花岗质。因此可认为形成高 K 钙碱性的花岗质岩浆不需要过高的压力以及高度富 K 的源岩。

关 键 词:富K埃达克岩;多硅白云母;榴辉岩;脱水熔融

中图分类号:P585;P588.3 文献标识码:A 文章编号:1007-2802(2012)06-0622-13

Dehydration Melting of a Phengite-bearing Eclogite at 2.0 GPa and 850~1070°C-Constraints on the Petrogenesis of the Early Cretaceous, K-rich Adakite in Dabie Orogenic Belt

WEN Wei-jun^{1,2,3}, ZHOU Wen-ge¹, FAN Da-wei¹, LI Peng^{1,2}, HU Xian-xu^{1,2}

1. Laboratory for High Temperature- Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy

of Sciences, Guiyang 550002, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China;

3. Anhui Chemical Industry and Geology Exploration Central Institute, Maanshan 243000; China

Abstract: Dehydration melting experiments were conducted on an amphibole-phengite-bearing eclogite sample (XD963), collected from the Xingdian high pressure metamorphic complex, northern Dabie orogenic belt, using the multianvil apparatus (YJ-3000t) under conditions of 2.0 GPa and $850 \sim 1070$ °C. Phengite-dehydration melting produced $\leq 12\%$ melt with peraluminous (ASI>1.2), high-potassium, calc-alkaline $(K_2O/Na_2O = 1, 2 \sim 1.4)$ and granitic features, coexisting with omphacite, garnet, quartz, phengite, amphibole, Fe-Ti oxides and rutile restites up to 950°C via incongruent melting reactions. at temperatures of $1000 \sim 1070$ °C, the melt fraction abruptly elevated to >35% and became metaluminous, calc-alkaline and granodioritic coexisting with omphacite, augite and garnet-rich restites. The major and trace element compositions of the experimentally produced melts were compared with those of the Early Cretaceous K-rich adakite in Dabie orogenic belt, the results showed that the melts of phengite-bearing eclogite produced by the dehydration melting at relatively low temperatures of 900-950°C are very similar to the K-rich adakite except significant peraluminous and marginally negative Eu anomalie. Furthermore,

收稿日期:2012-03-06 收到,05-12 改回

基金项目:国家自然科学基金资助项目(90914008;40873052);贵州省科学技术基金资助项目(黔科合J字[2010]2231号)

第一作者简介:闻卫军(1985一),男,硕士研究生,研究方向:高温高压实验岩石学.

通讯作者:周文戈(1967-),男,博导,研究方向:高温高压实验岩石学. E-mail: jwandwen@yahoo.com.cn.

the melts produced under temperatures of 900-950 °C are characterized by high-potassium, calc-alkaline and granitic, two critical features of K-rich adakitic rocks. Based on these evidences, it is suggested that high pressure and high K protoliths are not the indispensable requirements for the generation of the high-potassium, calc-alkaline and granitic magma.

Key words: K-rich adakite; phengite; eclogite; dehydration melting

富 K 埃达克岩(K-rich adakite)产于大陆内 部^[1],由于具有板内构造环境起源且高度富 K,张旗 等^[2]称其为C型(C-type)埃达克岩。它们在大别碰 撞造山带分布甚广,而其成因、源区特征、下地壳熔 融机制至今尚未取得一致认识[3~6]。张旗等[2]认为 富K埃达克岩可能是玄武质岩浆底侵到加厚的陆 壳(>50 km)底部导致下地壳中基性变质岩部分熔 融的产物。另外,Sr-Nd 同位素示踪和元素地球化 学研究也表明大别早白垩世富 K 埃达克岩由增厚 下地壳部分熔融形成^[4,8~10]。大别造山带地壳增厚 期可能的下地壳岩石类型包括基性麻粒岩、退变质 高压榴辉岩以及少量的斜长角闪岩[7,8]。利用这些 岩石为源岩进行部分熔融实验,从而约束该地区富 K 埃达克岩成因的研究并没有广泛的开展。仅 Xiao 和 Clemens^[9]利用钾玄岩为源岩在 2.0 GPa 条件 下,针对大别富 K 埃达克岩的高 K 成因进行了实验 研究。另外,Liu 等^[10]采用大别碧溪岭超高压榴辉 岩为初始物质进行了脱水熔融实验,确定了大别-苏 鲁多硅白云母榴辉岩在折返过程中发生脱水熔融的 压力和温度区间应为:1.5~2.0 GPa,800~850℃。 然而,Xiao 和 Clemens 选择的实验源岩过于富 K (含 3.66%K₂O),并不能代表大别造山带增厚期下 地壳的岩石类型。而且,这些源岩部分熔融主要形 成了过于富 K 的正长质熔体。另外, Liu 等采用的 碧溪岭超高压榴辉岩又属于过于贫 K(含 0.08% K₂O)的低 K 拉斑系列,部分熔融产生的熔体为奥 长花岗质。那么,作为大别地区增厚下地壳中可能 的岩石——退变质榴辉岩部分熔融能否形成大别早 白垩世富 K 埃达克岩,目前实验证据还不充分。为 此,我们以北大别高压变质岩带新店地区出露的含 角闪石多硅白云母榴辉岩(含 0.94% K₂O)为实验 源岩,在2.0 GPa,850~1070℃条件下进行脱水部 分熔融实验,试图从部分熔融实验岩石学的角度来 验证大别白垩世富 K 埃达克岩是否能够直接由增 厚下地壳部分熔融形成,以及源区矿物学特征和发 生部分熔融的深度,以获得对大别白垩世富 K 埃达 克岩成因的实验约束。因此本研究有可能为造山后 板内埃达克岩形成的地球动力学机制提供实验证 据,对进一步揭示造山后岩石圈演化过程中伴随的 伸展、垮塌等地球动力学问题具有启示意义。

1 大别早白垩世富K埃达克岩

晚中生代富 K 埃达克岩在大别碰撞造山带分 布甚广,尤以大别碰撞造山带北部几个较大的中酸 性侵入岩体(如天堂寨、白马尖、天柱山和主簿源岩 体)为典型^[3,11~13](图 1)。它们形成于碰撞后陆内 伸展构造环境,许多地球化学特征与岛弧环境下形 成的新生代埃达克岩^[14,15]的相似,如具有高的 Sr/ Y和(La/Yb)_N值。但不同的是它们表现出富 K 贫 Mg,K₂O/Na₂O \approx 1,Mg[#] <(40~45)及微弱的过铝 质特征,多具有 TiO₂ 饱和性质,源区深度大于 50 km;多属于花岗岩和花岗闪长岩系列^[3,6,11,16]。年 代学研究表明埃达克岩形成于早白垩世(110~140 Ma),峰期为 125~135 Ma^[3,17,18]。

