广西茶山锑钨矿床萤石微量元素地球化学 特征及其源区意义

沈能平1),蔡佳丽1),苏文超1),董文斗1,2)

1) 中国科学院地球化学研究所矿床地球化学国家重点实验室,贵阳,550002;

2) 中国科学院大学,北京,100049

内容提要:茶山锑钨矿床是广西南丹大厂锡多金属矿田的重要组成部分。萤石是该矿床最主要的脉石矿物之一,其形成与锑、钨矿化密切相关。本文系统研究了该矿床中萤石的微量元素(含稀土元素)地球化学特征。结果 表明,该矿床萤石样品稀土元素含量变化范围为4.03×10⁻⁶~77.53×10⁻⁶,平均38.72×10⁻⁶;其球粒陨石标准化 模式总体为平坦型,轻重稀土分馏不显著,并具有弱负铈异常(&Ce = 0.76~0.87)和较强的正铕异常(&Eu = 1.48 ~2.94)特征。明显不同于大厂锡多金属矿田内的不同类型矿石、围岩及岩浆岩的稀土元素特征(LREE 富集型, 且具明显的负铕异常)。此外,相对于陆壳和桂北地区泥盆系地层元素丰度,萤石中仅 Sb、W 等元素有不同程度的 富集;而 Cu、Zn、Co、Ni 等元素出现了亏损。综合分析和对比研究认为,茶山矿床与锑钨矿化有关的成矿流体并非 来源于泥盆纪赋矿围岩,可能是经历了深部循环的外来流体。

关键词: 萤石;微量元素;稀土元素;成矿流体;茶山锑钨矿床;广西大厂锡多金属矿田

广西南丹大厂多金属(锡、铜、铅、锌、锑、钨、铋、 钢等)矿田是我国最重要的成矿区之一,其成矿独具 特色,表现为规模大、矿种多、品位高、元素组合复 杂、矿化分带清楚、产出特征多样化等(王登红等, 2004),国内外地学工作者对其进行了大量研究,成 果颇多,但在矿床成因的认识上仍存在较大分歧。 目前主要有岩浆热液(陈毓川等,1993)、层控(或叠 加改造)(以涂光炽为代表)和海底喷流(同生沉积) (韩发等,1989a,1989b,1990)等成因观点,或对层状 矿体与脉状矿体持不同的成因认识(何海洲,1993; 罗德宣等,1993)等。

茶山锑钨矿床是大厂矿田的重要组成部分,萤 石是该矿床主要的脉石矿物之一,并与矿石矿物(辉 锑矿、白钨矿等)密切共生。大量研究表明,萤石的 微量元素(尤其是稀土元素)特征是示踪各类热液矿 床成矿流体来源与演化的有效工具(Möller et al., 1976;许成等,2001;Yuan SD et al.,2008)。聂爱 国(1998)曾用等离子体发射光谱法对茶山萤石稀土 元素地球化学特征进行了研究,但由于萤石稀土元 素含量较低,该法很难获得可靠的低含量(一般<1 ×10⁻⁶)稀土元素的数据,因此所获结论部分有待商 榷。本次研究仍以茶山矿床的萤石为研究对象,采 用电感耦合等离子体质谱(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)对其微量元素 (含稀土元素)含量进行了测试,并分析了成矿流体 的特征,探讨了大厂矿田内与锑、钨矿化有关的成矿 流体的来源。

1 大厂矿田地质特征概况

大厂锡多金属矿田位于江南古陆西南缘南丹— 河池(丹池)多金属成矿带中段。矿田内泥盆系、石 炭系、二叠系和三叠系均有出露,总厚约7000余米。 以泥盆系发育最全,为主要赋矿地层,岩性自下而上 依次为:中泥盆统下部纳标组(D₂n)黑色泥岩、页 岩,在龙头山一带为生物礁灰岩;中泥盆统上部罗富 组(D₂l)粉砂岩、泥岩夹泥质灰岩;上泥盆统下部榴 江组(D₃l)硅质岩,含钙质结核;上泥盆统中部五指 山组(D₃w),底部为宽条带灰岩,向上依次为细条带 灰岩、"小扁豆"灰岩和"大扁豆"灰岩;上泥盆统上部 同车江组(D₃t)泥灰岩及底部黑色页岩。区内岩浆

收稿日期:2013-12-12;改回日期:2014-09-23;责任编辑:黄敏。

注:本文为国家重点基础研究发展计划 973 课题(编号:2014CB440904)、国家自然科学基金项目(编号:41272113 和 40972072)、矿床地球 化学国家重点实验室"十二五"项目群(编号:SKLODG-ZY125-01)资助的成果。

