辽宁阜新一锦州地区花岗杂岩特征及成因

刘建忠1) 刘喜山2) 张福勤3) 李树勋2) 李桂林2) 欧阳自远1)

1)(中国科学院地球化学研究所矿床地球化学开放研究实验室,贵阳,550002)

2)(长春科技大学地球科学学院,长春,130026)

3)(中国科学院地质与地球物理研究所,北京,100101)

摘 要 通过详细的区域地质研究,将阜新地区划分为两个大的构造岩浆带和两个稳定构造区,并依据地质、地球化学特征和年代学资料,把发育于不同构造单元中的花岗杂岩区分为新太古代 TTG 杂岩、印支期二 长花岗质杂岩和燕山期花岗杂岩,同时还讨论了不同时代花岗杂岩的成因。

关键词 花岗杂岩 岩石成因 辽宁

第一作者简介 刘建忠 男 1968年出生 博士 研究员 从事岩石学及地球化学方面的研究工作

自80年代以来,大陆构造与动力学已成为当 代地球科学的重大前沿领域,而研究的焦点是陆 壳的起源和演化。作为陆壳主要成分的花岗岩类 岩石,发育于地球历史的各个时期和地球动力旋 回的各个阶段,由于其时空分布广,且是复杂的大 陆动力学过程的产物,蕴涵着地球形成和演化过 程中主要的历史记录,因此,深入探讨花岗岩类的 成因及动力学就成为当代地球科学的重要前沿课 题¹¹。本文在详细的区域地质研究的基础上,讨 论了发育于辽西阜新一锦州地区不同时代花岗质 杂岩的特征和成因。

1 区域地质背景

辽宁阜新一锦州地区位于华北陆台北缘东 段,北临兴蒙褶皱带南缘,东接中、新生代辽河盆 地,是一个从太古宙至中、新生代长期活动的、经 历了多阶段演化历史的复杂构造区^[2]。该区总 体上由太古宙结晶基底和中、新元古代沉积盖层组 成的隆起区和中生代断陷盆地组成(图1)。在早 前寒武纪隆起区中,依据结晶基底在后期的稳定性 以及显生宙时期构造作用、岩浆作用的分布规律, 又可识别出具不同组成特点的稳定构造区(大虎山 一北镇一锦县区(ESTA)及旧庙一铁匠各冷一清河 门区(WSTA)和不同时期的构造一岩浆杂岩带(地 宫一排山楼一锦州构造岩浆杂岩带(NECZ)和福

1.1 构造岩浆杂岩带

1.1.1 地官一排山楼一锦州构造岩浆杂岩带 这是区内规模最大、构造一岩浆活 (NECZ) 动性最强烈、构造特点最复杂的一条构造岩浆杂 岩带。该带北起建设,经招束沟一关山一白厂门 一闾山一双羊店,南止锦州,全长约 150km,最宽 处达 25km, 一般宽度为 10km。杂岩带总体延伸 $= NE20^{\circ} \sim 30^{\circ} 方向; NNE 向延伸的脆韧性一韧$ 性剪切带是该构造岩浆杂岩带的重要组成部分之 一。从剪切带内岩石的变形特点与变质组合可以 明显看出,剪切带在南部层次较深,向北渐浅,有 由韧性逐渐转变为韧脆性的趋势;中酸性侵入体 在这条构造岩浆杂岩带中极为发育。其中以闾山 岩体最为典型,另有一些零星的小岩体沿其出现。 岩体在平面上总体呈椭圆形,长轴与杂岩带延伸 方向一致,岩体边缘片麻理发育,而中心多呈块 状,片麻理与岩体局部形态吻合;在杂岩带内,沿 瓦子峪一青石岭一双山子一线,可清楚地看到在 变形较弱的地段,仍保留由早期EW 向韧性剪切 构造及其岩石组合(侵入体、变质中元古代沉积岩 及太古宙基底中的糜棱岩系),被NNE 向韧性剪 切构造所改造、置换而转向沿 NNE 向发展。从 同构造侵位的闾山花岗岩所得的锆石 U-Pb 年龄 (161Ma)^① 可以认为,地宫一排山楼一锦州构造

* 中国科学院资源与环境重点项目(KZ952-J1-413)和中国科学

① 李树勋 刘喜山等 辽宁阜新一锦州地区韧性剪切带与金

?院知识创新工程项目联合资助项目。 ?1994-2017 China Academic Journal Electronic Publishing House: All rights reserved. http://www.cnki.net

兴地一哈尔套构造岩浆杂岩带(EWCZ)。不同的 构造岩浆杂岩带和稳定区具有各自独有的特征。

¹⁹⁹⁹年8月23日收稿,10月25日改回

图1 辽宁阜新地区构造岩相图

Fig. 1. The tectonic-lithological sketch of the Fuxin area. Liaoning Province.

图例说明: 1. 角闪岩相区; 2. 未变质中元古代沉积盖层; 3. 变质中元古代沉积盖层; 4. 中生代沉积岩; 5. 第四系沉积物; 6. 印支期花岗岩; 7. 燕山期花岗岩; 8. 韧性剪切带; 9. 脆性断裂; 10. 麻粒岩相区。

岩浆杂岩带代表燕山期的一条构造岩浆杂岩带。

1.1.2 福兴地一哈尔 套构 造岩浆杂岩带 (EWCZ) 发育于研究区北部的福兴地一哈尔 套构造岩浆杂岩带是区内规模最大的一条 EW 向构造岩浆杂岩带,其总体长度达 100km 以上, 东起哈尔套,向西经旧庙北侧的福兴地延伸进入 内蒙境内,宽度在 30km 左右。该杂岩带由一组 极为发育的 EW 向韧性剪切变质岩系和沿此方 向展布的花岗质杂岩及变质中元古沉积岩岩片组