大量同位素示踪研究成果显示绝大多数富 K 埃达克岩的 Sr-Nd 同位素特征极为相似,如 $\epsilon_{Nd}(t)$ 多集中于一13~一19,(⁸⁷Sr/⁸⁶Sr);多分布于 0.7067 $\sim 0.7087^{[3,21,22]}$ 。这种非常负的 $\epsilon_{Nd}(t)$ 和较高的 (⁸⁷Sr/⁸⁶Sr); 值都表明它们的地壳起源特征,同时也 证明其岩浆来自近似的地壳源区[20]。郑永飞[23]认 为这些岩浆岩的源区为俯冲的华南陆块中下地壳物 质。另外,早白垩世埃达克岩和大别造山带各地区 分布的各类超高压、高压变质岩石的 Sr-Nd-Pb 同 位素对比研究表明,造山带内的早白垩世花岗岩类 的岩浆源区在地球化学特征上类似于地表出露的北 大别杂岩,暗示早白垩世埃达克质岩浆由类似北大 别杂岩的深部岩石部分熔融形成^[20]。埃达克岩的 成因是以实验岩石学证据为依托的[24],然而所有这 些认识都缺乏直接的实验岩石学证据,特别是大别 白垩世富 K 埃达克岩普遍具有的高 K 特征的成因, 一直是一个未能得到有效澄清的问题,这也是本文 以北大别高压变质杂岩带出露的含角闪石多硅白云 母榴辉岩进行脱水熔融研究的出发点。

2 实验样品和方法

实验样品 XD963 采自北大别高压变质杂岩带的新店地区,紧邻商麻断裂带(图 1)。岩石较新鲜 致密,具有中细粒粒状变晶结构和块状+弱面理化

图 1 大别造山带地质简图(据文献[19]修改)

Fig. 1 Simplified geological map of the Dabie orogenic belt (modified from ref. [19])

构造,粒度 0.1~1.0 mm,为含角闪石石英多硅白 云母榴辉岩。主要矿物有:绿辉石(40.2%)+多硅 白云母(20.3%)+石英(16.1%)+石榴子石 (16.8%)+角闪石(3.1%)+方解石(1.2%)+金红 石(0.8%)+(黝帘石+磷灰石+不透明矿物)(< 1.5%)(重量百分数)。在 TAS 图上全岩化学组成 为钙碱性玄武安山质,根据含水矿物含量估计全岩 含水量为 1.72%。全岩和主要矿物化学成分见表 1。岩石经过粉碎,过筛(200 目)成为粉末。然后将 粉末放入玛瑙容器中进行 3 h 以上的碾磨,以确保 样品粉末粒度足够小(<20 µm),增加实验过程中 达到平衡的可能性。最后将碾磨好的样品放入烘箱 中保持 200℃持续烘烤 10 h 以上,以去除吸附水。

部分熔融实验在中国科学院地球化学研究所地 球内部物质高温高压实验室 YJ-3000t 紧装式六面 顶压机上进行。实验系统的详细介绍参考文献 [27]。样品采用外层铂(Pt)管+内层石墨管焊封封 装,Pt管内径5mm,高10mm,实验样品组装示意 图见图 2。实验温度、压力的测量、标定方法及氧逸 度条件与周文戈等类似^[28]。实验条件见表 2。实验

 $w_{n}(\%)$

	表]	买验杆品(XD	963)全岩与主要矿	物主量元素	家成分	
Table 1	The major elem	ents contents of	the starting materia	al (XD963)	and some	major minerals

			,					,			B(/ C)
	全岩 ^①	Omp	Phe	Qz	Grt 核	Grt 边	Amp	Zoi	Ap	Cal	Rt
	含量②	40.2	20.3	16.0	16	5.9	3.1	<	1.5	1.2	0.8
SiO ₂	59.45	55.97	47.99	_	39.49	39.57	47.01	39.61	0.04	_	_
TiO_2	0.34	0.13	0.25	-	0.04	0.01	0.18	0.09	0.01		-
Cr_2O_3	_	0.03	0.11	_	0.04	0.08	0.09	0.07	0	—	—
Al_2O_3	16.01	10.8	30.06	-	20.43	20.52	12.9	29.83	0	_	—
FeO [®]	6.05	4.3	1.48	—	24.69	23.53	10.54	2.37	0.12		_
MnO	0.07	0.03	0.01		0.73	0.54	0.12	0.02	0.05		_
MgO	4.2	7.9	2.05	_	5.61	5.71	12.3	0.07	0.01		_
CaO	6.35	13.26	0.02		8.92	10.03	9.84	24.43	54.38	—	—
Na_2O	4.15	7.09	0.99	—	0.03	0.02	3.28	0	0.04	_	—
K_2O	0.94	0.01	9.43	—	0.01	0.01	0.44	0	0.03	<u> </u>	_
NiO	_	0.01	0.02		0	0.02	0.03	0.03	0.04		
P_2O_5	0.08		—		— .	—			_	_	_
LOI	2.22	_		_	_	_	_			-	-
Total	99,86	99.53	92.41	_	99.99	100.04	96.73	96.52	54.72	—	_

注:①全岩化学成分用 X 射线荧光光谱法测定,LOI 为烧失量,一表示未分析;全岩单矿物用 JXA-8100 电子探针测定,含量较多的矿物分析点数为 5-6,含量少的为 3-4 点;②矿物含量为岩石中矿物的重量百分比,使用质量平衡线性规划求解得到^[25];③为全铁;矿物简称据文献[26]: Grt-石榴子石;Omp-绿辉石;Qz-石英;Phe-多硅白云母;Zoi-黝帘石;Rt-金红石;Ap-磷灰石;Amp-角闪石;Cal-方解石 时首先以 4×10⁵ Pa/s 的速率升压至目标压力,稳 定 10 min 后以 5 ℃/s 的速率升温至目标温度,然后 恒温 100 h 以上。恒温过程中温度波动小于 5 ℃, 样品室温度差不超过 10 ℃。实验结束时,切断加热 电源,使样品快速冷却淬火。回收的实验样品呈圆 柱状,直径约 4 mm,高度约 4 mm。将样品磨制成 光薄片,进行电子显微镜下的观察及成分测试。

实验产物中的矿物和熔体主量成分在中科院地 质与地球物理研究所岩石圈演化国家重点实验室 JXA8100 电子探针上进行,矿物成分的分析条件: 加速电压 15 kv,电流 20 na,束斑直径 1 μm。采用 以下方法来最大限度的减小熔体分析中 K、Na 的丢 失:将分析束斑直径调至为 5 μm(熔体较大时分析 束斑直径为 10 μm),寻峰计数时间为 10 s,置 Na 和 K 为第一和第二测试元素^[29],并选取样品中不同区 域的熔体进行 5 次以上测量后取平均值。通过计点 法统计背散射电子图像中熔体的分布面积来估计部 分熔融比例。实验产物熔体的微量元素分析在中科 院地球化学研究所矿床地球化学国家重点实验室 GeoLasPro+Agilent7700x 激光剥蚀等离子体质谱 (LA-ICP-MS)上完成。分析条件为:激光波长 193 nm,束斑直径 32~44 μm,能量密度 10 cm²/mJ,电压 80 kv,脉冲频率 5 Hz,剥蚀时间 40 s。测试过程中以 BIR、BHVO、BCR、GSE、ATHO 作为多重标样,方法 与 Liu 等类似^[30],测量误差一般在 10%以内。

