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Abstract
The Diyanqinamu porphyry Mo deposit in the southern Greater Khingan Range of the Central Asian oro-

genic belt contains 800 million metric tons (Mt) of ore with an average grade of 0.097% molybdenum. The 
deposit is hosted in Late Jurassic volcanic rocks of tuff, andesite, and volcanic breccia. Multiple-stage hydro-
thermal activities have resulted in propylitic, phyllic, and argillic alteration in this deposit. Five stages (I–V) of 
hydrothermal activity are identified. Stage I is represented by a mineral assemblage of epidote, chlorite, and 
magnetite, with some discontinuous barren veinlets of quartz + K-feldspar ± fluorite ± magnetite ± epidote ± 
chlorite. Stage II is marked by occurrence of quartz + fluorite + molybdenite + magnetite ± pyrite ± sericite 
± siderite veinlets/veins with phyllic halos. Stage III consists of fluorite + siderite + quartz + molybdenite + 
pyrite ± ankerite ± calcite ± chalcopyrite veins that are commonly related to phyllic alteration and dissemination 
of fluorite in the altered rocks. Stage IV has an assemblage of fluorite + quartz + pyrite ± ankerite ± calcite ± 
molybdenite ± chalcopyrite ± sphalerite ± galena in coarse veins (10–20 mm wide). Stage V consists of narrow 
(≤5-mm wide) veinlets of calcite + fluorite + pyrite ± quartz. Molybdenite mainly occurs in Stages II and III.

Re-Os dating results for molybdenite samples from these two stages yielded an isochron age of 156.2 ± 
4.2 Ma (2σ, MSWD = 0.96, n = 10). Most molybdenite samples have high δ34S values (≥8.4‰) relative to 
other sulfide minerals (i.e., galena, sphalerite, pyrite, and chalcopyrite) of Stages II to V (δ34S = 2.5–8.3‰, n 
= 22). Molybdenite also has low 207Pb/204Pb and 208Pb/204Pb ratios relative to other sulfide minerals although 
there are minor overlaps. In a diagram of 206Pb/204Pb versus 207Pb/204Pb, these Pb isotope data display a positive 
trend transecting the growth curves of crustal lead, which could be invoked by mixing of crustal and mantle 
sources with distinct Pb isotopes. In combination with the S isotope data and mineral paragenesis, we suggest 
that magmas were the main source of molybdenum, whereas other metals (i.e., Pb, Zn, and Cu) were possibly 
sourced from the country rocks.

Introduction
The Diyanqinamu porphyry Mo deposit is located in the 

southern Greater Khingan Range of northeast China (Figs. 1, 
2). The Greater Khingan Range is considered to be the east-
ernmost segment of the Paleozoic Central Asian orogenic belt 
(Jahn et al., 2000), which is also known as the Altaid tectonic 
collage (Sengör et al., 1993). The Central Asian orogenic belt 
was formed mainly as a result of progressive subduction of 
the Paleo-Asian Ocean and amalgamation of various arcs and 
terranes during the Paleozoic (e.g., Xiao et al., 2003; Windley 
et al., 2007). It is characterized by extensive juvenile crustal 
growth from the Phanerozoic to Mesozoic (e.g., Jahn et al., 
2000; Wu et al., 2000; Kovalenko et al., 2004). The Central 
Asian orogenic belt is also one of the most important metal-
logenic belts in the world and hosts numerous Cu, Au, Pb, 
and Zn ore deposits ranging in age from Neoproterozoic to 
Cretaceous (e.g., Zhang et al., 1999; Xiao et al., 2003, 2009; 

Berzina et al., 2005; Shen et al., 2012; Goldfarb et al., 2013; 
Seltmann et al., 2014). 

Over 30 porphyry-type deposits are emplaced in the 
Greater Khingan Range (Ge et al., 2007; Zhang et al., 2009; 
Shen et al., 2010; Nie and Jiang, 2011; Sun et al., 2012; Zhou 
et al., 2012; Ma et al., 2013) associated with extensive felsic 
magmatic activities during the Late Permian to the Early 
Cretaceous (e.g., Nie et al., 2007; Chen et al., 2008; Wu et 
al., 2008; Zhang et al., 2009; Wan et al., 2009; Shen et al., 
2010; Nie and Jiang, 2011; Ma et al., 2013). Some of these 
porphyry Mo-(Cu-W) deposits, such as Chehugou, Jiguan-
shan, and Xiaoxigou, occur in the Xilamulun tectonic-metal-
logenic belt (Fig. 1; Zhang et al., 2009; Wu et al., 2011; Ma 
et al., 2013; Seltmann et al., 2014), whereas other porphyry 
Mo-(W) deposits, including Ulandler and Bogda Uul, occur in 
the Chagan Obo-Aoyoute-Chaobulen tectono-magmatic belt 
(Figs. 1, 2; Nie et al., 2007; Nie and Jiang, 2011).