合构成,其岩石组合特征、变形组构及运动学特征 与 NNE 向构造带中的 EW 向残块相似。韧性剪 切变质岩系中,由各种原岩成分改造而形成的糜 棱岩系极为发育,局部见有超糜棱岩存在。花岗 质杂岩主要是一套印支期的花岗闪长岩一二长花 岗岩系^{3~4]},它们呈东西向分布于韧性剪切带 中,并在边缘局部遭受剪切变形改造,中心多呈块 状构造,岩体规模巨大,从岩体特点分析其应属于 同剪切期的侵入体。特别地在该构造岩浆杂岩带 的南侧,察哈尔山一脉来一带发育有与该带平行 产出的花岗杂岩带。该花岗杂岩带主要由闪长岩 一花岗闪长岩一二长花岗岩一花岗岩系组成。其 长轴呈东两向展布。东端终止在关山两侧,受 NNE 向剪切带的改造,使岩体出现 NNE 向叶理 构造:向西延伸至红帽子以西。在该杂岩体的南 北两侧可见有近东西向走向的片麻理构造,而中 心为块状构造,说明该杂岩带与福兴地一哈尔套 构造带中的岩浆杂岩一样属于同构造期花岗岩。

1.2 稳定构造区

 1.2.1 旧庙一铁匠各冷一清河门稳定区 (WSTA) 这是研究区内最大的稳定构造区, 它由两部分构成。以旧庙一清河门 NNE 向剪切 带为界,以东属角闪岩相区,其特点为:太古宙表 壳岩系是一套遭受了角闪岩相变质作用改造的变 质组合.侵入于其中的英云闪长岩一奥长花岗岩 一花岗闪长岩(TTG)岩系中,花岗闪长岩类岩石 占主导地位:以西属麻粒岩相区,大面积分布的 TTG 岩系以英云闪长岩为主,其中的表壳岩包体 内,麻粒岩相岩石组合(如石榴二辉麻粒岩)经常 出现。在这一稳定构造区内,无论是太古字岩石 还是中、上元古界岩石,很少或没有遭受到后期构 造岩浆活动的改造,麻粒岩相、角闪岩相岩石及 TTG 岩系基本保持原岩面貌, 而中、上元古界的 岩石保存了其原始沉积的特点。

1.2.2 大虎山-北镇-锦县稳定区(ESTA)

分布于闾山东麓的大虎山一北镇一锦县稳定 区,主要表现为在大虎山、北镇东北及锦县以南发 育一套稳定的中元古界沉积组合,其中的大洪峪 组石英砂岩、高于庄组的含锰岩系与石灰岩等,基 本上保持着原岩特点,其下伏的太古宙杂岩(出露 很少)中,后期剪切变形改造特点较弱,且这一地 段显生宙的岩浆活动表现得极不发育,也充分说

可展布的花岗质杂岩及变质中元古沉积岩岩片组,明这一地段在后期演化过程中具相对稳定性。

2 花岗质杂岩的特征

如上所述不同构造区内的岩石组合、构造样 式都有明显的差异,特别是发育在其中的花岗质 杂岩。根据其岩石组合、后期遭受变质变形改造 的特点以及年代学的资料,本区的花岗质杂岩可 划分为三个系列:太古宙 TTG 杂岩系列、印支期 二长花岗岩系列、燕山期钾长一碱长花岗岩系列。

2.1 太古宙 TTG 杂岩

太古宙 TTG 杂岩在研究区内广泛分布,它 不仅构成西部稳定杂岩区的主体岩石单元(占出 露面积的 70%~85%),而且也是本区广泛发育 的斜长质糜棱岩的主要原岩。由于受不同时期构 造作用及岩浆作用的改造以及沉积覆盖等原因, 使原来可能有成因联系的同一演化系列的侵入杂 岩体被分割为大小不等的岩块;目前出露或者保 留面积较大的岩块分布在西部稳定区的清河门地 区和同乃一铁匠各冷地区。另外,在东部线形杂 岩带中的关山地区、国华一郭大发地区也有侵入 杂岩体的残块出露。

2.1.1 岩石学特征 由于受深层次韧性剪切 变形作用的改造,不仅侵入杂岩普遍形成一组平 行的结晶构造,而且深成侵入杂岩之间原来存在 的侵入接触关系也由于发生平行化作用而消失, 同时也使侵入杂岩转变为花岗质片麻岩。根据岩 相学的研究并结合岩石化学分析和标准矿物的计 算结果(表 1)推断,侵入杂岩主要由以下几种岩 石类型组成:英云闪长岩、奥长花岗岩、花岗闪长 岩及花岗岩(图 2)。前已述及,英云闪长岩主要 在西部麻粒岩相区出露,岩石多为灰色、灰白色,

表1 辽宁阜新一锦州地区花岗杂岩化学成分及其参数(wt%)

Table 1. Chemical compositions and parameters of granitic complex in Fuxin-Jinzhou Liaoning Province (wt%)