3 实验结果

3.1 矿物组合和脱水熔融结构

实验条件及实验产物组成列于表 2,实验熔体 主微量成分列于表 3 和表 4,部分实验产物中的矿 物成分列于表 5。2.0 GPa,850 ℃条件下,部分熔 融程度很低。仅依稀可见熔体呈薄膜状分布于石英 边缘,熔体比例约1%,由于熔体块面积过小(小于5 μm),所以无法测试其成分。多硅白云母未反应完 全,残留较多,蓝晶石呈细小针状开始产出。900 ℃ 时,多硅白云母更大程度上发生脱水熔融,部分熔融 程度明显增大,熔体比例约8%。熔体中结晶出较 大颗粒的斜长石和细小的针状蓝晶石(图 3A)。 950℃时,熔体比例继续增大,约12%。熔体中结晶 出大量的颗粒较大的针状蓝晶石(图 3B)。1000℃ 时多硅白云母基本熔融殆尽,只有少许星点状晶体 残留,熔体比例陡然增大(约35%),蓝晶石含量甚 少(图 3C)。1070℃高温下多硅白云母反应完全,部 分熔融程度最大,熔体比例约 58%(图 3D),达到了 熔体微量元素分析时的束斑要求(>40 μm)。残留 相组合为石榴子石+普通辉石+少量斜长石以及不 透明 Fe-Ti 氧化物。通过实验产物的岩相分析,初 步推断 2.0 GPa,850~1070℃条件下发生如下不一 致脱水熔融反应:Phe+Cpxomp+Qz+Amp+GrtI→ GrtII+Pl+Fe-Ti±Ky+melt。

总体上低温下熔体产出较少,斜长石大量晶出 (图 3A、B)。随着温度的升高,多硅白云母脱水熔 融程度逐渐增大,熔体比例也随之增大。与熔体共 存的石榴子石在相对低温条件下(850~950℃)富铁 铝榴石端员。随着温度的升高,石榴子石镁铝榴石 端员逐渐增大,例如石榴子石端员组成从 900℃低 温下的 Alm₅₄ Prp₁₉ Grs₂₄ Sps₃ 逐渐变为 1070℃高温 下的 Alm₃₀ Prp₅₄ Grs₁₅ Sps₁(表5)。类似地,残留相

表 2 脱水熔融实验条件及实验产物组成

Table 2	Experimental	conditions	and run	results	of	experiments
					~-	

实验编号	压力/GPa	温度/℃	时间/h	实验产物组成
XD963-6	2.0	850	114	Grt+Omp+Qz+Phe+Pl+Amp+Ky+Fe-Ti+<1%Melt ^s
XD963-8	2.0	900	110	$\mathbf{Grt} \! + \! \mathbf{Omp} \! + \! \mathbf{Qz} \! + \! \mathbf{Phe^s} \! + \! \mathbf{Pl} \! + \! \mathbf{Amp^s} \! + \! \mathbf{Rt} \! + \! \mathbf{Ky} \! + \! \mathbf{Fe} \! - \! \mathbf{Ti} \! + \! 7 \% \mathbf{Melt}$
XD963-13	2.0	950	110	$Grt + Omp + Qz + Phe^{s} + Pl + Amp^{s} + Ky + Fe - Ti + 12\% Melt$
XD963-14	2.0	1000	102	$Grt+Omp+Qz+Phe^{s}+Pl+Ky^{s}+Fe-Ti+35\%Melt$
XD963-19	2.0	1070	102	Grt+Aug+Pl ^s +Fe-Ti+58%Melt

注:上标 s 表示比例微小,熔体比例为用计点法统计的体积百分比(误差±5%);Ky-蓝晶石;Aug-普通辉石;其它矿物简称同表 1。

		9				
Run. no	XD963-8	XD963-13	XD963-14	XD963-19		、埃达克岩②
p/GPa; t/°C	2.0;900	2.0;950	2.0;1000	2.0;1070	均值	范围
分析点	5	5	5	5		
SiO2	74.36(0.30)	72.92(0.24)	70.71(0.16)	70.48(0.25)	69.91	60.02~76.41
TiO ₂	0.48(0.03)	0.39(0.06)	0.54(0.05)	0.46(0.03)	0.41	0.12~0,93
Cr_2O_3	0.01(0.01)	0.03(0.02)	0.02(0.01)	0.01(0.01)	_	—
Al_2O_3	15.01(0.08)	16.05(0.13)	15.73(0.13)	15,97(0,12)	14.93	12.16~17.39
TFeO	1.15(0.01)	0,85(0.03)	1.76(0.06)	2,21(0.07)	2.32	0.77~5.98
MnO	0.03(0.02)	0.02(0.02)	0.03(0.03)	0.03(0.02)	0.04	0.01~0.17
MgO	0.46(0.02)	0.26(0.02)	0.94(0.01)	1.13(0.08)	0.74	0.19~2.28
CaO	1,38(0,03)	1.70(0.10)	3.53(0.05)	3.79(0.24)	2.03	0.27~4.66
Na ₂ O	3, 31(0, 29)	3,26(0,22)	4.38(0.13)	3,73(0,26)	4.09	$2.19 \sim 5.54$
K ₂ O	3,80(0,10)	4.52(0.08)	2.35(0.03)	2.17(0.08)	4.29	1.94~5.67
NiO	0.03(0.01)	0.02(0.02)	0.02(0.02)	0.02(0.03)		—
Total	100	100	100	100	99.79	97.73~101.63
Total®	93.25	91.83	94.25	93.79		_
Mg#	41.68	35.94	48.85	47.98	35.02	18.6~43.6
K ₂ O/Na ₂ O	1.16	1.39	0.54	0.59	1.08	0.82~2.38
A/CNK	1.25	1.20	0.97	1.04	0.99	0.83~1.39
Or	39.18	42.58	20.65	20.29	_	
An	11.95	13.44	24.26	29.76	_	
Ab	48.87	43.98	55.09	49.45		-

表 3 实验熔体主量元素平均组成

 Table 3
 Average major elements (% oxides) compositions of experimental melts

 $w_{\rm B}(\%)$

注:熔体成分已标准化为100%无水;括弧内为标准差;一表示未分析;①初始熔体总量(无水),②据文献[3,11~13,17,31]

表 4 1070℃条件下实验熔体、实验源岩及大别早白垩世富 K 埃达克岩的微量元素组成

Table 4 Average trace element compositions of the experimental melts at 1070°C and the Early Cretaceous