The Diyanqinamu porphyry Mo deposit is a newly discov-
ered deposit in the Chagan Obo-Aoyoute-Chaobulen belt 
(Figs. 1, 2) and contains approximately 800 million metric 
tons (Mt) of ore with an average grade of 0.097% Mo, using 
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a 0.06% Mo cutoff. Approximately 148,000 m diamond drill-
ing had been completed at Diyanqinamu over the past sev-
eral years. Nie and Hou (2010) presented a short report on 
this deposit, and Yan et al. (2012) built a model of hydro-
thermal alteration zonation using near-infrared spectroscopy 
and Gemcom Surpac three dimensional (3-D) modeling soft-
ware. More recently, Sun et al. (2014) obtained identical zir-
con U-Pb ages of 156 ± 2 Ma (2σ) for two granite samples 
from this deposit. In this contribution, we provide a detailed 
description of the Diyanqinamu deposit, together with new 
molybdenite Re-Os ages and S and Pb isotope compositions. 
Our results are used to constrain the timing of mineralization 
and possible sources of sulfur and metals in the Diyanqinamu 
deposit.

Geologic Background
The Greater Khingan Range, NE China, extends north-

eastward from Chifeng in Inner Mongolia to Mohe in 

Heilongjiang Province, with a length of 1,400 km and a 
width of 200 to 300 km (Fig. 1). It is located between the 
Siberian and North China cratons and is bounded by the 
Mongol-Okhotsk suture to the north, the Kangbao-Chifeng 
fault to south, the Neijing fault to the east, and the inter-
national border between China and Mongolia to the west 
(Fig. 1). Four different tectono-stratigraphic units are dis-
tributed in the Greater Khingan Range, including: (1) Pre-
cambrian metamorphic basement, which is thought to be 
composed of Neoarchean to Neoproterozoic metamorphic 
rocks including schists, gneisses, and granulites; (2) early 
Paleozoic weakly metamorphosed volcanic and sedimentary 
rocks, consisting of schist, slate, marble, and meta-andesite 
with typical continental margin and arc accretion features; 
(3) widespread late Paleozoic (mainly Permian) weakly 
metamorphosed volcanic and sedimentary rocks, which are 
similar to those of the early Paleozoic unit but with lower 
metamorphic grades; and (4) Jurassic and Cretaceous 
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Fig. 1.  Simplified geologic map of the Greater Khingan Range and its adjacent areas (modified from Shen et al., 2010, 
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continental intermediate-felsic volcanic and sedimentary 
rocks (Liu et al., 2004; Zhou et al., 2012).

In the Dong Ujimqin region (Fig. 2), Ordovician-Perm-
ian volcanic and metasedimentary strata are composed of 
sericite schist, slate, meta-siltstone, argillite, and quartzite, 
which are intercalated with mafic-intermediate volcanic 
rocks (Inner Mongolian Bureau of Geology and Mineral 
Resources, 1991; Zhang, 2008; Nie and Jiang, 2011). Jurassic 
strata mainly consist of continental clastic rocks and inter-
mediate-felsic volcanic rocks, with thickness ranging from 
2,000 to 7,430 m (Nie et al., 2007; Nie and Jiang, 2011), and 
unconformably overlie the Paleozoic strata. In this region, 
several orogenic processes during the Late Silurian to the 
Early Cretaceous led to an ENE- to NNE-trending tectonic 
fabric (Fig. 2; Nie et al., 2007). Numerous granite and grano-
diorite batholiths, stocks, and dikes were emplaced along 
fracture zones parallel to this fabric in the northern part of 
this region (Fig. 2; Nie and Jiang, 2011). Their ages cluster 
in three main episodes: 325 to 275, 235 to 224, and 137 to 
131 Ma (Zhao et al., 1994; Hong et al., 2003; Jin et al., 2005; 
Nie et al., 2007a; Zhang, 2008; Nie and Jiang, 2011). The 
latter two episodes of intrusions are spatially and temporally 
related to several styles of mineralization, including hydro-
thermal Au-Ag-Pb-Zn veins, Fe-Zn-Pb-Ag skarns, and por-
phyry Mo-(W-Cu) deposits (Fig. 2; Nie et al., 2007; Zhang, 
2008; Nie and Jiang, 2011).

Deposit Geology

Host rocks

The Diyanqinamu deposit is mostly concealed by Quater-
nary overburden and is mainly hosted in Late Jurassic volcanic 
rocks of the Chagannuoer Formation, which unconformably 
overlie the Middle Ordovician Hanwula Formation (Fig. 3). 
The Chagannuoer Formation is composed of a series of inter-
mediate-felsic lavas (mainly andesite and minor rhyolite) and 
volcaniclastic rocks including tuff and volcanic breccia with a 
thickness of over 1,000 m. Mineralized andesite has a zircon 
U-Pb age of 165 ± 3 Ma (2σ, n = 11, MSWD = 1.8; Shandong 
Gold Group Co. Ltd., unpub. data, 2012). The main compo-
nents of the Chagannuoer Formation are described below.

Tuff generally contains about 45 vol % of crystal fragments 
(0.05–1 mm) consisting of feldspar (25 vol %) and quartz 
(15 vol %), minor lithic fragments (5 vol %), and 55 vol % of 
matrix (Figs. 4a, 5a). The matrix consists of microcrystalline 
feldspar and quartz (25 vol %), volcanic glass (15 vol %), clay 
minerals (10 vol %), and opaque minerals (5 vol %).