作者简介:沈能平,男,1979年生。博士,副研究员,矿床地球化学专业。Email:shennengping@vip.gyig.ac.cn。通讯作者:苏文超,男, 1965年生。博士,研究员,地球化学专业,研究方向热液化学与低温成矿作用。Email:suwenchao@vip.gyig.ac.cn。

活动强烈,地表在长坡一铜坑矿床的东西两侧出露 有南北向的花岗斑岩岩脉(东岩墙)、闪长玢岩岩脉 (西岩墙),深部为黑云母花岗岩隐伏岩体。矿田内 褶皱紧闭,断裂构造发育,主构造为 NW 向的复式 褶皱,断裂主要由 NW 向逆断层及 NE 向横向断裂 组成,如 NW 向的龙箱盖背斜和龙箱盖断裂以及与 之平行的大厂背斜、大厂断裂等。

图 1 广西大厂锡多金属矿田地质图 (据韩发等,1997修改)

Fig. 1 Regional geological map of Dachang Snpolymetallic ore field in Guangxi (modified from Han Fa et al., 1997)

1—二叠系;2—石炭系;3—泥盆系;4—断裂;5—平行不整合地层 界线;6—背斜轴;7—向斜轴;8—倒转背斜轴;9—花岗岩、花岗斑 岩;10—闪长玢岩;11—锡、锌、铜等矿体;12—钨、锑矿脉组带 1—Permian; 2—Carboniferous; 3—Devonian; 4—fault; 5 parallel unconformity; 6—anticlinal axis; 7—synclinal axis; 8 overturned anticline axis; 9—granite or granite-porphyry; 10 diorite-porphyrite; 11—ore bodies for Sn, Zn and Cu, etc.; 12 ore veins for W and Sb

矿田自东而西可划分出均呈北西向展布的三条 矿带(图1):东带包括大福楼、亢马、灰乐等矿床,为 锡石一硫化物矿带;中带由龙箱盖、拉么、茶山等矿 床组成,为锌铜矿及热液脉状钨一锑一萤石矿带;西 带包括长坡一铜坑、巴里一龙头山的高峰等矿床,也 是锡石一硫化物矿带,且是锡矿的主要产出区。

大厂矿田矿物组成复杂,不同的矿床间差异较 大。整个矿田各类岩体、地层中已发现的各类矿物 达120种以上(陈毓川等,1993),主要的矿石矿物有 锡石、脆硫锑铅矿、磁黄铁矿、闪锌矿、黝锡矿、黄铜 矿、方铅矿、辉锑矿、黄铁矿、毒砂等;脉石矿物主要 为石英、方解石、萤石等。

2 茶山矿床地质特征

茶山矿床位于大厂矿田的中矿带,探明锑储量 达大型、钨储量达中型矿床规模,并伴生银、铅、锌、 铜、金、萤石等矿化。矿区内出露地层主要有中上泥 盆统的纳标组(D₂n)、罗富组(D₂l)、榴江组(D₃l)、同 车江组(D₃t),为碳酸盐岩夹碎屑岩。赋矿层位是中 泥盆统纳标组,其岩性为泥灰岩夹泥岩和页岩、钙质 砂岩。矿区内未见岩浆岩出露,仅在矿区北部个别 钻孔中见有龙箱盖花岗岩侵入体(李人科,1992)。 矿体受南北向断裂带控制,依据其成矿特点、矿化特 征和矿物共生组合特征等划分为两类:以石英一萤 石型锑钨矿为主,局部分布有少量砂卡岩型锌铜矿。

该矿床的含锑矿物以辉锑矿为主,另有少量辉 铁锑矿、硫锑铁矿、硫锑铅矿等,近地表有锑华;含钨 矿物为白钨矿和黑钨矿;其它矿石矿物有闪锌矿、黄 铜矿、磁黄铁矿、黄铁矿、毒砂、方铅矿等;脉石矿物主 要为石英,方解石和萤石次之。矿石中广泛发育结 晶、交代成因的组构特征:矿石结构主要有自形晶、半 自形晶结构等;矿石构造有块状、角砾状、脉状、浸染 状、条带状、晶簇状构造等。矿区内的围岩蚀变,有自 北向南,自下而上,从高温到低温的变化特点;其中与 锑、钨矿化有关的蚀变主要为硅化、碳酸盐化和萤石 化等,与铜、锌矿化有关的蚀变为砂卡岩化。

3 样品的采集、加工与测试

本文研究的样品均采自茶山矿床(坐标:N24° 49′,E107°38′)。萤石主要以粗细不等的脉状产出 于矿体边缘及围岩中,颜色以淡绿色为主,少数呈浅 紫色、白色或无色透明产出。在同一件手标本中存 在两种或两种以上颜色共存的萤石,且部分样品中 萤石与辉锑矿密切共生(图 2)。将每件样品碎至 40 ~80 目,在双目镜下人工挑选萤石单矿物,使其纯 度达到 99%以上,最后用玛瑙钵研磨至 200 目以下 送实验室测试。