序号	1	2	3	4	5	6	7	8	9	10	11	12	13
样品号	lx33	230-1	lx215	b23-1	lx217	6	9	Lx15	lx326	k400	11	lx25	lx395
SiO_2	59.17	63.39	66.85	70.14	71.75	67.77	72.05	50.46	52.47	58.05	56.64	69.72	63.32
TiO ₂	0.40	0.45	0.25	0.24	0.15	0.43	0.19	0.74	1.24	0.64	0.61	0.35	0.35
Al_2O_3	13.99	14.97	14.00	14.57	15.36	14.81	14.42	17.18	12.93	17.01	14.45	14.70	15.44
Fe_2O_3	2.62	5.02	4.57	1.63	1.11	2.17	1.11	3.31	3.11	2.99	3.20	0.98	1.38
FeO	4.23	1.15	0.94	0.97	0.56	1.74	0.51	4.15	5.64	3.86	4.22	2.17	2.73
MnO	0.13	0.08	0.05	0.03	0.11	0.04	0.02	0.12	0.17	0.09	0.14	0.15	0.04
MgO	5.77	3.86	0.23	0.41	0.56	1.59	0.44	7.37	7.22	3.20	7.15	0.50	3.31
CaO	6.16	3.17	6.59	1.09	1.71	2.44	0.85	8.64	10.33	5.37	6.04	1.84	3.22
Na_2O	3.45	4.25	4.0	4.60	6.55	4.03	3.26	3.12	2.42	4.25	2.20	3.88	4.30
K ₂ O	1.45	2.38	0.00	4.22	1.10	3.22	4.76	1.40	1.70	2.52	3.50	4.96	2.25
P_2O_5	0.18	0.05	0.10	0.05	0.07	0.27	0.07	0.08	0.28	0.29	0.42	0.05	0.14
CO_2	0.28	—		—	—	—		0.42	0.16	0.06	—	0.06	0.34
灼失量	0.81	_	—	-	—	_	—	2.19	0.92	0.90	_	0.26	1.99
 CIPW 标 准 矿 物													
Q	25.71	17.54	30.43	24.58	24.99	24.52	28.67	0	2.79	7.32	8.05	22.84	18.12
An	5.21	15.45	25.82	5.21	9.16	10.69	6.68	29.80	19.86	20.26	19.19	8.11	15.54
Ab	34.45	36.92	34.79	39.64	56.04	34.64	29.92	27.37	20.96	36.60	18.35	33.06	37.31
Or	29	13.84	—	25.4	6.57	19.33	26.92	8.58	10.29	15.16	20.59	29.52	13.64
Di	—	0.33	10.69	—	—	_	_	11.35	24.86	4.17	6.65	0.17	0
Hy	2.40	11.71	0.20	2.27	2.33	6.18	3.89	11.69	14.17	10.67	18.82	3.38	11.95
01	0.92	_	_	0.57	0.44	0.86	1.68	6.12	0	0		0	0
Ap	0.11	0.11	0.22	0.11	0.15	0.60	0.49	0.18	0.63	0.65		0.33	0.31
II M.	0.46	0.88	0.49	0.46	0.29	0.83	0.64	1.46	2.41	1.24		0.67	0.68
M t	1. /4	3.23	2.30	1./4	1.02	236	1. /4	3.4/	4.04	3.95		1.43	2.05
	1.00	2.04	0.66	2.91	7 02	11 化	子		1 66	2.05	2 38	2 01	1.06
U ST	1.00	2.04	0.00	2.01	2.02	2.10 12.30	2.20 6.23	2. 30	1.00 36.64	2.93	2.38	2.91 4.00	1.90
	1 30	2 12	2.44 1.48	3.40	2.69	12.39	2 90	30.29 1.42	1 /3	19.00	55.25 1.55	4.00	23.09
л. п Na/ K	2 370	1 785	1.40	1.09	2.02 5.95	2.45	2. 50	2 23	1.43	1.67	1. 55	0.78	2.00
AP	48, 26	60, 68	56, 93	59, 52	62.14	60.45	60 61	2.23 56 02	47. 22	58.35		57 92	61. 25
M o'	45. 92	32. 0	4, 23	13.83	25.89	28.95	25.67	50.02	46.00	31.94		13.70	44. 61
ⁿ	10172	52.0	1. 25	10.00	微	<u></u> 量	<u></u> 元		10:00	51.74		15.70	111.01
Rb		90.2		108.2	1/2		, .	40. 20	22.60	65.20		64.40	185.2
Sr		366.9		298.7				580.2	635.7	825.1		665.7	325.3
Ni		29.0		11.8				114.0	100.6	30.2		72.90	< 5. 0
Rb/Sr	00170	. 0. 25		_0.36	1			_0.07	0.04	0.08	1	0.10	0.57
:1994-	2017 C	nina Ac	cademic	: Journa	I Electr	onic Pu	DIISNIN	g nouse	. All fig	gn ts res e	ervea.	nttp://v	vww.cnl