Volcanic breccia is mainly composed of 40 vol % of lithic 
fragments (2–20 mm) and over 50 vol % of volcanic ash (Fig. 
4b, c). Lithic fragments include 20 vol % of andesitic frag-
ments and 20 vol % of felsic fragments. The matrix is com-
posed of more or less altered volcanic ash which is mainly 
composed of cryptocrystalline quartz and feldspar.
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Andesite is made up of phenocrysts (30–35 vol %) and 
groundmass (65–70 vol %; Fig. 4d). Phenocrysts include 25 to 
30 vol % of 0.1 to 1 mm tabular plagioclase and 5 vol % of 1 
to 2 mm hornblende and biotite (Fig. 5b, c). The groundmass 
comprises very fine grained plagioclase and K-feldspar.

Rhyolite consists of about 5 vol % of phenocrysts with 
abundant 0.1 to 0.6 mm K-feldspar and minor 0.25 to 1.0 mm 
quartz, and about 95 vol % of groundmass of cryptocrystalline 
felsic minerals (Fig. 4e).

Intrusions

No intrusions are exposed at surface near the deposit, but 
several intrusive stocks and/or dikes have been intersected in 
drill holes (e.g., ZK3706, ZK8502, and ZK9701). They include 
quartz monzonite porphyry (Fig. 4g), dacitic porphyry (Fig. 
4h), K-feldspar granite, and diorite. These intrusions have 
generally undergone variable degrees of phyllic and/or propy-
litic alteration, which is locally accompanied by weak miner-
alization (see below). No crosscutting relationships have been 
observed either among the intrusions or between the intru-
sions and orebodies in drill core, so their genetic relationship 
with mineralization is still an open question.

Quartz monzonite porphyry intrusions are observed in drill 
hole ZK8502 from 684 m to 725.9 m, and locally in drill holes 
ZK3706 and ZK6114. It contains 1–4 mm phenocrysts of 
K-feldspar (~20 vol %), plagioclase (10–15 vol %), and quartz 
(5–10 vol %), in a groundmass (55–65 vol %) of felsic miner-
als and minor biotite. Accessory minerals include magnetite, 
zircon, apatite and rutile.

Dacitic porphyry dikes are found in drill holes ZK3706, 
ZK3313, and ZK5311. This lithology comprises 10 to 20 vol % 
of plagioclase phenocrysts and 80 to 90 vol % of felsic ground-
masses. This rock has undergone moderate amounts of silicic 
and phyllic alteration (Fig. 4h).

A K-feldspar granite stock was encountered in drill hole 
ZK9701 from 504 to 692 m. It is medium to coarse grained 
and is composed of 1 to 3 mm smoky quartz (30 vol %), pink 
tabular K-feldspar (40 vol %), tabular plagioclase (20 vol %), 
and minor biotite and hornblende, with accessory zircon, 
magnetite, and apatite. It has a zircon U-Pb age of 156 ± 2 Ma 
(2σ, n = 21, MSWD = 0.90; Sun et al., 2014).

Diorite dikes were intersected in some drill holes on 
exploration lines 21, 25, and 29 in the northwestern part 
of the deposit and are composed of hornblende (45 vol 
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%), plagioclase (40 vol %), and minor biotite, quartz, and 
magnetite.

Hydrothermal alteration

Rocks within the Diyanqinamu deposit record several hydro-
thermal alteration assemblages, including: propylitic, phyllic, 
and argillic. Hydrothermal alteration mineral assemblages are 
presented in detail below and are shown in Figures 4, 5, and 6.

Propylitic alteration is intensely developed in the andes-
ite and volcaniclastic rocks of the Chagannuoer Formation. 
It is characterized by pervasive disseminations of chlorite, 

epidote, magnetite, and calcite in these rocks (Figs. 4f, 5d). It 
also occurs locally in the quartz monzonite porphyry as plagio-
clase replaced by epidote (Figs. 4g, 6g). During the propylitic 
alteration, primary mafic minerals (i.e., hornblende and bio-
tite) in these rocks are altered partially or totally to chlorite, 
whereas plagioclase is altered to epidote and/or calcite. The 
propylitic alteration zone spatially surrounds the main Mo 
orebody shown by the projected plan in Figure 7.