萤石的微量元素(含稀土元素)含量测试在中国 科学院地球化学研究所矿床地球化学国家重点实验 室完成。本次样品的消解和测试流程与Qi等 (2000)介绍的基本一致。测试仪器为Perkin-Elmer ELAN DRC-e型Q-ICP-MS,该仪器对绝大多数微

图 2 广西茶山矿床萤石手标本照片

Fig. 2 Photographs showing hand specimens of fluorite from Chashan deposit in Guangxi
(a) 一淡绿色+无色透明萤石;(b) 一白色+淡绿色萤石,与辉锑矿共生;(c) 一浅紫色+淡绿色萤石;(d) 一白色+淡绿色萤石,与辉锑矿共生
(a) —Light-green and colorless-transparent fluorite; (b) —white and light-green fluorite, together with stibnite;
(c) —light-purple and light-green fluorite; (d) —white and light-green fluorite, together with stibnite

量元素的重复性测试相对标准偏差(RSD)优于 10%。此外,测试过程中使用 AGV-2、AMH-1 和 GBPG-1 三种标准样品监控仪器工作状态。

4 测试结果与分析

4.1 稀土元素

茶山矿床萤石样品的稀土元素含量测试结果和 计算出的特征参数见表 1,图 3 是球粒陨石标准化配 分模式,球粒陨石稀土元素含量引自 Sun 等(1989)。

结果表明, 萤石样品的总稀土元素含量 (Σ REE, 不包括Y元素)变化范围为4.03×10⁻⁶~ 77.53×10⁻⁶, 平均38.72×10⁻⁶, 除一件样品的稀 土元素含量较低(Σ REE = 4.03×10⁻⁶)外, 其它7 件样品 Σ REE 在同一个数量级内变化(24.65× 10⁻⁶~77.53×10⁻⁶)。这些萤石样品的Y元素的 含量变化范围为4.55×10⁻⁶~79.7×10⁻⁶(平均 39.58×10⁻⁶), 其与对应样品的 Σ REE 含量相当, Y/ Σ REE 比值接近于1。这些萤石样品的 Σ LREE (La→Eu)为 2.53×10⁻⁶~46.90×10⁻⁶,平均24.73 ×10⁻⁶;∑HREE(Gd→Lu)为 1.50×10⁻⁶~30.63 ×10⁻⁶,平均 14.00×10⁻⁶。其∑LREE/∑HREE 比 值变化范围较小(1.53~2.84,平均 1.83),且其 (La/Lu)_N为 1.07~3.04(平均 1.61),指示萤石中 LREE 比 HREE 略富集,其球粒陨石标准化模式总 体为平坦型(图 3)。(La/Sm)_N和(Gd/Lu)_N变化范 围均较小,其平均值分别为 2.04 和 0.87,表明随着 原子序数的增加,大多数萤石样品中从 La 至 Sm 的 LREE 相对越来越亏损,而 Gd 至 Lu 的 HREE 则 有相对越来越富集的趋势。

萤石样品的 δCe 值为 0.76~0.87,平均 0.80, 略呈弱负异常。而 δEu 值为 1.48~2.94,平均 1.96,具较强的正异常特征。样品的 Sm/Nd 比值 变化范围较小,介于 0.24~0.38 之间,平均 0.30。 从萤石 Sm-Nd 成功定年的先例(Chesley et al., 1991,1994)来看,如此小的 Sm/Nd 比值变化范围 可能难以获取该矿床萤石的 Sm-Nd 等时线年龄。 第2期

4.2 其它微量元素

茶山矿床萤石样品的其它微量元素(不包括稀

土元素)含量见表 2。本次测试尽管有 Rh 作为内标 元素监控漂移,但低质量段元素 Li、Be、V 的测试结 果可信度不高。此外,样品中大多数元素含量普遍 较低,有些样品部分元素(如 Cr、Mo、Ag、Cd、Ba、 Tl、U)甚至全部元素(如 In、Sn、Bi)测试数据低于仪 器的检测限。故我们仅对表 2 中的部分元素含量数 据进行了分析。