K-rich	adakite	in	the	Dabie	orogenic	belt

w. I	$(\times$	10	-6)
		-		

			K-r	ich adakite in t	ne Dable	orogenic ben			$W_B(\wedge 10)$
							000	大别	富 K 埃达克岩
Element	$\mathbf{XD963}^{\oplus}$	2-1070(6) ^ψ	SD^{\oplus}	BHVO-2G⊕	SD^{\oplus}	ATHO-G*	SD⊕	均值	范围
Li	14.3	32.66	9.56	4.4	0.8	28.6	1.8		
Be	1.36	1.19	1.13	1.3	0.2	3.2	0.34	-	
В	—	10.24	4.96		—	5.7	0.5	_	_
Sc	26.2	8.02	3.14	33	2	5	0.8	_	_
v	199	36.77	16.22	308	19	3.91	0.34	36.95	4.86 ~121.00
Cr	326	24.86	13.66	293	12	6.1	1.4	23.43	1,50~79.00
Co	18.6	5.09	4.07	44	2	2.13	0.47	6.02	0.83~23.00
Ni	85.8	16.46	13.63	116	7	13	5	8.26	1,00~47.80
Cu	93.2	10.11	12.49	127	11	18.6	2.2	_	_
Zn	88.9	80.76	21.75	102	6	141	15	_	—
Ga	14.9	15.82	1.36	22	3	25.3	2.4	20.16	13.40~26.20
Rb	19.1	55,26	14.55	9.2	0.04	65.3	3	123.29	33,10~936.00
Sr	168	243.86	12, 18	396	1	94.1	2.7	646,74	122,00~1301,00
Y	7.14	2.7	0.91	26	2	94.5	3.5	10.99	0,45~14.60
Zr	35,5	65.94	13,40	170	7	512	20	175.84	31,20~361.00
Nb	1.83	2.55	0.87	18.3	0.8	62.4	2.6	10.62	1,01~30,90
Mo	1.57	0.2	0.32	3.8	0.2	4.8	1	_	—
Sn		3.52	1.49	2.6	0.6	5.41	0.73	_	
Cs	1.33	4.18	1.74	0.1	0.02	1.08	0.11	_	—
Ba	482	671.05	27.12	131	2	547	16	1746.62	287.00~3027.00
La	2.35	14.75	9,52	15.2	0.2	55.6	1.5	54.69	2.96 \sim 110.70
Ce	4,71	31.65	22,88	37.6	0.2	121	4	97.72	6.43~206.00
Pr	0.65	3.44	2.36	5.35	0.22	14.6	0.4	10.27	0.65~21.50
Nd	2,94	11.85	7.45	24.5	0.2	60.9	2	34.87	2.58~68.50
Sm	0.91	1.89	0.98	6.1	0.03	14.2	0.4	5.27	0.40~10.89
Eu	0.33	0.44	0.10	2.07	0.01	2.76	0.1	1.19	0.10~2.63
Gd	1,18	1,42	0.57	6.16	0.05	15.3	0.7	3.55	0.29~8.55
ТЪ	0.18	0.14	0.09	0.92	0.04	2.51	0.08	0.46	0.03~1.30
Dv	1.12	0.69	0.43	5.28	0.05	16.2	0.7	2.34	0.11~7.85
Ho	0.66	0.28	0.24	0,98	0.04	3.43	0.01	0.35	0.02~1.08
Er	0.78	0.24	0.16	2.56	0.02	10.3	0.5	1.15	0.04~4.34
Tm	0.13	0.04	0.02	0.34	0.02	1.52	0.07	0.16	0.01~0.61

Elt	VD0com	0.10 7 0(6)D	സി	BUWO ACO	സി		സി	大别行	富 K 埃达克岩
Liement	\mathbf{YD}	2-10/0(6)@	ອມ∞	BITY 0-2G*	5D¢	ATHO-G®	ວມ∞	均值	范围
Yb	0.76	0.2	0.27	2.01	0.02	10.5	0.4	1.00	0.03~1.89
Lu	0.13	0.02	0.02	0.279	0.003	1.54	0.05	0.15	0.01~0.58
Hf	1.06	1.72	1.11	4.32	0.18	13.7	0.5	4.96	0.00~9.35
Ta	0.13	0.15	0.08	1.15	0.1	3.9	0.2	0.86	0.00~3.10
W	1.09	2.37	1.80	0.23	0.04	9.3	1.2	_	_
Pb	7.40	33.2	9.80	1.7	0.2	5.67	0.62	28.35	13.20~67.23
Th	0.2	0.79	0.87	1.22	0.05	7.4	0.27	12.65	0.41~45.60
U	0.4	0.7	0.15	0.403	0.003	2.37	0.12	1.79	0.18~8.25
Sr/Y	23.53	90.32						187.63	21.53~1301.10
(La/Yb) _n ∅	2.21	52.9						68.70	21,44~288,32
Eu/Eu * ³	0.97	0.82						1.11	0.82~3.17
Nb/Ta		17						13.52	

注:①XD963 为实验源岩,四极杆质谱测试;2-1070(6)为 1070℃条件下的熔体,为 6 次分析结果的平均值,LA-ICP-MS 测试;SD-标准差;BH-VO-2G 和 ATHO-G 本次测试两个标样,分别是美国地质调查局的夏威夷玄武岩标样和冰岛流纹岩标样,测试方法同 Liu 等[³⁰];②球粒陨石标 准化后的值;③ Eu/Eu* = Eu_n/(Sm_n * Gd_n)^{1/2};空白表示未测试; 一表示低于检出限;大别早白垩世富 K 埃达克岩数据来自文献 [3,11~13,31]

Run. no	XD963-8	XD963-13	XD963-14	XD963-19	XD963-6	XD963-8	XD963-13	XD963-14	XD963-19
phase	Grt	Grt	Grt	Grt	Срх	Cpx	Срх	Срх	Срх
p/GPa, t/℃	2.0;900	2.0;950	2.0;1000	2.0;1070	2.0;850	2.0;900	2.0;950	2.0;1000	2.0;1070
分析点数	5	5	5	5	5	5	5	5	5
SiO ₂	39.67	40.25	41.18	40.93	55.64	54.65	53.13	52.14	51.73
TiO ₂	0.03	0	0.35	0.26	0.25	0.50	0.31	0.42	0.28
Cr_2O_3	0.17	0.03	0.25	0.07	0.17	0.04	0.05	0.15	0.26
Al_2O_3	20.8	20.9	21.13	21.56	11.41	9.42	11.35	10.10	8.04
TFeO	24.33	23.95	15.11	13.65	4.20	4.60	6.39	6.06	5.85
MnO	0.73	0.85	0.24	0.43	0.04	0.04	0.09	0.09	0.12
MgO	4.61	5.72	12.59	14.75	7.88	11.13	11.72	11.84	13.56
CaO	9.82	9.02	7.47	6.46	14.05	16.7	13.21	15.55	18.01
Na_2O	0	0.12	0.08	0.02	6.37	2.97	3.64	2.71	1.46
Total	100.16	100.84	98.40	98.13	100.1	100.14	99.97	99.14	99.36
Si	3.081	3.086	3.09	3.049	1.980	1.951	1.903	1.895	1.888
Ti	0.002	0	0.02	0.015	0.007	0.014	0.008	0.011	0.008
Al	1.904	1.889	1.869	1.893	0.479	0.397	0.479	0.433	0.346
$\mathrm{Fe}^{2+\mathbb{O}}$	1.580	1.536	0.948	0.850	0.125	0.137	0.191	0.184	0.179
Mn	0.048	0.055	0.015	0.027	0.001	0.001	0.003	0.003	0.004
Mg	0.534	0.654	1.408	1.638	0.418	0.593	0.626	0.642	0.738
Ca	0.817	0.741	0.601	0.516	0.536	0.638	0.507	0.606	0.704
Na	0	0.018	0.012	0.003	0.440	0.205	0.253	0.191	0.103
Total	7.966	7.979	7.963	7.991	3.991	3.942	3.975	3.971	3.979
Mg [#]	25.43	30.06	60.00	66.04	77.15	81.33	76.75	77.86	80.67
composition	\Pr_{19}	Prp ₂₂	\Pr_{50}	Prp ₅₄	Jd_{45}	Jd_{21}	Jd ₂₅	Jd ₁₉	Jd10

表 5 实验产物中主要矿物的成分

Table 5	Representative com	positions of some	critical crystallin	e nhases in restites
I GOIC U	representative com	positions of some	cincai și și și anni	c pinases in restree