Phyllic alteration mainly occurs in tuff and volcanic breccia 
of the Chagannuoer Formation, quartz monzonite porphyry 
(Fig. 4g), and dacitic porphyry (Fig. 4h). It overprints the 
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Fig. 4.  Photographs of host rocks from the Diyanqinamu deposit: (a). Tuff collected from a trench (TC2103). (b). Volcanic 
breccia (drill hole ZK3705, depth 264 m). (c). Volcanic breccia collected from surface outcrop. (d). Magnetite-bearing andes-
ite (drill hole ZK6110, 214.4 m). (e). Strongly silicic altered rhyolite from surface outcrop. (f). Propylitic-altered andesite 
(drill hole ZK2113, 268 m). (g). Phyllic- and propylitic-altered quartz monzonite porphyry (drill hole ZK8502, 683.9 m). (h). 
Phyllic-altered dacitic porphyry (drill hole ZK3706, 184 m).
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Fig. 5.  Microphotographs of some host rocks (a–i) and ores (j–l) from the Diyanqinamu deposit: (a). Tuff with fine-grained 
tuffaceous texture (drill hole ZK2909, 456 m). (b). Andesite with typical hyalopilitic texture (drill hole ZK6110, 464 m). (c) 
Andesite with hornblende phenocrysts (drill hole ZK3709, 264 m). (d). Typical propylitic-altered (chlorite-epidote-magnetite 
assemblage) andesite (drill hole ZK2113, 317.5 m). (e). Phyllic-altered (sericite-quartz-pyrite assemblage) granodiorite por-
phyry (drill hole ZK8502, 683.9 m). (f). Quartz-fluorite veinlet-bearing volcanic breccia (drill hole ZK5302, 131 m). (g). Dis-
seminated fluorite-bearing phyllic-altered tuff (drill hole ZK6105, 508.3 m). (h). Altered tuff with late calcite-fluorite-pyrite 
veinlet crosscutting early quartz-fluorite-molybdenite-magnetite vein (drill hole ZK6105, 519 m). (i). Phyllic-altered tuff with 
irregular strongly phyllic alteration halo in two sides of a comby quartz-sericite vein (drill hole ZK6105, 508.3 m). (j) Molyb-
denite- chalcopyrite-pyrite-magnetite assemblage in andesite (drill hole ZK7703, 256.3 m). (k). Pyrite veinlets crosscutting 
magnetite and molybdenite in propylitic altered tuff (drill hole ZK6015, 341.1 m). (l). Sphalerite-pyrite-chalcopyrite-galena 
coexisting in one fluorite-quartz-calcite vein (drill hole ZK2907, 133 m). Mineral abbreviations: Ap = apatite, Cal = calcite, 
Cpy = chalcopyrite, Hb = hornblende, Fl = fluorite, Gn = galena, Moly = molybdenite, Mt = magnetite, Qtz = quartz, Pl = 
plagioclase, Py = pyrite, Ser = sericite, Sph = sphalerite.
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propylitic alteration zone locally (Fig. 7). It is characterized 
by pervasive replacement of primary plagioclase by sericite, 
quartz, illite, and pyrite (Fig. 5e). Some veins and/or veinlets 
of quartz + muscovite + pyrite + molybdenite with phyllic 
halos crosscut the quartz monzonite porphyry (Fig. 5e, g, i).

Argillic alteration overprints the propylitic and phyllic alter-
ation zones locally in the southeastern part of the deposit (Fig. 
7). Feldspar and sericite in this zone have been replaced by 
clay minerals including kaolinite, smectite, and illite, which 
are recognized by near-infrared spectroscopy and XRD analy-
ses (Yan et al., 2012, and our unpub. data). Minor pyrophyllite 
occurs locally in fractures associated with argillic alteration.

Mineralization and paragenesis

The main Mo orebody occurs in a 2.5-km-long and 2-km-wide 
volcanic basin (Fig. 3), with the form of a ring about 1,800 m in 

diameter between lines 17 and 89 in the projected plan (Figs. 
3, 7), and looks like a dome in the cross section (Fig. 8). The 
main Mo orebody is 5 to 450 m thick (avg 82.89 m), and is over 
1,000 m in depth. It contains about 0.763 Mt of contained Mo 
metal resources with an average grade of 0.098% and consti-
tutes approximately 98% of the Mo resource in the deposit. The 
Mo mineralization occurs unevenly in the propylitic and phyllic 
altered tuff and andesite. The grade shells of economic mineral-
ization (> 0.06 wt % Mo), low-grade mineralization (0.03 wt % 
< Mo < 0.06 wt %), and subeconomic rocks (0.015 wt % < Mo 
< 0.03 wt %) were outlined based on analytical results of drill 
cores through systematic sampling per meter (Fig. 8).

Based on field and microscopic observations of crosscutting 
relationships of various veins, and paragenetic relationships 
of various hydrothermal minerals, five stages of hydrothermal 
veins have been identified in the deposit (Fig. 9).
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Stage I: Barren quartz + K-feldspar ± fluorite magnetite ± 
epidote ± chlorite veinlets are generally less than 2 mm wide, 
with irregular and discontinuous shape. These veinlets with-
out sharp edges are commonly distributed in the propylitic 
alteration zone.

Stage II: Quartz + fluorite + molybdenite + magnetite ± 
pyrite ± sericite ± siderite veinlets/veins commonly occur as 
1- to 10-mm-wide veinlets/veins in altered volcanic rocks and 
the quartz monzonite porphyry, with 1- to 3-mm-wide phyllic 
alteration halos in most cases (Figs. 5h, i, 6e-h). They have 
very fine grained magnetite and comby quartz locally (Fig. 5h, 
i). Molybdenite is interstitial to fine quartz crystals within the 
veinlets/veins. It is commonly observed that magnetite was 
locally crosscut by scaly molybdenite (Fig. 5j, k), and both 
magnetite and molybdenite were crosscut by pyrite veinlets 
within these veins (Fig. 5k).

Stage III: Fluorite + siderite + quartz + molybdenite + 
pyrite ± ankerite ± calcite ± chalcopyrite veins are generally 
3 to 20 mm wide, with infilling molybdenite commonly inter-
grown with fluorite in the veins (Fig. 6b, f). These veins are 

commonly related to phyllic alteration and are accompanied 
by abundant fluorite occurring in the veins and disseminated 
in the altered tuff.

Stage IV: Fluorite + quartz + pyrite ± ankerite ± calcite ± 
molybdenite ± chalcopyrite ± sphalerite ± galena veins are 
typically 10 to 20 mm wide (Figs. 5l, 6c). These veins are also 
related to phyllic alteration. In some cases, large amounts of 
“chalcopyrite disease” are observed under the microscope in 
brown or light brown sphalerite (Fig. 5l).