尽管茶山矿床锑资源量达大型、钨资源量达中 型(李人科,1992),但本次测试的萤石样品中 Sb 含 量变化范围为 0.348×10⁻⁶~10.0×10⁻⁶,平均 3.13×10⁻⁶,仅比陆壳元素丰度(0.2×10⁻⁶;Taylor et al., 1995)略高或富集十余倍;若与桂北地区泥盆 系地层锑元素丰度(1.04×10⁻⁶;陈毓川等,1993)比 较,则富集程度更低。而萤石样品中W含量变化范 围很宽(0.306×10⁻⁶~119×10⁻⁶),其平均值(23.1 ×10⁻⁶)相当于桂北地区泥盆系地层 W 含量(1.3× 10⁻⁶;陈毓川等,1993)的近 20 倍。样品中 As 含量

Table 1 REE compositions ($\times 10^{-6}$) and characteristic values of fluorite from Chashan deposit in Guangxi											
样品号	CS-202a	CS-202b	CS-205b	CS-206a	CS-206b	CS-206c	CS-206d	CS-207a			
La	9.22	7.05	4.84	5.17	3.80	9,43	0.509	3.80			
Ce	13.9	10.8	8.36	8.95	5.81	16.3	0.955	5.75			
Pr	1.88	1.64	1.26	1.53	0.910	2.75	0.141	0.910			
Nd	7.12	6.66	6.04	6.93	4.16	12.2	0.548	3.85			
Sm	1.72	2.12	1.83	2.23	1.17	3.44	0.209	1.21			
Eu	1.44	1.49	1.34	1.39	0.679	2.78	0.164	1.43			
Gd	2, 37	3.15	2.79	3.40	1.68	5.48	0.306	1.83			
ТЬ	0.510	0.680	0.584	0.668	0.302	1.14	0.0620	0.409			
Dy	3.53	4.92	4.23	4.69	2.07	8.18	0.411	2.92			
Ho	0,745	1.05	0.948	1.00	0.477	1.86	0.0934	0.628			
Er	2.31	3.21	2.80	3.12	1.47	5.72	0.274	1.83			
Tm	0.352	0.516	0.404	0.502	0,238	0.952	0,0437	0.287			
Yb	2.29	3.24	2.62	3, 29	1.64	6.35	0.276	1.97			
Lu	0.325	0.473	0.348	0.507	0.245	0.945	0.0380	0.280			
Y	30.8	51.3	52.5	49.2	23.7	79.7	4.55	24.9			
ΣREE	47.71	47.00	38.39	43.38	24.65	77.53	4.03	27.10			
ΣLREE	35, 28	29.76	23.67	26.20	16.53	46.90	2.53	16.95			
ΣHREE	12.43	17.24	14.72	17.18	8.12	30.63	1.50	10.15			
SLREE/SHREE	2.84	1.73	1.61	1.53	2.04	1,53	1.68	1.67			
δEu	2.18	1.76	1.81	1.54	1.48	1,96	1.98	2.94			
δCe	0.82	0.78	0.83	0.78	0.77	0.78	0.87	0.76			
(La/Lu) _N	3.04	1.60	1.49	1.09	1.66	1.07	1.44	1.45			
$(La/Sm)_N$	3.46	2.15	1.71	1.50	2.10	1.77	1.57	2.03			
(Gd/Lu) _N	0.90	0.82	0.99	0.83	0.85	0.72	1.00	0.81			
Sm/Nd	0.24	0.32	0.30	0.32	0.28	0.28	0, 38	0.31			
Tb/Ca原子比	2.51×10^{-7}	3.34×10^{-7}	2.87 $\times 10^{-7}$	3.28×10^{-7}	1.48×10^{-7}	5.60 $\times 10^{-7}$	3.05×10^{-8}	2.01×10 ⁻⁷			
Tb/La原子比	0.048	0.084	0.105	0.113	0.069	0.106	0.106	0.094			

表 1 广西茶山矿床萤石的稀土元素含量(×10⁻⁶)及其特征值

注:稀土元素含量数据均保留三位有效数字; dEu 和 dCe 值由下列公式求得: dEu = Eu_N/ √Sm_N×Gd_N; dCe = Ce_N/ √La_N×Pr_N; 在计算 Tb/ Ca原子比时, Ca含量采用 CaF2中 Ca 的理论值(51.3328%)。

极其稳定,变化范围仅为 3.52×10⁻⁶~5.36×10⁻⁶ (平均 4.23×10⁻⁶),相当于陆壳元素丰度(1.0× 10⁻⁶;Taylor et al.,1995)的 3~5倍,但低于桂北地 区泥盆系地层元素丰度(11.5×10⁻⁶;陈毓川等, 1993)。