注:石榴子石端员分子计算据^[32],辉石端员分子计算据^[33];Prp-镁铝榴石;Aug-普通辉石;Omp-绿辉石;Jd-硬玉;①所有铁当做二价铁

中的辉石的成分。随着温度的上升,绿辉石中的硬 玉端员逐渐降低,转变为高温下普通辉石,这可能是 由于高温下绿辉石中的硬玉分子(Jd)易发生出溶而 进入熔体。而与此相反,辉石的 MgO 含量则与温 度保持着良好的正相关关系(表 5)。

3.2 熔体成分

熔体成分(标准化到 100%无水)为花岗闪长质 一花岗质,随着温度的升高,熔体成分从酸性(花岗 质)向偏中性(花岗闪长质)演化。900~1070℃的实 验中,SiO₂含量为70.48%~74.36%,CaO含量为 1.38%~3.79%, MgO 含量为 0.26%~1.13%, FeO*含量为 0.85%~2.21%, Na₂O 含量为 3.26% ~4.38%, Al₂O₃ 含量为 15.01%~16.05%, TiO₂ 含量为 0.39%~0.54%, K₂O 含量为 2.17%~ 4.52%。图 4显示,总体上,随温度升高,熔体中的 SiO₂ 含量有逐渐减小的趋势, 而 CaO 含量则为逐 渐增大的趋势。MgO、FeO*为先减小后逐渐增大 的趋势; K₂O 则表现出先增大后逐渐减小的趋势。 Na₂O、Al₂O₃ 和 TiO₂ 对温度的依赖性较弱,含量变 化趋势不明显。

A-2.0 GPa,900℃;B-2.0 GPa,950℃;C-2.0 GPa,1000℃;D-2.0 GPa,1070℃ 图 3 2.0 GPa,900~1070℃下实验产物背散射图像

相对低温条件下(900~950℃)的熔体为花岗质 熔体(图 5),表现为富 K(K₂O/Na₂O=1.16~1.39) 和强过铝质(A/CNK=1.20~1.25)特征(表 3,图 6),在 SiO₂-K₂O Harker 图解上,属于高 K 钙碱性 系列(图 6B)。高温条件下(1000~1070℃)的熔体 为花岗闪长质熔体(图 5),表现为相对富钠(K₂O/ Na₂O=0.54~0.59)和准铝质或者弱过铝质(A/CNK =0.97~1.04)特征(表 3,图 6)。在 SiO₂~K₂O Harker 图解上,属于中 K 钙碱性系列(图 6B)。

利用 LA-ICP-MS,采用较大直径(44 μm)的束 斑分析了高温条件下实验产物(1070℃熔体比例> 40%)熔体中的微量元素(图 7)。1070℃条件下的 熔体稀土元素总量为 67.05×10⁻⁶,重稀土含量低 (eHREE=3.03×10⁻⁶)。其分配模式具有向右下 倾的趋势,表现出较强的轻重稀土分异特征,轻重稀 土比值为 21(图 7A), Eu 略显负异常(Eu/Eu* = 0.82)。这与 2.0 GPa,1070℃条件下部分熔融产物 中存在极少量斜长石相一致(图 3A)。图 7b 为熔体 微量元素原始地幔标准化蛛网图,熔体中 Rb、Ba 和 Pb 等大离子亲石元素(LILEs)丰度较高,相对富 集。而高场强元素 Th、Nb、Ta、Zr(HFSEs)含量甚 低,相对亏损。相对于实验熔体,实验源岩稀土配分 型式平坦,La、Ce、Pr 等轻稀土元素和 Rb、Ba 和 Pb 等大离子亲石元素丰度较低,Tb、Dy、Er、Tm、Yb、 Lu 等重稀土元素丰度较高。

4 讨 论

4.1 与前人实验结果的对比

Skjerlie 和 Douce^[35]以及 Liu 等^[10]分别在 1.0 ~3.2 GPa,875~1150℃和 1.5~3.0 GPa,850~ 1000℃条件下开展了低K拉斑系列的黝帘石榴辉

箭头指熔体随温度升高的演化趋势;大别早白垩世富 K 埃达克岩范 围来自表 4;前人实验熔体来自:S&P-[35];X&C-[9];L-[10] The arrows indicate the evolution trend of the melt with increasing temperature; the Dabie Early Cretaceous K-rich adakites range from Table 4; the previous experimental melt from:S&P-[35];X&C-[9];L-[10]

图 5 实验熔体的 Or-Ab-An 图(据文献[34]修改)

Fig. 5 Classification of the experimental melts using normative anorthite (An), albite (Ab) and orthoclase (Or) (modified from ref. [34])

岩和多硅白云母榴辉岩脱水熔融实验研究。在小于 2.0 GPa条件下,他们分别获得了奥长花岗质和英 云闪长质熔体(图 5)并且都属于低到中钾钙碱性系 列(图 6B),但在较高的压力下(>2.7 GPa)低 K 黝 帘石榴辉岩脱水熔融也可以得到高 K 钙碱性的花 岗质熔体。本次实验相对低温条件下(900 和 950℃)的熔体具有高 K 钙碱性和花岗质特征。这 可能是由于本次实验源岩相对富 K(K₂O 0.94%, 中钾钙碱性),从而有利于形成富钾长石标准分子 (Or)的高K钙碱性花岗质熔体。对于富K程度更

Previous experimental melts and other Early Cretaceous K-rich adakites range are showed in Figure 5

图 6 实验熔体主量元素 Harker 图 Fig. 6 Harker plots for selected major elements in the experimental melts

由于部分大别早白垩世富 K 埃带克岩 Ta、Hf 含量低于仪器的检出限,所以图中没有给出明确的 Ta、Hf 含量范围的下限;大别早 白垩富 K 埃带克岩微量元素数据据表 4;球粒陨石及原始地幔标准化值据文献[36]

The content ranges of Ta, Hf are not presented since the Ta, Hf contents in parts of the Dabie Early Cretaceous K-rich adakites are lower than the instrument detection limit; the content ranges of trace elements in the Dabie Early Cretaceous K-rich adakites are from table 4; chondrite and primitive mantle normalized values are from ref. [36]

图 7 XD963 和 1070℃条件下实验熔体微量元素的球粒陨石标准化稀土元素分配图(A)和原始地幔标准化蛛网图(B) Fig. 7 Chondrite-normalised REE patterns (A) and Primitive mantle-normalised trace elements patterns (B) for the start material (XD963) and experimental melt at 1070℃

高的源岩,如钾玄岩^[9],其部分熔融虽然也能得到富 K的熔体,但这些熔体过于富 K 贫 Si,为正长质。 实验熔体的对比研究也表明产生花岗质熔体的实验 源岩普遍相对富 K,属于中高钾钙碱性系列^[37];而 与英云闪长质一奥长花岗质熔体对应的实验源岩普 遍贫 K,属于低 K 拉斑系列^[10, 35]。