Stage V: Narrow (≤5 mm wide) calcite + fluorite + pyrite ± 
quartz veinlets (Figs. 5h, 6e) occur locally in altered volcanic 
rocks and typically crosscut the earlier four types of veinlets/veins.

Samples and Analytical Methods

Re-Os molybdenite dating

Ten molybdenite samples collected from different drill 
holes were chosen for Re-Os isotope dating. The sampling 
locations, occurrences, and analytical results of these molyb-
denite samples are given in Table 1.
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Molybdenite-bearing veins/veinlets were first cut from 
their host rocks and crushed to 40 to 80 mesh. Froth flota-
tion (kerosene) was then applied to separate molybdenite 
from the finely crushed rocks. Molybdenite grains were lastly 
handpicked under a binocular microscope to get over 99% 
pure molybdenite separates. Re-Os isotope analyses were 
performed on a Thermo ICP-MS (TJA X-series) in the Re-Os 
Laboratory, National Research Center of Geoanalysis, Chi-
nese Academy of Geological Sciences in Beijing. Detailed 
analytical procedures are described by Du et al. (1994, 2004). 
A model age of 139.5 ± 2.0 Ma, which is identical to the 
certified value of 139.6 ± 3.8 Ma (Du et al., 2004), for the 
molybdenite standard GBW04436 was obtained during our 
analytical session. Blanks are 2.9 ± 0.9 pg for Re and 0.1 pg 

for Os. An 187Re decay constant of 1.666 × 10−11 year−1 (Smo-
liar et al., 1996) has been used to calculate the molybdenite 
model ages. An Re-Os isochron age was calculated by using 
the ISOPLOT 2.49 program (Ludwig, 2001). Uncertainty in 
Re-Os model age calculations include (1) 1.02% uncertainty 
in the 187Re decay constant, (2) weighing uncertainty for both 
spike and sample, (3) uncertainty in spike calibration, and (4) 
mass spectrometry analytical uncertainty.

Sulfur and lead isotope analyses

Forty-three sulfide samples including molybdenite, pyrite, 
chalcopyrite, sphalerite, and galena were selected from dif-
ferent parts of orebodies for sulfur isotope analyses. Sulfide-
bearing veins/veinlets were first cut from their host rocks and 
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crushed to 40 to 80 mesh; sulfide minerals were then hand-
picked under a binocular microscope to remove impurities. 
Sulfide separates were then crushed to <200-mesh powder 
in an agate mortar. Sulfur isotope analyses were completed 
using a Finnigan MAT-252 mass spectrometer according to 
the method of Ueda and Sakai (1984) at the State Key Labo-
ratory of Environmental Geochemistry, Chinese Academy of 
Sciences in Guiyang. The sulfide powder was enclosed in a 
tin cup and then put into a reacting furnace. Subsequently, 
the powder was oxidized to SO2(g). Helium was used as a car-
rier gas and mixed with SO2 to facilitate transport into the 
mass spectrometer. Reference standards GBW04414 and 
GBW04415 were used as external standards to calibrate the 
sulfur isotope composition of unknown samples. During our 
analytical session, the obtained δ34S values are −0.10 ± 0.17‰ 
(2σ; n = 12) for standard GBW04414, consistent with its rec-
ommended value of −0.07 ± 0.13‰ (2σ; Ding et al., 2001). 
The analytical precision is typically ±0.2‰ (2σ).

Lead isotope compositions of sulfides were analyzed on an 
IsoProbe-T thermal ionization mass spectrometer (TIMS) at 
the Analytical Laboratory of the Beijing Research Institute 

of Uranium Geology. Lead was separated and purified by a 
conventional cation-exchange technique (AG1 × 8, 200–400 
resin) with diluted HBr used as eluant. The 208Pb/206Pb, 
207Pb/206Pb, and 204Pb/206Pb ratios of the Standard NBS 981 
were 2.16810 ± 0.0008 (2σ), 0.91464 ± 0.00033 (2σ), and 
0.059042 ± 0.000037 (2σ), respectively. They are consistent 
with their corresponding recommended values of 2.16701 
± 0.00013 (2σ), 0.91459 ± 0.00009 (2σ), and 0.059047 ± 
0.000024 (2σ; Todt et al., 1996).

Results

Re-Os molybdenite ages

Total Re concentrations of ten molybdenite samples vary 
from 19.6 to 89.1 ppm (Table 1). Eight molybdenite sam-
ples from veins/veinlets of two mineral assemblages in drill 
cores of ZK2107 and ZK2113 have similar Re from 42.6 to 
58.2 ppm, whereas the other two samples (ZK3713-248 
and ZK6105-285) respective from drill core of ZK3713 and 
ZK6105 have 19.6 and 89.1 ppm Re, respectively (Table 1). 
Re-Os molybdenite model ages range from 157.6 ± 2.4 to 

sericite

chlorite

epidote

magnetite

fluorite

siderite

molybdenite

pyrite

chalcopyrite

sphalerite

galena

bismuthinite

ankerite

quartz

clay minerals

main minor

K-feldspar

locally  occurring

calcite

muscovite

arsenopyrite

Stages Stage  I Stage  II Stage  III Stage  IV Stage  V
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155.0 ± 2.5 Ma and show an excellent reproducibility. All the 
analyses yield an average Re-Os model age of 156.2 ± 0.7 Ma 
(2σ, MSWD = 0.60, n = 10; Fig. 10a) and an 187Re-187Os iso-
chron age of 156.2 ± 1.4 Ma (2σ, MSWD = 0.96, n = 10; Fig. 
10b). But these high internal precisions (0.4–0.9%) of Re-Os 
data should be expanded up to ~2.7% as an external preci-
sion, if the propagation of the uncertainties from the standard 
(GBW04436, 139.6 ± 3.8 Ma) is considered adequately. This 
means that the age of 156.2 ± 4.2 Ma best represents the age 
of molybdenite mineralization at Diyanqinamu and is used 
to compare with other ages obtained from different geochro-
nometers (i.e., zircon U-Pb).