序号	14	15	16	17	18	19	20	21	22	23	24	25	26
样品号	lx463	lx123	lx121		lx659	lx459	B244	lx95	lx942	k367	lx467	lx943	lx944
SiO ₂	71.07	71.60	74.12	75.74	58.06	61.77	62.53	64.03	69.82	72.22	73.37	75.06	75.29
TiO ₂	0.15	0.24	0.12	0.09	0.60	0.46	0.28	0.43	0.28	0.08	0.13	0.05	0.04
Al_2O_3	15.13	13.99	13.19	12.75	16.42	16.58	17.81	15.86	13.84	15.81	14.32	13.70	14.09
$\mathrm{Fe_2O_3}$	1.17	0.65	1.08	0.87	4.08	2.43	3.12	1.62	1.74	0.37	0.34	0	0.38
FeO	1.29	1.61	0.96	0.63	2.89	3.02	1.58	3.67	2.40	0.65	1.39	0.85	0.40
MnO	0.06	0.04	0.02	0.03	0.10	0.08	0.08	0.09	0.10	0.02	0.09	0.14	0.06
MgO	0.61	0.33	0.55	0.24	2.51	1.96	1.38	2.04	0.88	0.22	0.41	0.72	0.25
CaO	1.69	1.33	0.61	0.97	5.82	4.41	3.15	3.38	1.00	1.46	1.30	0	0.23
Na ₂ O	4.32	3.38	3.60	4.39	4.15	4.80	4.68	4.20	3.85	5.38	4.35	4.30	4.35
K_2O	4.00	5.33	5.22	4.07	2.25	2.52	2.90	3.65	4.72	3.65	4.18	4.15	4.48
$P_{2}O_{5}$	0.08	0.05	0.02	0.02	0.25	0.34	0.32	0.10	0.19	0.02	0.04	0.03	0.03
CO_2	0.08	0.50	0.06			0.12	0.12	0.04	0.06	0.04	0.16	0.16	0.16
灼失量	0.30	0.99	0.34			0.97	1.80	0.62	0.62	0.30	0.27	0.37	0.27
CIPW 标 准 矿 物													
Q	25.79	27.65	30.85	32.37	9.47	12.25	15.15	14.17	25.47	23.22	27.79	30.40	31.96
An	7.95	6.65	2.92	3.01	10.63	16.53	14.07	13.76	3.89	7.13	6.22	0	0.97
Ab	36.71	29.00	30.61	37.25	39.73	41.29	40.52	35.83	32.96	45.57	36.83	33.38	36.95
Or	23.74	31.65	31.00	24.00	19.57	15.14	17.54	21.75	28.23	21.60	24.72	22.50	26.58
Di	0	0	0	1.36	6.66	3.01	0	1.67	0	0	0	0	0
Hy	2.91	2.96	2.39	0.28	8.29	6.92	6.70	9.20	4.94	1.34	3.25	1.64	1.11
01	0	0	0		0	0	0	0	0	0	0	0.11	0
Ap	0.18	0.11	0.04		0.56	0.76	0.72	0.42	0.42	0.04	0.09	0.06	0.07
Il	0.29	0.46	0.23		1.17	0.89	0.54	0.82	0.54	0.15	0.25	1.92	0.08
M t	1.64	0.96	1.40		3.79	3.32	2.78	2.37	2.25	0.54	0.49	0	0.54
					岩 石	化	学	参数					
σ	2.46	2.63	2.49	2.19	2.58	2.80	2.87	2.91	2.72	2.40	2.79	2.32	2.41
SI	5.36	3.92	4.83	2.34	15.96	13.52	10.20	13.44	6.48	2.14	3.84	7.19	2.54
A. R	2.96	3.62	4.54	4.22	1.81	2.07	2.13	2.38	3.73	4.22	3.19	4.22	4.22
Na/ K	1.08	0.63	0.69		1.84	1.90	1.61	1.15	0.82	1.47	1.04	1.04	0.97
Αľ	60.18	58.10	58.31		51.33	58.57	62.20	58.55	59.12	60.11	59.30	61.85	60.86
M g'	19.86	12.74	21.23	13.79	26.47	26.45	22.69	27.83	17.52	17.74	19.15	24.10	24.27
					微	量	元	素					
Rb	97.60	239.7	301.8			49.50	68.30	145.8	88.80	149.6	150.8	140.1	150.8
Sr	299.5	231.2	111.4			943.8	899.0	178.4	570.9	75.90	478.8	22.40	478.8
Ni	< 5. 0	< 5. 0	< 5. 0			19.30	24.50	< 5. 0	24.30	< 5. 0	< 5. 0	8.40	< 5. 0
Rb/Sr	0.32	1.04	2.71			0.05	0.08	0.82	0.16	1.97	0.31	6.25	0.31

注: 样品 1~7 为太古宙 TTG 岩系; 样品 8~17 为海西一印支期花岗质杂岩; 样品 18~26 为燕山期花岗质杂岩。本表数据除样品 67,11 和 17 引自辽宁省区域地质志外, 其余均为本次研究。1. 角闪黑云斜长片麻岩(大柳河沟); 2. 角闪斜长片麻岩(排山楼); 3. 石英闪长岩(排山楼); 4. 角闪黑云斜长片麻岩(排山楼); 5. 奥长花岗岩(排山楼); 6. 花岗岩(田蓝屯); 7. 花岗岩(绥中南大山); 8. 角闪石辉长岩(半截塔); 9. 角闪石闪长岩(旧庙); 10. 石英闪长岩(石场村); 11. 石英闪长岩(引自辽宁省区域地质志 第 429 页); 12. 花岗闪长岩; 13. 片麻状似斑状二长花岗岩(南四家子); 14. 片麻状似斑状二长花岗岩(佛 爷岭); 15. 二长花岗岩(沙拉); 16. 糜棱岩化似斑状花岗岩(康四营子); 17. 二长花岗岩(引自辽宁省区域地质志第 433 页); 18. 角闪黑云石英闪长岩(大铁厂); 19. 石英闪长岩(樱桃沟); 20. 石英闪长岩(同乃); 21. 石英闪 长岩(江家水库); 22. 钾长花岗岩(江家水库); 26. 细粒石榴石白云母碱长花岗岩(江家水库); 26. 细粒石榴石白云母碱长花岗岩(江家水库).

σ-里特曼指数; SI-硅质指数; A, R-碱度指数; Al -含铝指数; M g'-镁质指数。

片麻状一条带状构造最为常见,反映出该岩类曾 遭受过深层次的韧性变形作用的改造。岩石的主 要矿物成分为普通角闪石、斜长石、石英、黑云母 及少量钾长石,副矿物有磷灰石、锆石及磁铁矿 等,退变矿物有蓝绿色角闪石、绿泥石、绢云母及 钠黝帘石等。而在东部角闪岩相发育的花岗闪长 岩却有与之不同的变形特点,主要以韧脆性变形 为主,部分地段(如同乃南部)以碎裂变形为主,表 明其仅遭受了较浅层次变形作用的改造。刘建忠 等(2000)^[3]认为,麻粒岩相区应为角闪岩相区的 根部带,该区太古宙深成侵入杂岩的变形特点为 此提供了很好的证据。该类岩石多为中粗粒花岗 结构,细粒化现象明显,块状及片麻状构造。主要 矿物成分:钾长石 20%~40%,斜长石 10%~ 30%,石英 20%~30%,黑云母< 10%。 2.1.2 岩石化学及地球化学 研究区内花岗 杂岩的化学成分及有关的参数列于表 1。根据标

杂岩的化学成分及有关的参数列于表 1。根据标 准矿物计算统计的结果,本区太古宙深成侵入杂 岩在 An-Ab-Or 图解中,其投影点落在英云闪 长岩-奥长花岗岩、花岗闪长岩-花岗岩区内。