Cu和Zn是大厂矿田内非常重要的成矿元素, 但在茶山萤石样品中Cu和Zn含量仅分别为3.64 ×10⁻⁶~11.0×10⁻⁶(平均6.59×10⁻⁶)和5.36× 10⁻⁶~20.0×10⁻⁶(平均9.20×10⁻⁶),均显著低于 陆壳元素丰度(Cu:75×10⁻⁶,Zn:80×10⁻⁶;Taylor et al.,1995)和桂北地区泥盆系地层元素丰度(Cu: 20.8×10⁻⁶,Zn:60.2×10⁻⁶;陈毓川等,1993)。样 品中Co和Ni含量分别为0.806×10⁻⁶~1.03× 10⁻⁶(平均0.942×10⁻⁶)和10.2×10⁻⁶~14.7× 10⁻⁶(平均12.08×10⁻⁶),同样均明显低于陆壳元 素丰度(Co:29×10⁻⁶,Ni:105×10⁻⁶;Taylor et al.,1995)和桂北地区泥盆系地层元素丰度(Co:5.5 ×10⁻⁶,Ni:20.3×10⁻⁶;陈毓川等,1993)。

此外, 萤石样品中 Ba 含量很低, 除一件样品 外,其它样品均低于仪器检测限,这一方面表明萤石 稀土元素中 Eu 的正异常与 Ba 含量无关,因为若样 品讨高的 Ba 含量(>1200×10⁻⁶)往往在 ICP-MS 测试中会导致正铕异常的假象;另一方面也表明成 矿流体源自富含 Ba 元素的海相碳酸盐岩(桂北地 区泥盆系地层 Ba 含量为 520×10⁻⁶; 陈毓川等, 1993)或与其进行了较充分的水-岩相互作用的可能 性较小。样品中 Rb 含量为 0.0582×10⁻⁶~37.4× 10⁻⁶,平均 5.40×10⁻⁶; Sr 含量为 28.4×10⁻⁶~ 67.8×10⁻⁶,平均 40.94×10⁻⁶。由于 Rb 含量变化 范围较宽,致使其 Rb/Sr 比值变化范围亦较宽 (0.00135~1.22),但除一件样品外,其它样品的 Rb/Sr 比值均在 0.001~0.1 范围内变化。这一特 征与含钙矿物的晶体化学结构特征相吻合,即在这 些矿物(尤其是方解石)的晶格中,Ca的位置能有限

表 2 广西茶山矿床萤石的微量元素含量(×10⁻⁶) Table 2 Trace element compositions (×10⁻⁶) of fluorite from Chashan deposit in Guangxi

	CS-202a	CS-202b	CS-205b	CS-206a	CS-206b	CS-206c	CS-206d	CS-207a
Li	0.362	1.40	3.22	2.93	3.29	0.504	3.77	22. 9
Be	0.230	0.715	0.162	0.635	0.0989	2.01	0.0675	0,265
Sc	1.19	1.94	1.05	1.63	1, 21	2.99	0.810	1.09
V	-	_	—	0.155	0.0447		-	1.69
Cr	_	—		_	_ (6.03	—	—
Co	1.01	0.874	0.991	0.963	0.993	0.870	0.806	1.03
Ni	12.1	12.1	11.5	12.8	12.7	14.7	10.2	10.5
Cu	6.69	3.64	5.35	7.00	6.09	7.85	11.0	5.12
Zn	20.0	5.70	8.91	14.5	5.64	5.36	7.37	6.14
Ga	0.158	0.110	0.311	0.160	0.134	0.171	0.316	5.57
Ge	0.0464	0.0702	0.0669	0.0611	0.0310	0.0563	0.000439	0.0817
As	3.98	4.28	4.54	4.32	3.52	5.36	3.90	3.95
Rb	0.0968	0.0582	2.44	0.412	0.855	0.144	1.83	37.4
Sr	41.8	43.1	28.4	37.2	36.6	41.9	67.8	30.7
Zr	0.390	0.192	0.197	0.263	0.297	0.365	0.306	0.241
Nb	0.0386	0.0429	0.0261	0.0262	0.0218	0.115	0.0287	0.0302
Mo	0,256	_	_	—	_	0.0219		_
Ag	<u> </u>	0.00181	0.126	_	_	0.0680	2.21	0.0179
Cd	0.0258	_	_	_			_	_
Sb	0.545	0.924	8.43	1.18	0.348	1.26	10.0	2.35
Cs	0.0402	0.0609	0.283	0.0823	0.0916	0.0569	0.214	4.05
Ba			-	_	_	—	_	1.93
Hf	0.0546	0.111	0.0569	0.0796	0.0348	0.130	0.0231	0.0364
Ta	0.0301	0.0271	0.0245	0.0278	0.0256	0.0616	0.0303	0.0217
W	0.306	0.514	0.552	13.3	2.25	119	48.1	0.757
Tl		0.00130	0.0114	0.00253	0.000835	_	0.00927	0.148
Pb	0.527	0, 228	0.233	0.235	0.188	0.599	2.05	0.224
Th	0.308	0.700	0.439	0.545	0.215	0.367	0.0380	0.209
U	0.00688	0.0292	0.0148	0.0210	0.0127	0.0767	—	0.0234