Sulfur isotope compositions of sulfide minerals

The δ34S values of sulfides are listed in Table 2 and range 
from 2.5 to 10.2‰ with an average value of 7.2 ± 2.2‰ (n 
= 43), significantly higher than those of mantle (0 ± 3‰, 
Chaussidon et al., 1989) and most porphyry systems (0 ± 5‰, 
Ohomoto and Rye, 1979), suggesting that a 34S-enriched sul-
fur source contributed to at least part of the Diyanqinamu 
sulfur inventory. Twenty-one molybdenite samples record a 
broad range of δ34S values varying from 3.3 to 10.2‰ (mean 
= 8.2 ± 2.4‰, with 15 out of 21 values higher than the mean 
of 8.2‰), whereas the ranges of δ34S values for other sulfides 
are more restricted, i.e., 5.2 to 8.3‰ (n = 15, mean = 6.8 ± 
1.1‰) for pyrite, 5.8 to 6.7‰ (n = 3, mean = 6.2 ± 0.4‰) 
for sphalerite, 6.1 to 6.7‰ (n = 2, mean = 6.4 ± 0.4‰) for 
chalcopyrite, and 2.5 to 3.4‰ (n = 2, mean = 3.0 ± 0.7‰) 
for galena. When plotted by vein paragenesis, it can be seen 
in Figure 11 that δ34Spyrite values roughly decrease from the 
earlier to the later stages.

Lead isotope compositions of sulfide minerals

Pb isotope compositions of sulfide separates are listed in 
Table 3 and plotted in Figure 12. The Pb isotope values pre-
sented here are present-day values, which in most case reflect 
“initial” isotope values at the time of deposition, because 
most sulfides (i.e., pyrite, galena, and molybdenite) generally 
have low U and Th contents. Overall, the 207Pb/204Pb ratios 

display positive correlations with the ratios of 208Pb/204Pb and 
206Pb/204Pb (Fig. 12a, b), suggesting a mixing trend of two or 
more isotopically distinct sources. Moreover, compared with 
other sulfide minerals (including galena, pyrite, sphalerite, 
and chalcopyrite), molybdenite generally has relatively lower 
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios that range from 
18.266 to 18.361, 15.493 to 15.552, and 37.909 to 38.085, 
respectively, although the data ranges overlap (Fig. 12; Table 
3).

Discussion

Timing of mineralization

Previous studies have shown that the Late Permian-Triassic 
(235–224 Ma) and Early Cretaceous (137–131 Ma) periods 
are important epochs of porphyry Mo-(W-Cu) mineralization 
in the Chagan Obo-Aoyoute-Chaobulen tectono-magmatic 
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Table 2.  Sulfur Isotope Compositions (δ34SVCDT) of the Sulfides from the Diyanqinamu Porphyry Mo Deposit, Inner Mongolia

 Sampling location     δ34S (‰)

Sample no. Drill hole Depth (m) Vein stages Moly Py Cpy Sph Gn

ZK2107-85.4 ZK2107 85.4 II 10.0
ZK2107-91.7 ZK2107 91.7  9.9
ZK2107-93.5 ZK2107 93.5  9.8
ZK2111-159.5 ZK2111 159.5   8.8
ZK2113-177.4 ZK2113 177.4   6.7
ZK3117-197 ZK3117 197  10.1
ZK3713-213.5 ZK3713 213.5  10.2
ZK3713-239 ZK3713 239   6.9
ZK3713-248 ZK3713 248  9.6 7.9
ZK3713-278 ZK3713 278  10.0
ZK3713-281.7 ZK3713 281.7  10.1
ZK6105-184.8 ZK6105 184.8  8.4
ZK6105-285 ZK6105 285  6.2
ZK6105-286b ZK6105 286  6.2
ZK6105-399.1 ZK6105 399.1  3.5
ZK6105-399.5a ZK6105 399.5  3.3
ZK6105-399.5b ZK6105 399.5  3.3
ZK8502-298 ZK8502 298  6.5
ZK2107-58.5 ZK2107 58.5 III 9.5
ZK2107-58.9 ZK2107 58.9  9.9 7.7
ZK2113-601 ZK2113 601  9.1
ZK2113-606 ZK2113 606  8.9
ZK2113-609.3 ZK2113 609.3  8.8
ZK3705-405 ZK3705 405  8.8 7.5
ZK2907-132.6 ZK2907 132.6 IV    6.7
ZK2907-134 ZK2907 134     5.8 3.4
ZK3705-192.3 ZK3705 192.3   5.4
ZK3705-221.5 ZK3705 221.5   5.8  6.0
ZK3705-250 ZK3705 250   7.1 6.1
ZK3705-255.6 ZK3705 255.6   6.1
ZK3705-556 ZK3705 556   7.3 6.7
ZK5113-154.3 ZK5113 154.3      2.5
ZK3705-266 ZK3705 266 V  6.1
ZK3713-249 ZK3713 249   7.4
ZK8502-509.3 ZK8502 509.3   5.4
ZK8502-515.3 ZK8502 515.3    5.2