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

从该图解上投影点的分布可以看出,英云闪长岩 一奥长花岗岩的演化趋势比较明显。其岩石化学 特点与世界典型地区(西格棱兰)太古宙的灰色片 麻岩具有许多相似之处^[6]。该太古宙 TTG 杂岩 系的具体特征如下:

(1)本区杂岩系的 SiO₂ 平均含量为 67%,与 西格棱兰灰色片麻岩(66.7%)十分相近,且两者 的 AbO₃、TiO₂ 及 Na₂O 的含量也较为相近,但本 区杂岩系<FeO>(全铁)和 MgO 的含量稍高。

(2)除7号样品外, Na₂O/K₂O 比值均大于1 (1.09~5.95), 表现出贫钾富钠的特点。

(3)在 CaO-FeO-MgO 图解上,投影点落 在太古宙高铝型奥长花岗岩分布区。

(4)该岩系 CIPW 标准矿物分子计算结果为: 石英 17.54~30.43,紫苏辉石为 0.20~11.71,透 辉石仅在英云闪长岩中出现,岩石中均不出现橄 榄石分子。

(5)在主要组分随 SiO2 变异图解(略)中可以 看出,随 SiO2 含量的增大,本区杂岩系的 FeO、 MgO 及 CaO 的含量有规律下降,Al2O3 含量基本 保持不变,而 Na2O+K2O 含量有规律增加。

图 2 辽西花岗杂岩的 Q—A—P 图解 Fig. 2. Q—A—P diagram of granitic complex in western Liaoning Province.

图例说明: 1. 太古宙花岗质杂岩; 2. 印支期花岗质杂岩; 3. 燕山期花岗质杂岩。

在微量元素地球化学方面,本区的英云闪长 质一奥长花岗质片麻岩与西格棱兰地区的 T TG 岩系有许多相似之处,具体表现为 Ba 和 Sr 明显 富集; Rb/Sr 比值为 0.24~0.11 (西格棱兰为 288).

太古宙英云闪长质-奥长花岗质片麻岩的稀 土元素表现出以下特征: ① Σ REE 含量为 140.32 ×10⁻⁶~82.12×10⁻⁶, 且 Σ REE 与 SiO₂ 含量大 致呈负相关关系; ②(La/Yb)N 比值为 13.9295~ 20.549, 具中等分馏程度, 表现为 HREE 亏损的 REE 配分模式, LREE/HREE = 10.8~17.04; ③ 具有正铕异常(EuN/Eu^{*}=1.02~1.30), 同时铕 异常的变化伴随 SiO₂ 的增加从不明显变为明显, 这种稀土元素的分馏特征与太古宙高铝英云闪长 岩-奥长花岗岩的 REE 配分模式相同^①。

2.2 印支期二长花岗岩系

2.2.1 岩石学特征 印支期花岗杂岩主要分 布于西部稳定区,特别是中北部的察哈尔一脉来 一线以及北部的福兴地一哈尔套构造岩浆杂岩带 中,呈东西向展布:另外,在东部线性杂岩带阜新 大板的贝力房及国华地区的两家子也有零星出 露。该花岗杂岩系的成分较为复杂,其投影点在 Q-A-P 图解上分布范围较广,但主要以二长花 岗岩为主,另有少量样品投影点落入钾长花岗岩 和花岗闪长岩区。岩相学研究的结果显示,该岩 系主要以片麻状似斑状黑云母二长花岗岩为主。 多数岩体长轴近东西向展布,岩体中心为片麻状 似斑状黑云母二长花岗岩,北侧由中心向外出现 花岗闪长岩、石英闪长岩、角闪闪长岩和角闪辉石 岩,后者常呈包体或捕虏体存在于前者当中,如南 四家子的片麻状似斑状二长花岗岩体的边部和过 渡相中常含中细粒闪长岩包体:岩体南侧的中细 粒闪长岩以大小不等的包体和捕虏体零星出露在 二长花岗岩中。岩体主要呈岩株状产出,分别侵 入太古宙 TTG 片麻岩及中、新元古代岩系中。 如铁匠各冷的水泉花岗闪长岩侵入中元古代沉积 岩系中^[7],并通过接触交代变质作用生成石榴绿 帘石砂卡岩。据最新的花岗岩年代学研究资 料^{3~4]},该花岗杂岩形成于 180~190Ma 之间,为 印支期的产物。

2.2.2 岩石化学及地球化学特征 表 1 列出 了印支期花岗杂岩的化学成分和相关岩石化学参 数。从表中可以看出,从闪长岩类→花岗闪长岩 类→片麻状似斑状二长花岗岩→似斑状花岗岩呈 现如下特征:①SiO2 明显增加, Na2O+K2O 含量

69

① 刘建忠, 辽宁阜新地区早前寒武纪变质杂岩的变质变形 0.30~0.15); K/Rb 比值为 252 ± (西格棱兰为 及岩石/流体的相互作用(学位论文),长春,长春地质学院 1993. A China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 增加, FeO、MgO、CaO 和 TiO2 的含量降低,上述 氧化物的含量与 SiO2 含量呈现出良好的线性关 系: ②σ值为1.66~2.95, 属钙碱性系列: 而 Na2O/K2O 比值从 2.23 变为 0.63, 呈现出钠质逐 渐减少、钾质逐渐增高的趋势:③含铝指数(Al'= $A_{2}O_{3} \times 100/(A_{2}O_{3} + C_{a}O + N_{a_{2}}O + K_{2}O)$ 为 47. 22~61.25.逐渐增加,岩石由偏铝质转变为过铝 质。闪长岩类主要出现辉石标准分子,而花岗闪 长岩、片麻状似斑状二长花岗岩和似斑状花岗岩 主要出现刚玉标准分子。而从花岗闪长岩类到似 斑状花岗岩 AbO₃/(CaO+Na₂O+K₂O)=0.53~ 1.04, 刚玉标准分子占 0~0.8, 属于 I 型花岗岩: ④作为岩浆分异尺度的镁质指数 $Mg' = (100 \times$ MgO/FeO+MgO+Fe2O3)在该杂岩中为 50.13 ~12.74, 且表现出良好的线性关系(图 3); ⑤岩 石的微量元素特点为: Rb/Sr 比值 0.04~1.04, Sr 含量随 SiO2 增加,两个样品除外均呈线性递减; ⑥在 CaO-Na2O-K2O 图解上,该花岗杂岩呈现 出钙碱性演化趋势,从角闪石辉长岩到石英闪长 岩, Na2O 含量明显增加: 从石英闪长岩到花岗闪 长岩、片麻状似斑状二长花岗岩和似斑状花岗岩, K₂O 急剧增加(图 4)。