4.2 与大别富 K 埃达克岩主量元素的对比

较低温度下(900℃和 950℃)的熔体为花岗质 且落入大别早白垩世富 K 埃达克岩范围;但随着温 度的升高(1000℃和 1070℃),实验熔体逐渐向花岗 闪长质转化,成分则在大别早白垩世富 K 埃达克岩 范围以外(图 5)。本次实验熔体的 TiO₂ 含量较高 (0.39%~0.54%),在 900℃和 950℃条件下,残留 相中分别存在金红石(图 3A、B),表明低温熔体为 TiO₂ 饱和熔体。这和大别早白垩世富 K 埃达克岩 普遍具有的 TiO₂ 饱和特征相一致^[16]。在 Mg # 指 数特征上,本次实验熔体的 MgO 含量较低(0.26% ~1.13%),900 和 950℃低温下熔体 Mg[#] = 41.68 和 35.94,符合大别早白垩世富 K 埃达克岩普遍具 有的低 Mg[#] 特征(Mg[#] < 40~45)。对 A/CNK 而 言(图 6A),低温条件下的实验熔体为过铝质特征, 与背景范围都有较大偏离。与此相反,在SiO₂-K₂O Harker 图解上,低温下(900 和 950℃)的熔体具备 富 K 埃达克岩的一个典型特征—高 K 钙碱性且都 位于背景范围以内,高温熔体偏离较大。总体而言, 在主量元素特征上,除铝饱和指数外,低温熔体 (900℃和 950℃)都落入大别早白垩世富 K 埃达克 岩的范围以内(表 3)。以上成分对比结果表明较低 温度下的实验熔体普遍满足富 K 埃达克岩的主量 元素特征要求,然而与此矛盾的是低温实验熔体普 遍为过铝质特征,其 A/CNK 值大于 1.1,偏离了大 别早白垩世富 K 低镁埃达克岩背景范围(微弱的过 铝质,图 6A)。早期研究发现准铝质的变基性源岩 部分熔融产生过铝质熔体与熔融过程中角闪石和单 斜辉石的熔解有关^[38,39]。而本次实验源岩仅含有 少量角闪石(3.1%),据此,可以推测本次实验中的 低温强过铝质熔体很可能是与源岩中含有较多多硅 白云母和绿辉石有关(分别为 20.3 和 40.2%)。尤

表 6 不一致熔融模式微量元素组成

Table 6 Trace elements compositions of experimental melts at 950°C and 1070°C modeled by incongruent dynamic melting

e	lement	Rb	Sr	Ba	Ce	Nd	Sm	Eu	Gd	Dy	Er	УЪ	Lu
M94 1-2	XD963	19.1	168	482.0	4.71	2.94	0.911	0.327	1.175	1.120	0.780	0,764	0.129
源区	ID M- 950	155.79	576.87	849.1	44.2	23.2	2.97	0.41	0.91	0.28	0.20	0.17	0.03
初始 熔体	IDM-1070	67.42	253.84	698.05	29.13	13.85	1.43	0.29	0.64	0.19	0.13	0.08	0.01

注:临界质量孔隙率 Φ=0.001,部分熔融程度 X 分别为 10%(950℃)和 58%(1070℃),计算方法据文献[40]

631

表 7	矿物-熔体分配系数及源区模式、熔融模式	
-----	---------------------	--

Table 7 Partition coefficients between minerals and felsic melts, source mode and melting mode

 	Qz	Phe	Срх	Amp	Pl	Ку	Grt	Mt	Rt
 Rb	0	0.94	0.013	0.06	0.053	0	0.01	0	0.019
Sr	0	0.672	0.033	0.39	1.6	0	0.02	0.02	0.048
Ba	0	15.3	0.04	0.05	0.155	0	0.02	0	0.02
Ce	0	0.23	0.105	0.7	0.221	0	0.08	0.02	0.296
Nd	0	0.24	0.28	1.15	0.149	0	0.22	0.03	0.684
Sm	0	0.39	0.444	1.5	0.102	0	0.81	0.02	2.4
Eu	0	0.5	0.604	0.9	1.614	0	1.94	0.03	0.0044
Gd	0	0.35	0.65	1.8	0.067	0	10.5	0.02	0.018
Dy	0	0.2	0.78	1.5	0.05	0	15.6	0.02	0
Er	0	0.17	0.99	1.7	0.045	0	20	0.02	0.675
Yb	0	0.17	0.64	1.7	0.041	0	24	0.02	0.0158
Lu	0	0.21	0.79	1.59	0.039	0	24	0.02	0.016
Source mode	0.160	0.203	0.402	0.031	0	0	0.158	0.003	0.008
Melting mode [®]	-0.29	-2.47	-2.67	-0.12	2.24	1.85	0.32	0.14	0
Melting mode [®]	-0.27	-0.35	-0.69	0. 05	0.1	0	0.24	0.03	0

注:微量元素在蓝晶石和熔体以及石英和熔体之间的分配系数看作 0;①950℃条件下不一致熔融模式反应系数,据 2.0 GPa,950℃条件下的熔 融反应:Phe+Cpx_{(omp})+Qz+ Amp→Grt+Pl+Ky+Mt+Melt,由质量平衡计算得到;②1070℃条件下不一致熔融模式反应系数,根据 2.0 GPa,1070℃条件下的熔融反应:Phe+Cpx_{(omp})+Qz+ Amp→Grt+Pl+ Cpx_{(aug})+Mt+Melt,由质量平衡计算得到;分配系数来源:Phe,Pl 据 文献[41,42];Cpx,Amp,Grt 据文献[43, 44];Rt 据文献[45];Mt 据文献[46];矿物简称同表 1

其对多硅白云母而言,它是一种高度富 K₂O 和 Al₂O₃ 的矿物(分别为 9.43 和 30.06%,本次实验), 在低程度脱水熔融时,它不仅为熔体提供充足的 K 来源,同时也将释放大量的 Al₂O₃ 进入熔体,极有 可能导致该条件下的熔体过铝质。

4.3 与大别富 K 埃达克岩微量元素的对比

仅有 1070℃条件下的实验产物中的熔体(熔体 比例>40%)满足 LA-ICP-MS 微量元素的测试要 求。该熔体具有低 K、高 Mg[#] 特征(图 6B),因此在 主量元素特征上不符合大别早白垩世富 K 埃达克 岩的特征,但微量元素落入了富 K 埃达克岩的背景 范围(图 7A, B)。因为无法原位分析低温熔体的微 量元素成分,所以我们通过理论熔融模式反演来估 算低温熔体(如 950℃)的微量元素成分。

前述岩相研究结果表明,2.0 GPa,850~ 1070℃条件下硅白云母榴辉岩的部分熔融为不一致 脱水熔融。因此,以本次实验源岩(XD963)为源区, 利用 Zou 和 Reid 的不一致熔融模式来反演 950℃ 和 1070℃条件下熔体的微量元素特征^[40](表 6)。 分配系数以及源区模式、熔融模式见表 7。

图 8 是不一致熔融模式反演得到的微量元素原 始地幔标准化配分型式。结果显示,2.0 GPa, 950℃条件下的低温熔体和 1070℃条件下的高温熔 体的微量元素特征与大别早白垩世富 K 埃达克岩 一致,均为理论曲线完全落入大别早白垩世富 K 埃 达克岩的背景范围。1070℃条件下,实测熔体与不 一致熔融模式反演熔体的微量元素配分型式也较为 相似,在部分重稀土元素(如 Gd,Dy,Er,Yb,Lu)丰 度上,实测熔体高于不一致熔融模式反演熔体。然 而与富K埃达克岩不同的是本次实验熔体具有中 等到轻的Eu负异常,不一致熔融模拟获得的950℃ 熔体的Eu/Eu*值为0.76,实测获得的1070℃熔体 的Eu/Eu*值为0.82。这有别于大别早白垩世富 K埃达克岩普遍具有的无到微弱的Eu正异常特 征^[3,11]。如果Eu负异常是由于残留相中存在斜长 石所致,那么这些熔体特征与本次850~1070℃条 件下实验产物中普遍存在斜长石相一致。