Mineral abbreviations: Cpy = chalcopyrite, Gn = galena, Moly = molybdenite, Py = pyrite, Sph = sphalerite
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belt (Nie and Jiang, 2011). However, here we show that the 
Diyanqinamu porphyry Mo deposit has a molybdenite Re-Os 
age of 156.2 ± 4.2 Ma, which is consistent with zircon U-Pb 
ages of porphyry intrusions in the deposit (156 ± 2 Ma, Sun 
et al., 2014) within errors. These ages are slightly younger 
that the eruptive ages of the andesitic host rocks (165 ± 3 Ma, 
Shandong Gold Group Co. Ltd., unpub. data, 2012). It thus 
seems that Mo mineralization at Diyanqinamu was associated 
with emplacement of the porphyries, although the specific 
causative intrusions have not been identified yet.

Porphyry Mo-(Cu) deposits with ages varying from 170 to 
150 Ma have been widely reported in the Russian Far East 
(e.g., the Zhireken and Shakhtama porphyry Mo-Cu deposits, 
Fig. 1; Sotnikov et al., 2001; Berzina et al., 2005, 2013), and in 
the Xilamulun tectonic-metallogenic belt along the northern 
margin of the North China craton, e.g., the Jiguanshan por-
phyry Mo deposit (Fig. 1; Zhang et al., 2009; Wu et al., 2011). 
Furthermore, Au-Ag deposits associated with Late Jurassic 
granitoid intrusions (165–146 Ma) are also known on both 
sides of the Mongol-Okhotsk suture (e.g., Koval et al., 1999; 
Zorin et al., 2001). We therefore suggest that the Late Jurassic 
could be a third significant epoch for porphyry Mo-(Cu-W) 
mineralization in Inner Mongolia.

Possible sources of sulfur and metals

In general, δ34Ssulfide values for most porphyry-type depos-
its in the world range from −5 to 5‰ (Fig. 13), which are 
roughly consistent with the accepted mantle range (0 ± 3‰; 
Chaussidon et al., 1989). However, a few porphyry deposits, 
such as the Sams Creek porphyry Au deposit from New Zea-
land (δ34Ssulfide values varying from 4.9−9.9‰ with a mean 

of 8.1‰, Faure and Brathwaite, 2006), and the Sora (from 
6.6−10.2‰ with a mean of 8.5‰) and Shakhtama (from 
2.9−8.4‰ with a mean of 6.0‰) porphyry Mo deposits from 
Siberia (Sotnikov et al., 2004) show δ34Ssulfide values higher 
than 5‰. Our results show that most of the sulfides from 
Diyanqinamu have δ34S values higher than 5.0‰ (Figs. 11, 
13), and molybdenite and pyrite from early stages in the para-
genesis (i.e., Stages II and III) generally have higher δ34S val-
ues than those of pyrite, chalcopyrite, galena, and sphalerite 
from later stages (Fig. 11). These relatively high δ34S values 
could either be inherited from the magmatic source, or result 
from contamination by crustal marine sedimentary facies or 
evaporites with high δ34S values (e.g., Faure and Brathwaite, 
2006). Due to the fact that no marine evaporites or carbonates 
have been reported near the Diyanqinamu deposit (although 
some Late Permian to Early Triassic fossiliferous marine sedi-
mentary rocks occur in eastern Mongolia; Kovalenko et al., 
1995), and that the mantle in this region has generally high 
δ34S values (5–7‰; Ionov et al., 1992), we therefore suggest 
that the relatively high δ34S values of the sulfides from Diyan-
qinamu could be inherited from the magmatic source.

Lead isotope compositions of molybdenite, pyrite, chalco-
pyrite, sphalerite, and galena are interpreted to be the “initial” 
ratios present in the source of ore-bearing fluids at various 
stages of mineralization. A two-stage model of Stacey and 
Kramers (1975) is adopted in this study, with a second stage 
µ value (238U/204Pb ratio) of 9.6. This value is chosen to allow 
three analyses (sphalerite, galena, and pyrite, one of each) of 
the highest 207Pb/204Pb ratios (~15.58) to be plotted on the 
growth curve at ~155 Ma in the 207Pb/204Pb versus 206Pb/204Pb 
diagram (Fig. 12b). The data form an elongate narrow trend 

Table 3.  Pb Isotope Composition of Sulfide Minerals from the Diyanqinamu Porphyry Mo Deposit, Inner Mongolia

 Sampling location

Sample no. Drill hole Depth (m) Vein stages Analyzed mineral 208Pb/204Pb ±2σ 207Pb/204Pb ±2σ 206Pb/204Pb ±2σ