注:微量元素含量数据均保留三位有效数字;"一"表示低于检测限。

第2期

地容纳 Sr 而不接受 Rb(Deer et al., 1966), 从而导 致 Rb/Sr 比值很小。

5 讨论

稀土元素是一组较特殊的微量元素,其地球化 学性质相似,在地质作用过程中往往作为一个整体 迁移,且在萤石等含钙矿物中,由于六配位 Ca²⁺半 径(1.00Å)与六配位稀土元素离子半径(La³⁺: 1.032Å → Lu³⁺:0.861Å)(Shannon,1976)相近,它 们具有相似的结晶化学性质,REE3+常与 Ca2+发生 置换而进入萤石晶格内,除了晶体溶解之外,其它过 程一般不会破坏萤石稀土元素配分模式这个地质记 录密码。因而热液成因萤石稀土元素地球化学特征 可代表流体的稀土元素地球化学特征,其变化规律 记录了成矿流体的来源及演化等方面的重要信息。 萤石、方解石等含钙矿物稀土元素地球化学在探讨 矿床成矿流体来源与演化过程中已得到广泛地应用 (王中刚等,1989;Lottermoser,1992;曹俊臣,1995, 1997;黄智龙等,2001,2003;彭建堂等,2004;双燕 等,2006;Yuan S D et al.,2008)。

本次研究的萤石样品以淡绿色为主,亦存在淡 紫色、白色或无色透明的萤石,但从它们的微量元素 测试分析结果来看,不同颜色的萤石均表现出完全 相一致的微量元素(尤其是稀土元素)特征,表明这 些颜色不同的萤石应具有相同的来源。很多矿床 (如邻区湖南白腊水锡矿床;Yuan S D et al.,2008) 的萤石也都具有这样的特征。

δEu 与 δCe 两个参数的变化是由于在相同的氧 化一还原条件下,两个变价元素 Eu 和 Ce 形成不同 氧化态的结果:在还原条件下,Eu 呈二价态、Ce 呈 三价态存在;而在氧化条件下,Eu 呈三价态、Ce 呈 四价态存在。茶山萤石具较强正铕异常指示其可能 形成于相对较还原的成矿流体中。

茶山矿床萤石的 Tb/La 和 Tb/Ca 的原子比值 (表1)变化范围分别为 0.048~0.113 和 3.05× 10⁻⁸~5.60×10⁻⁷。Möller 等(1976)指出萤石的 Tb/Ca-Tb/La 图解具有成因指示意义,并据这两个 比值将萤石划分出三个成因区,将本次分析数据投 影到其中,除一个数据点落入靠近热液成因区的沉 积成因区域外,其它数据点均落入热液成因区域内 (图 4),这一特征与茶山萤石主要呈脉状的赋存形 式相一致。此外,Möller 等(1976)认为,萤石在结 晶的早期阶段往往富集 LREE,中期阶段轻、重稀土 富集程度相当,而在其形成的晚期阶段则富集 HREE。由此推断茶山矿床萤石是从结晶作用的 早、中阶段形成,而锑、钨矿物的结晶可能主要集中 于中、晚阶段。

图 4 广西茶山矿床萤石 Tb/La-Tb/Ca 图 (底图据 Möller et al., 1976)

华南地区有些热液脉状萤石矿床中,萤石与花 岗岩、相应赋矿围岩等的稀土元素配分模式相似,从 而表明了这些矿床的成矿溶液对岩体、相应围岩进 行了淋滤、萃取,从而转入萤石中的稀土继承了原来 岩体、相应围岩的稀土配分模式(曹俊臣,1995, 1997)。尽管茶山矿床围岩、矿化围岩及矿石的稀土 元素模式非常一致(图 5),均为向右倾斜的 LREE 富集型,且具明显的负铕异常特征(聂爱国,1996), 大厂矿田不同类型矿石、各类容矿岩石及岩浆岩的 稀土元素特征也与此类似(韩发等,1989b,1997;梁 婷等,2008)。但茶山矿床萤石样品的稀土元素球粒 陨石标准化模式为平坦型,并具弱铈负异常(ôCe = 0.76~0.87)、较强的正铕异常(δEu = 1.48~ 2.94)特征。如此明显的差异,表明茶山矿床的成矿 流体与赋矿的泥盆纪围岩没有成因联系。萤石样品 中 Ba 含量较低也支持该认识。此外,大厂多金属 矿田硫同位素特征指示,多数矿床的硫源具岩浆硫 特征(Fu M et al., 1991;陈毓川等, 1993), 少部分矿