2.3 燕山期花岗岩

燕山期花岗质杂岩是该区分布最广的侵入岩体,主要分布在北镇隆起和朝阳穹褶断束的交界 部位,广泛地出露在阜新以北红帽子一骆驼山,以 南的海棠山、医巫闾山、观音洞山、石山站、锦县和 白马石等地。区内燕山期花岗杂岩分别侵入于太 古审建平杂岩、中元古界高于庄组、雾迷山组、寒 武系、奥陶系、石炭系及二叠系,并被上侏罗统土 城子组或下白垩统义县组不整合覆盖。 医巫闾山 和石山站的白云母花岗岩同位素年龄为 161Ma (K-Ar等时线年龄)^[4],而北部平安地的花岗岩 的 Rb-Sr等时线年龄为 169±15Ma,哈大图山 的含石榴子石花岗岩的 Rb-Sr等时线年龄为 152 ±4Ma,为燕山早期的产物⁴。

Indo-Chinese granites.

根据研究区内燕山期花岗质杂岩的侵入关 系、岩石学特征、矿物及矿物组合特征、地球化学 特征和同位素年龄,可将其划分为二个系列:石榴 白云母碱长花岗岩系列和黑云母二长一钾长花岗 岩系列。

2.3.1 石榴白云母碱长花岗岩系列 该系列 岩石主要分布在北镇大市的张家坟、江家水库、景 家屯、大王山家子和观音洞山,另外在石佛堡、车 坊、石山站、大板乡和佛爷岭也有零星出露。一般 呈岩株状产出。在北镇大市的张家坟一江家水库 一景家屯一大王山家子一带,其片麻理呈南北向 一北西向一东西向一北东向围绕闾山岩体分布。 在闾山岩体西部的冷家乡、瓦子峪乡、大榆树堡和 石佛堡等地呈小岩株状侵入,形成闾山岩体西部 的混杂带。

该系列岩石类型比较简单,主要有白云母花 岗岩、石榴白云母花岗岩以及少量黑云母花岗岩 和二云母花岗岩。白云母和石榴子石的出现是该 系列的重要特征。岩石的主要矿物为斜长石(5% ~10%),碱性长石(30%~55%),石英(30%~

ublishing House. All rights reserved. http://www.cnki.net

35%),白云母(1%~8%),黑云母(1%~5%),石 榴子石(1%~8%)。副矿物有锆石、磷灰石、磁铁 矿、榍石、金红石等。

该系列岩石富含 SiO₂、Na₂O + K₂O (可达 8.83 %)(表 1), 而贫 FeO、MnO、MgO 和 TiO₂, 极 度贫 CaO。其σ值 2.32~2.41, 属钙碱性系列; 其含铝指数 Al' = 60.86~61.85, 属过铝质。在 SiO₂—Al'图解(图略)上,该类岩石的投影点位于 刚玉标准分子区, Al₂O₃/(CaO + Na₂O + K₂O)= 1.14~1.18, 刚玉标准分子占 1.74~1.96, 属 S 型花岗岩。微量元素 Rb 含量为 140.1×10⁻⁶~ 150.8×10⁻⁶, Sr 的含量为 22.40×10⁻⁶~478.80 ×10⁻⁶, Rb/Sr=0.31~6.25, Ni 的含量小于8.40 ×10⁻⁶。

2.3.2 黑云母二长一钾长花岗岩系列 该花 岗岩系列岩石分布在红帽子一骆驼山、海棠山、医 巫闾山、石山站、王家楼、锦县和白马石,是燕山期 花岗岩的主要组成部分。岩体呈岩株状产出,岩 株长轴以北东和北北东向为主,少数东西向,岩体 相带不发育。岩体边缘同化混染普遍发育,如闾 山西部的混染带、红帽子的局部混染带。

根据 33 块岩石薄片实际矿物含量统计所作的Q-A-P图解,并结合 CIPW标准矿物的计算,该花岗岩系列主要由黑云母二长一钾长花岗岩组成,次为闪长岩和花岗闪长岩(图2)。其中闪长岩类包括角闪石闪长岩、黑云母闪长岩和石英闪长岩。这些闪长岩类的氧化系数(W)达0.33~0.67,大多数岩体属于深成相,中浅剥蚀程度。

本区的花岗岩类以等粒黑云母花岗岩和二长 花岗岩为主,氧化系数W=0.33~0.66,岩体属 中深成相,中浅剥蚀程度。细粒至粗粒花岗结构、 似斑状结构,块状构造,局部具片麻状构造。主要 矿物为斜长石(5%~60%)、碱性长石(10%~ 60%)、石英(20%~35%)、黑云母(0~10%)、白 云母(0~5%),另外还含有少量角闪石。副矿物 有磁铁矿、黄铁矿、磷灰石、榍石、锆石、绿帘石等 32种。色率为14.13~3.50。

燕山期花岗杂岩的化学成分分析数据表明, 从闪长岩→花岗闪长岩→黑云母花岗岩,其化学 成分特征为: ①SiO2 明显增加, Na2O+K2O 含量 增加, FeO、MgO、CaO 和 TiO2 含量降低,上述氧 化物与 SiO2 的含量,呈现出良好的线性关系;② 其σ值为 2.87~2.40,属钙碱性系列;而 Na2O/ K2O 比值从 1.90 变化为 1.04,呈现出钠质逐渐