ZK3713-248 ZK3713 248  II Molybdenite 38.054 0.005 15.531 0.002 18.361 0.002
ZK2107-85.4 ZK2107 85.4   Molybdenite 37.95 0.005 15.505 0.002 18.306 0.002
ZK2107-91.7 ZK2107 91.7   Molybdenite 37.908 0.006 15.493 0.003 18.285 0.003
ZK2107-93.5 ZK2107 93.5   Molybdenite 37.96 0.003 15.507 0.001 18.303 0.002
ZK6105-285 ZK6105 285   Molybdenite 37.997 0.004 15.527 0.002 18.269 0.002
ZK3713-278 ZK3713 278   Molybdenite 38.052 0.004 15.52 0.001 18.34 0.002
ZK6105-399.5 ZK6105 399.5   Molybdenite 38.044 0.004 15.526 0.001 18.334 0.002
ZK3713-213.5 ZK3713 213.5   Molybdenite 38.085 0.004 15.547 0.001 18.326 0.001
ZK3713-248 ZK3713 248   Pyrite 38.034 0.003 15.531 0.001 18.322 0.002
ZK3713-239 ZK3713 239   Pyrite 38.073 0.004 15.542 0.002 18.33 0.002
ZK2113-177.4 ZK2113 177.4   Pyrite 38.256 0.004 15.568 0.002 18.421 0.002
ZK2113-606 ZK2113 606  III Molybdenite 38.07 0.006 15.552 0.003 18.285 0.003
ZK2107-58.9 ZK2107 58.9   Molybdenite 37.945 0.003 15.511 0.001 18.268 0.002
ZK2113-609.3 ZK2113 609.3   Molybdenite 37.951 0.004 15.512 0.002 18.266 0.002
ZK2107-58.5 ZK2107 58.5   Molybdenite 37.929 0.003 15.496 0.001 18.307 0.002
ZK3705-405 ZK3705 405   Pyrite 38.196 0.004 15.581 0.002 18.363 0.002
ZK3705-556 ZK3705 556  IV Chalcopyrite 38.168 0.003 15.573 0.001 18.352 0.002
ZK3705-250 ZK3705 250   Chalcopyrite 38.144 0.004 15.564 0.002 18.348 0.002
ZK3713-154.3 ZK3713 154.3   Galena 38.048 0.004 15.544 0.002 18.272 0.002
ZK2907-134 ZK2907 134   Galena 38.192 0.005 15.579 0.002 18.358 0.003
ZK3705-192.3 ZK3705 192.3   Pyrite 38.107 0.003 15.548 0.001 18.341 0.002
ZK3705-250 ZK3705 250   Pyrite 38.064 0.004 15.538 0.001 18.329 0.002
ZK3705-221.5 ZK3705 221.5   Pyrite 38.065 0.004 15.54 0.002 18.324 0.002
ZK2907-134 ZK2907 134   Sphalerite 38.211 0.004 15.585 0.002 18.363 0.002
ZK2907-132.6 ZK2907 132.6   Sphalerite 38.081 0.006 15.549 0.003 18.323 0.003
ZK3705-221.5 ZK3705 221.5   Sphalerite 38.09 0.006 15.551 0.002 18.326 0.002
ZK8502-509.3 ZK8502 509.3  V Pyrite 37.974 0.004 15.517 0.002 18.29 0.002
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that transects the defined growth curves, with molybdenite 
showing relatively lower 208Pb/204Pb and 207Pb/204Pb ratios 
than those of other sulfides, especially chalcopyrite, galena, 
and sphalerite. A likely interpretation for the variation of Pb 
isotope signatures is that a mixing of two or more isotopically 
distinct sources was involved in the ore-forming process. In 
this case, mixing a low 208Pb/204Pb and 207Pb/204Pb magmatic 
fluid (probably from the underlying porphyries) with isotopi-
cally evolved crustal materials is a plausible explanation. As 
mentioned above, molybdenite that formed in Stages II and 
III shows relatively high δ34S values, whereas chalcopyrite, 
sphalerite, and galena from later Stages III and IV have rela-
tively low δ34S values, and pyrite that formed throughout the 
paragenesis shows decreasing δ34S values. In combination with 
the Pb isotope signatures, it is therefore speculated that molyb-
denum was sourced from magmatic fluids at the Diyanqinamu 
deposit. In contrast, chalcopyrite, sphalerite, and galena, which 
were precipitated later in the paragenesis, display a greater 
crustal signature, suggesting that they were precipitated from 
fluids that had been diluted by fluids carrying Pb and S of 
crustal origin. Pyrite, which forms throughout the paragenesis, 
shows a range of Pb isotope compositions between those of 
the molybdenite in earlier stages and the other sulfides in later 
stages, reflecting this transition in S sources.

Conclusions
The Diyanqinamu porphyry Mo deposit in the southern 

Greater Khingan Range of Inner Mongolia is hosted in Late 
Jurassic volcanic rocks. Five stages of mineralization are asso-
ciated with propylitic and phyllic alterations. Molybdenite 
mainly occurs in veins and veinlets that contain quartz, fluo-
rite, magnetite, and pyrite, with minor ankerite, siderite, chal-
copyrite, sphalerite, and galena, and is associated with phyllic 
alteration. Re-Os molybdenite dating results indicate that this 
deposit formed at ~156 Ma and it was probably related to the 
Late Jurassic felsic magmatism in this area. Sulfur and lead 
isotope data for sulfide minerals, together with their para-
genesis, suggest a mantle-like, magmatic signature for the 
early vein stages (including molybdenite), whereas later vein 
stages (containing galena, sphalerite, and chalcopyrite) have a 
greater crustal signature. This could reflect dilution of an early 
magmatic fluid by fluids carrying Pb and S of crustal origin.
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