图 8 不一致熔融模式反演熔体的微量元素 原始地幔标准化模式图

Fig. 8 Primitive mantle-normalised trace elements patterns for experimental melt modeled by incongruent dynamic melting

4.4 对富 K 埃达克岩成因的启示

主微量元素对比研究显示,在铝饱和指数以及 Eu/Eu*值上本次实验熔体有别于大别早白垩世富 K 埃达克岩,因此本次实验源岩在 2.0 GPa,850~ 1070℃条件下脱水熔融不能直接形成与大别早白垩 世富 K 埃达克岩地球化学特征完全一致的熔体。 但如果初始岩浆经历后期演化,如与 Eu 正异常或 是准铝质的岩浆混合,遭受富含斜长石的岩石(斜长 角闪岩)的同化混染,或经历分离结晶,有可能形成 无负 Eu 异常或 Eu 正异常的熔体。Wu 和 Jahn^[47] 认为,磷灰石、褐帘石和榍石的分离结晶会降低稀土 总含量,增加稀土分布模型的凹度以及降低 Eu 的 负异常程度。因此本次实验形成的熔体在后期演化 过程有可能形成与大别早白垩世富 K 埃达克岩相 同的地球化学特征。另外,本次相对低温(900 和 950℃)条件下形成的熔体具备富K埃达克岩的两 个重要特征:高K钙碱性(K2O/Na2O=1.2~1.4) 和花岗质(图 6B),由此证明在 2.0 GPa,900 和 950℃条件下,类似于本次实验源岩的下地壳物质发 生较低程度的脱水熔融可以形成富 K 花岗质的岩 浆。因此本次实验证明形成高 K 钙碱性的花岗质 岩浆不需要过高的压力(如>2.7 GPa^[35,48]以及高 度富 K 的源岩(如钾玄岩或英云闪长岩)^[9,49]。同 时也暗示大别早白垩世富 K 埃达克岩的源岩很有 可能是类似于本次实验源岩的钙碱性的安山质-玄 武安山质的壳源变质岩石。对不同富 K 程度的壳 内源岩脱水熔融产生的实验熔体的对比研究也表明 形成高 K 钙碱性熔体的最可能源岩是钙碱性-高 K 钙碱性的安山质-玄武安山质的壳源变质岩石[37]。

参考文献 (References):

- [1] Rapp R P, Shimizu N, Xiao L. Experimental constraints on the origin of potassium-rich adakites in eastern China[J]. Acta Petrologica Sinica, 2002, 18: 393-302.
- [2] 张旗,王焰.燕山期中国东部高原下地壳组成初探:埃达克质岩 Sr,Nd 同位素制约[J].岩石学报,2001,17(4):505-513.

Zhang Qi, Wang Yan. Preliminary study on the components of the lower crust in east China Plateau during Yanshanian Period: Constraints on Sr and Nd isotopic compositions of adakitelike rocks[J]. Acta Petrologica Sinica, 2001, 17(4): 505 – 513. (in Chinese with English abstract)

[3] Wang Q, Wyman D A, Xu J, Jian P, Zhao Z. Early cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust[J]. Geochim. Cosmochim. Acta, 2007, 71(10): 2609-2636.

- [4] Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization[J]. Lithos, 2006, 89(3-4): 424-446.
- [5] Wang Q, Xu J F, Jian P, Bao Z W. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. J. Petrol., 2006, 47(1): 119.
- [6] 张旗. 关于 C 型埃达克岩成因的再探讨[J]. 岩石矿物学杂志, 2011, 30(4): 739-747.
 Zhang Qi. Reappraisal of the origin of C-type adakitic rocks from East China[J]. Acta Petrologica et Mineralogica, 2011, 30(4): 739-747. (in Chinese with English abstract)
- [7] Gao S. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochim. Cosmochim. Acta, 1998, 62(11): 1959-1975.
- [8] Kern H. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China; Implications for the composition and delamination of the lower crust[J]. Tectonophysics, 1999, 301(3-4): 191-215.
- [9] Xiao L, Clemens J D. Origin of potassic (C-type) adakite magmas: Experimental and field constraints[J]. Lithos, 2007, 95 (3-4): 399-414.
- [10] Liu Q, Jin Z, Zhang J. An experimental study of dehydration melting of phengite-bearing eclogite at 1. 5-3. 0 GPa[J]. Chinese Science Bulletin, 2009, 54(12): 2090-2100.
- Xu H, Ma C, Ye K. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry[J]. Chem. Geol., 2007, 240(3-4): 238-259.
- [12] Zhao Z F, Zheng Y F, Wei C S, Wu Y B, Chen F. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust[J]. Lithos, 2007, 93(3-4): 248-272.
- [13] 刘磊,徐夕生.大别造山带天柱山中酸性岩起源及地质意义
 [J]. 高校地质学报, 2011, 17(1): 136-150.
 Liu Lei, Xu Xisheng. Genesis of the Tianzhushan intermediate-felsic rocks from the Dabie Orogen and its geological significance[J]. Geological Journal of China Universities, 2011, 17(1): 136-150. (in Chinese with English abstract)
- [14] Defant. Derivation of some modern arc magmas by melting of young subducted crusts[J]. Nature, 1990, 347(6294): 662 - 665.
- [15] Kay S M, Ramos V, Marquez M. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America[J]. J. Geology, 1993,101:703-714.
- [16] Xiong X L. Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry[J]. Sci. in China (D), 2011, 54(6): 858-870.
- [17] Zhao Z F, Zheng Y F. Remelting of subducted continental lithosphere; Petrogenesis of Mesozoic magmatic rocks in the

Dabie-Sulu orogenic belt[J]. Science in China (D), 2009, 52 (9): 1295-1318.

[18] 马昌前,杨坤光,明厚利,林广春.大别山中生代地壳从挤 压转向伸展的时间:花岗岩的证据[J].中国科学(D),2003, 33(9):817-827.

> Ma Changqian, Yang Kunguang, Ming Houling, Lin Guangchun. The timing of tectonic transition from compression to extension in Dabie orogen: Evidences from Mesozoic granites [J]. Sci. in China (D),2003, 33(9): 817-827. (in Chinese)