减少、钾质逐渐增高的趋势;③其含铝指数(Al'= $Al_2O_3 \times 100/(Al_2O_3 + CaO + Na_2O + K_2O))$ 为 58.55~62.20,由偏铝质转变为过铝质。闪长岩 类主要出现辉石标准分子,而花岗闪长岩和SiO2 <70%的花岗岩既出现辉石标准分子又出现刚玉 标准分子。而 SiO₂>70%的花岗岩主要出现刚 玉标准分子, Al₂O₃/(CaO+Na₂O+K₂O)=0.90 ~1.05,属于 I型花岗岩:④作为岩浆分异尺度的 镁质指数 $Mg' = 100 \times MgO/(FeO + MgO +$ Fe2O3)在该杂岩中为17.53~27.83,且表现出良 好的线性关系(图5):⑤岩石的微量元素特点为. Rb=49.50×10⁻⁶~150.80×10⁻⁶,Sr含量为 75.90×10⁻⁶~943.80×10⁻⁶,Ni含量大多数< 5.0×10⁻⁶, 最高含量为 24.50×10⁻⁶; Rb/Sr 比 值为 0.05~1.97, Sr 含量随 SiO2 含量的增加而 呈线性递减趋势;⑥在 CaO-Na2O-K2O 图解 上,该花岗杂岩呈现出钙碱性演化趋势(图6)。

图 5 燕山期花岗岩的 SiO₂-Mg' 相关图 Fig. 5. SiO₂-Mg' correlation diagram of Yanshanian granites.

3 花岗杂岩的成因讨论

通过对不同时代侵入杂岩的产出地质背景、 岩石学和地球化学的描述,不难看出他们分别构 成不同构造岩浆旋回的物质记录,对它们成因的 探讨,对重建地壳物质组成、结构调整及演化都具 有重要意义。

3.1 太古宙 TTG 杂岩的 成因

与世界其它地区新太古代地壳的物质组成一样,本区作为华北克拉通北缘的一部分,在新太古 代出现了大量的 TTG 岩浆活动。对于这套深成 侵入杂岩,目前主要有三种模式成因:①上地幔岩 石的部分熔融;②下地壳镁铁质岩石由于构造加

厚、变质脱水而发生的部分熔融作用;③更老的 硅铝壳物质的改造。

根据研究区 TTG 杂岩的具体特征,我们认 为上述①、③两种成因模式不适合于本区,其原因 如下:①本区 TTG 杂岩中不仅 Ba、Sr 的含量较高 (Ba含量高达 880.5×10⁻⁶,而 Sr 的含量也高达 825.1×10⁻⁶),根据 Tarney 等(1979)^[8]的研究, 如果 TTG 杂岩中如此高的 Ba、Sr 含量是通过上 地幔岩石熔融来获得,其熔融程度应是非常低的。 这与本区大面积分布的 TTG 片麻杂岩是相矛盾 的。因此,第一种成因模式不符合本区的实际地 质情况。②尽管在麻粒岩相区由于遭受过强烈的 变质变形作用的改造,岩体的侵入关系不十分清 楚,但在弱变质变形的区域,侵入接触关系仍清晰 可见。特别是在变形较弱的地段,TTG 片麻杂岩 中仍保留了早期岩浆结晶结构,可以肯定地判断, 第三种成因假说也不完全适合本区。

根据研究区 TTG 杂岩的实际地质情况,关于 TTG 岩系的成因问题有两点值得注意:① TTG 杂岩的形成明显晚于本区的变质表壳岩系, 这清楚地表明 TTG 岩浆形成在麻粒岩相递增变 质作用之后;②本区 TTG 杂岩中含有许多镁铁 质岩石的包体,其中除了有相当数量的变质表壳 岩外,不能排除有一部分应属于同源包体。尤其 是在西部麻粒岩相区,TTG 杂岩中有角闪质岩石 包体,但其结构没有指示退变质的迹象,说明其为 同源包体;同时,在 La/Sm一La 图解(图7)中,本 区岩石样品的投影点落入分离结晶区,La/Sm 比 值大致保持同一水平而不受 La 变化的影响 完全 符合 岩浆 结晶 分 异的 规律。在(La/Yb)_N - (Yb)_N 图解(图 8)中,投影点落在石榴子石角闪 岩熔融趋势线附近,由此可见,本区的 TTG 岩系 的原岩为下部地壳镁铁质岩石,在深部地壳环境 中,其经高温变质作用改造后,发生高度部分熔融 从而形成玄武质岩浆,进一步通过角闪石和斜长石 等矿物相的分离结晶作用而演变成 TTG 岩系。

3.2 印支期花岗杂岩的成因

印支期花岗杂岩从早期到晚期的演化具有典型岩浆演化的特征,即从偏基性的岩石向酸性岩石演化,且其SiO2与其它氧化物之间具有良好的线性演化关系。在区域上,该系列杂岩在空间上呈东西向展布,岩体南北两侧岩石均具有明显的片麻理构造,有的进一步演化为花岗质糜棱岩的剪切叶理,片麻理和剪切叶理与岩体边界近于平行,

值大致保持同一水平而不受 La 变化的影响,完全 这些说明在岩体侵位时受构造控制。特别是在 1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

国华地区,该系列岩石的片麻理及剪切叶理与围 岩的糜棱岩系的剪切叶理近于平行产出,进一步 说明该系列杂岩受东西向剪切构造控制。区域构 造解析研究表明,在晚古生代末,古蒙古洋闭合, 由于闭合作用并非简单的收缩,而是伴有平移构 造作用,从而在辽西地区产生了规模不等、相间分 布的低角度逆冲型韧性剪切带构造,这使得辽西 地区的太古宇与中、上元古界改造成一系列堆叠 的构造岩片,在剪切带形成的晚期(印支早期),相 伴发生岩浆作用,其主要出现在剪切带中心或边 部,结果形成大面积出露的近东西向展布的花岗 杂岩,因受递进剪切变形作用的影响,部分花岗质 杂岩体同样遭受了韧性剪切变形作用的改造。

在Batchelor¹⁹的 R1-R2 多阳离子图解(图 9)上,该系列岩石投影点落在造山深熔花岗岩区 附近。在Q-Ab-Or 图解(图 10)上,该系列岩 石的投影点落在低温槽附近。由此可见,地球化 学的特征也表明,印支期花岗杂岩为地壳深熔型 花岗岩,其形成深度大致在 15km 左右,相当于围 压在(3~5)×10⁸Pa之间。

图 9 R₁-R₂多阳离子图解

Fig. 9. R_1 — R_2 diagram of multication parameters.