床为岩浆硫与地层硫混合(何海洲等,1996;杨斌等, 1999)。而茶山矿床萤石氢、氧同位素数据(δD= -80‰~-58‰,δ¹⁸O=-3.8‰~-2.4‰)指示其 成矿流体主要来自大气降水形成的地下热卤水(聂 爱国,1996)。故综合以上研究成果,我们推断茶山 矿床与锑钨矿化有关的成矿流体为经历了深部循环 的外来(相对赋矿围岩而言)流体。

图 5 广西茶山矿床萤石与围岩、矿石的稀土元素球粒陨 石标准化配分模式对比图(围岩和矿石数据引自聂爱国, 1996)

Fig. 5 Comparison of chondrite-normalized REE distribution patterns of fluorite, wall-rocks and ore from Chashan deposit in Guangxi (the wall-rocks and ores data are from Nie A G, 1996)

6 结论

(1)茶山锑钨矿床萤石稀土元素含量变化范围 为 $4.03 \times 10^{-6} \sim 77.53 \times 10^{-6}$,平均 38.72×10^{-6} ; 轻重稀土分馏不显著,其球粒陨石标准化模式总体 为平坦型,并具弱负铈异常($\delta Ce = 0.76 \sim 0.87$)、 较强的正铕异常($\delta Eu = 1.48 \sim 2.94$)特征,指示成 矿流体还原性相对较强。

(2)相对于陆壳和桂北地区泥盆系地层元素丰度,茶山萤石中Sb、W等元素有不同程度的富集;而Cu、Zn、Co、Ni等元素均出现了亏损。

(3)综合分析和对比研究认为,该矿床与锑钨矿 化有关的成矿流体并非来源于泥盆纪赋矿围岩,可 能是经历了深部循环的外来流体。

致谢:室内测试分析得到中国科学院地球化学 研究所矿床地球化学国家重点实验室胡静、黄艳、包 广萍等同志的帮助;审稿过程中,三位匿名专家也提 供了部分建设性的修改意见。在此一并表示衷心的 感谢!

参考文献

- 曹俊臣、1995. 华南低温热液脉状萤石矿床稀土元素地球化学特征. 地球化学,24(3):225~234.
- 曹俊臣,1997.中国萤石矿床稀土元素地球化学及萤石的矿物物理 特征.地质与勘探,33(2):18~23,38.
- 陈毓川,黄民智,徐珏,胡云中,唐绍华,李荫清,孟令库. 1993. 大厂锡矿地质,北京:科学出版社,1~361.
- 韩发,哈钦森 R W. 1989a. 大厂锡多金属矿床热液喷气沉积的证据——含矿建造及热液沉积岩. 矿床地质,8(2):25~40.
- 韩发,哈钦森 R W. 1989b. 大厂锡一多金属矿床热液喷气沉积成因的证据——容矿岩石的微量元素及稀土元素地球化学.矿床地质,8(3):33~42.
- 韩发,哈钦森 R W. 1990. 大厂锡一多金属矿床喷气沉积成因的证据:矿床地质、地球化学特征,矿床地质,9(4): 309~324.
- 韩发,赵汝松,沈建忠, Hutchinson R W. 1997. 大厂锡多金属矿床 地质及成因. 北京:科学出版社,1~213.
- 何海洲. 1993. 广西大厂矿田成矿物质来源探讨. 西南矿产地质,7 (3):35~39.
- 何海洲,叶绪孙. 1996. 广西大厂矿田矿质来源研究. 西南矿产地 质,10(3): 2~8.
- 黄智龙,陈进,韩润生,李文博,高德荣,赵德顺,刘丛强. 2001. 云南会泽铅锌矿床脉石矿物方解石 REE 地球化学特征.矿物 学报,21(4):659~666.
- 黄智龙,李文博,陈进,吴静,韩润生,刘丛强. 2003. 云南会泽超 大型铅锌矿床构造带方解石稀土元素地球化学. 矿床地质,22 (2):199~207.
- 李人科. 1992. 茶山锑矿床地质特征. 西南矿产地质, 6(4): 70~ 83, 43.
- 梁婷,陈毓川,王登红,蔡明海.2008.广西大厂锡多金属矿床地质 与地球化学.北京:地质出版社,1~235.
- 罗德宣,张起钻,廖宗廷. 1993. 大厂锡矿田海底热水沉积、后期岩 浆热液叠加改造成矿的依据. 矿产与地质,7(5):313~319.
- 聂爱国. 1996. 广西茶山锑矿床成矿流体研究,贵州工学院学报, 25(5): 30~33.
- 聂爱国. 1998. 广西茶山锑矿区萤石成因的稀土元素地球化学研究. 矿物学报, 18(2): 250~253.
- 彭建堂,胡瑞忠,漆亮,赵军红,符亚洲. 2004. 锡矿山热液方解石 的 REE 分配模式及其制约因素.地质论评,50(1):25~32.
- 双燕,毕献武,胡瑞忠,彭建堂,李兆丽,李晓敏,袁顺达,齐有强. 2006. 芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体 来源的指示.矿物岩石,26(2):57~65.
- 王登红,陈毓川,陈文,桑海清,李华芹,路远发,陈开礼,林枝茂. 2004. 广西南丹大厂超大型锡多金属矿床的成矿时代. 地质学 报,78(1):132~138.
- 王中刚,于学元,赵振华. 1989. 稀土元素地球化学,北京:科学出版社,1~535.
- 许成,黄智龙,漆亮,肖化云,李文博,刘丛强. 2001.四川牦牛坪 稀土矿床成矿流体来源与演化初探——萤石稀土地球化学的 证据.地质与勘探,37(5):24~28.
- 杨斌,罗德宣,何海洲.1999.广西大厂锡多金属矿田成矿物质来 源及矿床成因分析.有色金属矿产与勘查,8(6):466~469.