- [19] Jahn B M, Wu F, Lo C H. Crustal-mantle interaction induced by deep subduction of the continental crust. Geochemical and Sr-Nd isotopic evidence from post-collisional maficultramafic intrusions of the northern Dabie complex, central China[J]. Chem. Geol., 1999, 157: 119-146.
- [20] Zhang H, Gao S, Zhong Z, Zhang B, Zhang L. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids; Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China
 [J]. Chem. Geol., 2002,186(3-4); 281-299.
- [21] Chen B, Jahn B, Wei C. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, central China: Trace element and Nd-Sr isotope evidence[J]. Lithos, 2002, 60(1-2): 67-88.
- [22] Ma C, Ehlers C, Xu C, Li Z. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics[J]. Precam. Res., 2000, 102(3-4): 279-301.
- [23] 郑永飞. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造 山带为例[J]. 科学通报, 2009, 53(18): 2129-2152.
 Zheng Yongfei. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 2009, 53 (20): 3081 - 3104. (in Chinese with English abstract)
- [24] Xiao L, Rapp P R, Xu J F. The role of deep processes controls on variation of compositions of adakitic rocks[J]. Acta Petrologica Sinica, 2004, 20(2): 219-228.
- [25] Herrmann W, Berry R F. MINSQ-a least squares spreadsheet method for calculating mineral proportions from whole rock major element analyses[J]. Geochemistry: Exploration, Environment, Analysis, 2002, 2(4): 361-368.
- [26] Whitney D L, Evans B W. Abbreviations for names of rockforming minerals[J]. Am. Mineral., 2010, 95(1): 185.
- [27] Xie H S, Zhang Y M, Xu H G. A new method of measurement for elastic wave velocities in minerals and rocks at high temperature and high pressure and its significance[J]. Science in China (B),1993, 36: 1276-1280.
- [28] 周文戈,谢鸿森,刘永刚. 2.0 GPa 块状斜长角闪岩部分熔
 融一时间和温度的影响[J].中国科学(D),2005,35(4): 320-332.

Zhou Wenge, Xie hongsen, Liu Yonggang. Dehydration melting of solid amphibolite at 2.0 GPa: Effects of time and temperature[J]. Science in China (D), 2005, 48(8): 1120-1133. (in Chinese with English abstract)

[29] Morgan G B, London D. Optimizing the electron microprobe

analysis of hydrous alkali aluminosilicate glasses[J]. Am. Mineral., 1996, 81: 1176-1185.

- [30] Liu Y, Gao S, Hu Z, Gao C, Zong K. Continental and oceanic crust recyclinginduced melt-peridotite interactions in the Trans North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. J. Petrol., 2010, 51(1-2): 537-571.
- [31] 王强,王人镜.大别山燕山期亏损重稀土元素花岗岩类的成因及动力学意义[J].岩石学报,2001,17(004):551-564.
 Wang Qiang, Wang Renjing. The petrogenesis and geodynamic significances of HREE depleted granitoids during Yanshan period in the Dabie Mountains[J]. Acta Petrologica Sinica, 2001, 17 (4):551-564. (in Chinese with English abstract)
- [32] Locock A J. An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets[J]. Computers & Geosciences, 2008, 34(12): 1769-1780.
- [33] Sturm R. PX-NOM-an interactive spreadsheet program for the computation of pyroxene analyses derived from the electron microprobe[J]. Computers & Geosciences, 2002, 28 (4): 473-483.
- [34] O'connor J. A classification for quartz-rich igneous rocks based on feldspar ratios[J]. US Geol. Surv., Prof. Pap, 1965, 525; 79-84.
- [35] Skjerlie K P, Douce A E P. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa. Implications for melting in thickened continental crust and for subduction-zone processes[J]. J. Petrol., 2002, 43(2): 291 -314.
- [36] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
- [37] Roberts M P, Clemens J D. Origin of high-potassium, talcalkaline, I-type granitoids[J]. Geol., 1993, 21(9): 825-828.
- [38] Cawthorn R G, Ohara M. Amphibole fractionation in calc-alkaline magma genesis
 [J]. Am. J. Sci., 1976, 276 (3): 309 -329.
- [39] Kushiro I, Yoder H. Origin of the calc-alkaline peraluminous andesites and dacites [M]. Carnegie Inst. Washington Year Book, 1972, 71: 411-413.
- Zou H, Reid M R. Quantitative modeling of trace element fractionation during incongruent dynamic melting [J].
 Geochim. Cosmochim. Acta, 2001, 65(1): 153-162.
- [41] Philpotts J A, Schnetzler C. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis [J]. Geochim. Cosmochim. Acta, 1970, 34(3): 307-322.
- [42] Schnetzler C, Philpotts J A. Partition coefficients of rareearth elements between igneous matrix material and rockforming mineral phenocrystsII[J]. Geochim. Cosmochim.

Acta, 1970, 34(3): 331-340.

- Klein M, Stosch H G, Seck H. Partitioning of high fieldstrength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: An experimental study[J]. Chem. Geol., 1997, 138(3-4): 257-271.
- [44] Klein M. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems[J]. Geochim. Cosmochim. Acta, 2000, 64(1): 99-115.
- [45] Foley SF, Barth MG, Jenner GA. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduc-

・学会之声・

tion zone magmas[J]. Geochim. Cosmochim. Acta, 2000, 64(5): 933-938.

- [46] Nielsen R L, Beard J S, Magnetite-melt HFSE partitioning[J]. Chem. Geol., 2000, 164(1): 21-34.
- [47] Wu F, Jahn B, Wilde S A, Lo C H, Yu T F, Lin Q. Highly fractionated J-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 2003, 66(3-4): 241-273.
- [48] Rapp R P , Watson E B. Dehydration melting of metabasalt at 8-32 kbar implications for continental Growth and crustmantle recycling[J]. J. Petrol. , 1995, 36(4): 891-931.
- [49] Patiño Douce A E. Vapor-absent melting of tonalite at 15-32 kbar[J]. J. Petrol., 2004, 46(2): 275-290.

第三届全国资源环境与生命过程成因矿物学研讨会纪要

2012年10月12至14日,由我会成因矿物学找矿矿物 学专业委员会、中国地质大学(北京)及地质过程与矿产资源 国家重点实验室,联合我会环境矿物学专业委员会、中国地 质学会矿物学专业委员会共同举办的第三届全国资源环境 与生命过程成因矿物学研讨会在中国地质大学(北京)召开。 本次会议正值中国地质大学成立60周年之际,会议也作为 校庆系列学术活动的一部分,得到了学校的大力支持和各位 与会者的积极响应。李胜荣教授主持了开幕式,中国地质大 学(北京)万力副校长和莫宣学院士做了开幕式发言。

来自高校和研究机构等单位的 41 位代表与会,其中 24 位代表做了报告,内容涉及资源、环境、生命过程等成因矿物 学研究的主要领域。会议期间共有 500 余人次到会听取报 告、参与广泛深人的讨论、交流。

会议邀请了一些科学家做大会报告,中国地质大学(北京)教授、《Gandwana Research》主编 M. Santosh 做了"Genetic Mineralogy: the key to origin and evolution of life on

Earth"报告,朱弟成教授做了"锆石成分在古老造山带构造 演化研究中的应用"的报告,东北大学黄菲教授做了"纳一微 米矿物成因的实验研究——以 Fe-S 系列矿物为例"报告。 此外,杨竹森、胡大千、鲁安怀、罗照华、白志民、韩秀丽、李国 武、谢巧勤、高翔、宋泽峰等都做了相关研究报告。为培养年 轻学者,会议还安排了 11 位博士、硕士研究生做了精彩的学 术报告,与会专家给予了充分肯定,并提出了很多建设性意 见和建议,为青年学者的研究拓展了思路。

会议将成因矿物学的理论性与应用性相结合,对资源、 环境和生命过程等当今世界的热点问题进行了深入的研究 和探讨,为这些问题的解决提供了新思路、新方法和新探索, 推动了成因矿物学在矿产资源、生命过程、环境保护、新材料 和新能源等领域的应用和研究,为社会的发展作出贡献。

(张聚全 供稿)