3.3 燕山期花岗杂岩的成因

区内燕山期花岗杂岩体的长轴方向均为 NNE向,且穿切了东西向展布的印支期花岗杂 岩,其最突出的特点是其本身构成了地宫一排山 楼一锦州构造岩浆杂岩带的标志性岩石单位。同 时,闾山岩体构成了闾山核杂岩的核部,在该岩体 的边部尤其是北侧积西侧具有明显的片麻理构 造,并进一步发展成为走向 NNE 的剪切叶理,且 其运动学和动力学特征与构造岩浆带中的剪切变 质岩系一致,具有左旋斜滑拉伸的特点,表明其为 同构造侵位岩浆杂岩,其形成受在 NNE 向拉伸 背景下形成的韧性剪切带所控制。

前已述及,该类花岗岩具有典型岩浆演化的 特点,其中的白云母花岗岩具有"S"型花岗岩的 特征。在 R₁-R₂多阳离子图解(图 9)上,该系列 岩石投影点同样落在造山深熔花岗岩区附近。在 Q-Ab-Or图解(图 10)上,该系列岩石的投影点 落在低温槽附近,形成深度大致在 10km 左右,相 当于围压为(2~4)×10⁸Pa,形成于地壳浅部。因 此,燕山期花岗杂岩起因为:燕山期期间,陆壳因 拉伸作用而变薄,使地幔上隆,引起地壳物质的熔 融而形成花岗质岩浆,并沿拉伸剪切带上侵就位 而成。

图 10 Q—Ab—Or 图解 Fig. 10. Q-Ab-Or diagram of granites.

4 结束语

通过对辽宁阜新一锦州地区发育于不同构造 单元中花岗杂岩的地质产状、岩相学和地球化学 的详细研究,可以得出如下结论:

(1) 新太古代 TTG 杂岩类似于太古宙高铝 英云闪长岩一奥长花岗岩岩系,其形成于下部地 壳镁铁质岩石的部分熔融作用。

(2)印支期花岗杂岩为同造山深熔型花岗 岩,其形成于古蒙古洋闭合的晚期。

除岩的核部,在该岩体 (3)燕山期花岗杂岩生成于伸展环境下,与 具有明显的片麻理构,地壳减薄、地幔物质上隆密切相关, inclournal Electronic Publishing House, All rights reserved. http://www.cnki.net 作者衷心感谢长春科技大学刘俊来教授、辽 宁地矿局曲亚军、宋国强、宋昌锦高级工程师和秦 艳梅工程师在野外工作期间给予的指导和帮助。

参考文献

- [1] 马昌前、杨坤光、唐仲华等,从花岗岩类岩浆动力学角度探讨大陆动力学过程。见:地球科学进展学术讨论会论文摘 要汇编,武汉:中国地质大学出版社,1992,34。
- [2] 辽宁省地质矿产局,辽宁省区域地质志。北京:地质出版社,1989,438~493。
- [3] 刘喜山、刘建忠、刘祥,辽西板内碰撞带中变质作用的双重性。长春地质学院学报,1996.26(3):285~291。
- [4] 孙景贵、连长云, 辽西地区花岗岩的形成时代。辽宁地质, 1997, (1): 24~29。
- [5] 刘建忠、刘喜山、李树勋等, 辽宁阜新地区两类变质地区的构造关系。地质地球化学, 2000, 28(2):48~53。
- [6] V. R. McGregor 著, 钱祥麟译, 太古宙灰色片麻岩与大陆壳的成因。见: 地质矿产部情报研究所主编, 国外前寒武纪 地质构造研究。北京: 地质出版社, 1984, 254~271。
- [7] 刘正宏、徐仲元、杨振升,华北板块北缘中段中元古代魏家沟岩群的建立及其地质意义。长春科技大学学报,1999, 29(1):9~14。
- [8] Tarney J. and Saunders A. P., Trace element constraints on the origin of Cordilleran batholiths. In: Atherton M. P. and Tarney J. (Eds), Origin of Granite Batholiths: Geochemical Evidence. Shiva Publ., Kent, 1979, 90 ~ 105.
- [9] Betchelor R. A. and Bowden P., Petrogenetic interprelation of granitoid series using multication parameters. Chemical Geology, 1985, 48: 43 ~ 53.

CHARACTERISTICS AND GENESIS OF GRANITIC COMPLEX IN FUXIN-JINZHOU AREA, LIAONING PROVINCE

Liu Jianzhong¹⁾ Liu Xishan²⁾ Li Shuxun²⁾ Li Guilin²⁾ Ouyang Ziyuan¹⁾

1) (Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002)

2) (Changchun University of Science and Technology, Changchun 130026)

Abstract

Based on a detailed study on regional geology, the study area can be divided into two big tectono-magmatic belts and two tectonically stable regions. Meanwhile, on the basis of geology and geochemistry characteristics and chronology data, the granitic complex can be divided into three parts: Late Archaean TTG complex, Indosinian adamellitic complex and Yanshanian granitic complex. Genesis of granitic com plexes of different ages is also discussed.

Key words: granitic complex; characteristics and genesis; Liaoning Province