- Chesley J T, Halliday A N, Scrivener R C. 1991. Samariumneodymium direct dating of fluorite mineralization. Science, 252 (5008): 949~951.
- Chesley J T, Halliday A N, Kyser T K, Spry P G. 1994. Direct dating of Mississippi Valley-type mineralization: Using of Sm-Nd in fluorite. Economic Geology, 89(5): 1192~1199.
- Deer W A, Howie R A, Zussman J. 1966. An introduction to the rock forming minerals. New York: Longman Press, 511~515.
- Fu M, Changkakoti A, Krouse H R, Gray J, Kwak T A P. 1991. An oxygen, hydrogen, sulfur, and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang tin field, China. Economic Geology, 86(8): 1683~1703.
- Lottermoser B G. 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1): 25~41.
- Möller P, Parekh P P, Schneider H J. 1976. The application of Tb/ Ca-Tb/La abundance ratios to problems of fluorspar genesis. Mineralium Deposita, 11(1): 111~116.
- Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace

elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): $507 \sim 513$.

- Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32: 751~767.
- Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.
- Taylor S R, Mclennan S M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241~265.
- Yuan Shunda, Peng Jiantang, Hu Ruizhong, Bi Xianwu, Qi Liang, Li Zhaoli, Li Xiaomin, Shuang Yan. 2008. Characteristics of rare-earth elements (REE), strontium and neodymium isotopes in hydrothermal fluorites from the Bailashui tin deposit in the Furong ore field, southern Hunan Province, China. Chinese Journal of Geochemistry, 27(4): 342~350.

Characteristics and Source Significance of Trace Element Geochemistry of Fluorite from Chashan Sb-W Deposit in Guangxi

SHEN Nengping¹⁾, CAI Jiali¹⁾, SU Wenchao¹⁾, DONG Wendou^{1,2)}

 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002; 2) University of Chinese Academy of Sciences, Beijing, 100049

Abstract

The Chashan Sb-W deposit is located in Dachang Sn-polymetallic ore field, Nandan, Guangxi. Fluorite is one of major gangue minerals in this deposit, which is closely related with antimony and tungsten mineralization. Geochemical study on trace elements (including rare earth elements, REE) of fluorite was carried out systematically in this paper. The results show that the total REE concentrations of fluorite range from 4.03×10^{-6} to 77.53×10^{-6} , with an average of 38.72×10^{-6} . The chondrite-normalized REE distribution pattern is flat, with slight fractionation between LREE and HREE, and slightly Ce negative anomaly ($\delta Ce = 0.76 \sim 0.87$) and relatively strong Eu positive anomaly ($\delta Eu = 1.48 \sim 2.94$). These features are clearly different from the characteristics of REE (LREE-rich pattern, with obvious negative Eu anomaly) for different types of ores, host rocks and magmatic rocks from Dachang Sn-polymetallic ore field. Furthermore, compared with other elemental abundance of the continental crust and Devonian strata in the western Guangxi, the fluorite from Chashan deposit is riched in Sb and W, and depleted in Cu, Zn, Co, Ni, etc. By comprehensive analysis and comparison the ore-forming fluid closed associated with Sb-W mineralization of Chashan deposit would not be sourced from the Devonian host rocks, may be derived dominantly from deep-circled fluids.

Key words: fluorite; trace element; rare earth element; ore-forming fluid; Chashan Sb-W deposit; Dachang Sn-polymetallic ore field in Guangxi