《中国科学》杂志社 SCIENCE CHINA PRESS

### 玄武岩风化是重要的碳汇机制吗?

曾庆睿<sup>1,2</sup>, 刘再华<sup>1\*</sup>

评 述

1. 中国科学院地球化学研究所环境地球化学国家重点实验室,贵阳 550081;

2. 中国科学院大学,北京 100049

\* 联系人, E-mail: liuzaihua@vip.gyig.ac.cn

2016-11-13 收稿, 2016-12-18 修回, 2016-12-19 接受, 2017-03-13 网络版发表 国家自然科学基金重点项目(41430753)和国家重大科学研究计划(2013CB956700)资助

**摘要** 在全球碳循环的研究中, 硅酸盐化学风化被认为是大气CO<sub>2</sub>的一个重要汇. 自1996年Gislason开展对冰岛 玄武岩(硅酸盐岩的一种)风化碳汇的研究以来, 玄武岩风化引起的"大气"CO<sub>2</sub>高消耗更成为研究热点. 在对相关 文献进行全面系统梳理的基础上, 发现玄武岩流域的所谓"大气"CO<sub>2</sub>高消耗(碳汇)可能与下述原因有关: (1) 碳通 量较高的玄武岩研究区多位于热带或洋岛-岛弧地区, 该区雨量充沛, 河流径流量大, 进而造成碳通量较大; (2) 硅酸盐岩流域高的溶解无机碳(DIC)浓度并非来自硅酸盐矿物的风化, 而是来自广泛分布在硅酸岩中的痕量碳酸 盐矿物的快速风化, 而这应该归为碳酸盐风化对岩石风化碳通量的贡献; (3) 外源酸溶解痕量碳酸盐矿物, 贡献 HCO<sub>3</sub><sup>-</sup>, 但并未构成大气碳汇; (4) 玄武岩流域中参与岩石风化的CO<sub>2</sub>并非全部来自大气和土壤, 其中一部分可能 来自深源CO<sub>2</sub>, 而深源CO<sub>2</sub>参与形成的DIC不仅不能归为大气碳汇, 反而是碳源. 由此可见玄武岩风化是否是一个 重要的碳汇机制值得进一步研究厘定.

关键词 碳汇,玄武岩风化,径流,碳酸盐风化,深部 CO<sub>2</sub>

在全球变化的研究中,全球碳循环是科学家关注的热点内容.大气CO<sub>2</sub>浓度由工业革命前的295 ppm(1 ppm=1  $\mu$ L/L,下同)增长到2016年的近400 ppm (https://www.esrl.noaa.gov/gmd/ccgg/trends/).以 往关于陆地碳汇的研究主要集中在土壤、植被碳库, 而岩石圈作为陆地最大碳库,应该在全球碳循环的 研究中得到更多的关注和重视.早在1845年,法国采 矿工程师Joseph Ebelmen预想大气CO<sub>2</sub>与岩石矿物相 互反应生成溶解盐可能形成一个重要的碳汇<sup>[1]</sup>.传统 观点认为,碳酸盐岩化学风化(CaCO<sub>3</sub>+CO<sub>2</sub>+H<sub>2</sub>O<del>与</del> 2HCO<sub>3</sub><sup>-+</sup>Ca<sup>2+</sup>)不能形成长时间尺度碳汇,因为在化学 风化过程中消耗的CO<sub>2</sub>又会通过海洋中方解石沉积 等过程重返大气,而硅酸盐风化(CaSiO<sub>3</sub>+CO<sub>2</sub>→ CaCO<sub>3</sub>+ SiO<sub>2</sub>)过程则被认为可以形成长时间尺度碳 汇<sup>[2-4]</sup>.相比于其他硅酸盐矿物,玄武质矿物更易受 侵蚀,溶蚀速率更快<sup>[5-8]</sup>,因而在硅酸盐风化研究中对 玄武岩风化贡献的研究尤为丰富.在本文中我们参考 Meybeck<sup>[6]</sup>的研究结果,即全球陆地岩石风化碳汇平 均强度为1.93 t C km<sup>-2</sup> a<sup>-1</sup>,定义高于这个平均值即为 岩石风化碳汇强度较高.Gaillardet等人<sup>[9]</sup>通过汇编全 球62条主要河流的水化学数据,运用反演模型及物 质平衡方程计算不同岩性及大气对于河流溶解物质 的贡献,并将结果外推到全球尺度,估算出全球硅酸 岩风化消耗CO<sub>2</sub>的速率为0.14 Pg C a<sup>-1</sup>,其中海洋岛 屿及火山岛弧玄武岩风化消耗的CO<sub>2</sub>占比超过25%. 然而,Gaillardet等人<sup>[9]</sup>在计算不同端元(硅酸盐岩、碳 酸盐岩、蒸发岩以及大气)对于河流总溶解固体(TDS) 的贡献时所采用的混合端元法并没有考虑到地表水

引用格式: 曾庆睿, 刘再华. 玄武岩风化是重要的碳汇机制吗? 科学通报, 2017, 62: 1041–1049 Zeng Q R, Liu Z H. Is basalt weathering a major mechanism for atmospheric CO<sub>2</sub> consumption (in Chinese)? Chin Sci Bull, 2017, 62: 1041–1049, doi: 10.1360/N972016-01023

© 2017《中国科学》杂志社

www.scichina.com csb.scichina.com

体沉水植物对水中HCO<sub>3</sub>离子的利用<sup>[10-12]</sup>以及河流 中方解石过饱和产生碳酸钙沉积对HCO<sub>3</sub>/Na<sup>+</sup>, Ca<sup>2+</sup>/Na<sup>+</sup>等比值的改变<sup>[13,14]</sup>.此外由于岩石化学风化 过程是非均一溶蚀过程,岩石中不同元素的释放可 能存在差异,水中离子浓度未必可以真实反映原岩 信息,这些使得利用混合端元法反演估算硅酸盐岩 风化对消耗CO<sub>2</sub>的贡献需要被重新认识<sup>[11]</sup>,而玄武 岩风化是否能够成为一个重要的汇,也需要重新审 视.本文对玄武岩风化碳汇相关文献进行了全面系 统的梳理,拟从以下4个方面讨论玄武岩风化是否是 一个重要的碳汇机制.

### 1 较高的径流通量导致较大的碳通量

通常,岩石化学风化速率及其引起的大气CO<sub>2</sub>消 耗速率多采用径流通量与离子浓度的乘积来表 达<sup>[6,9,10]</sup>,因此径流通量的大小可直接影响计算结果 的大小.此外,也有研究从机理分析角度证明了径流 在岩石化学风化中扮演着重要的角色<sup>[8,9,15~19]</sup>. Gislason等人<sup>[18]</sup>通过分析冰岛西南部25条干支流的水化学 组成来推算玄武岩化学风化速率,并分析径流量、岩 石年龄、植被/冰川覆盖等因素对其的影响,指出冰岛 西南部玄武岩化学风化速率高于全球平均值, 目较 高的径流通量是导致冰岛较高化学风化速率的原因 之一. Louvat和Allègre<sup>[20]</sup>通过分析印度洋西南部法属 留尼旺岛主要河流的主微量元素组成计算出该研究 区机械和化学风化速率.研究发现,该研究区玄武岩 化学风化速率与冰岛西南部相似,都处于全球较高 水平, 而热带海洋气候带来的较高径流通量正是造 成高风化速率的主要原因之一. Louvat和Allègre<sup>[21]</sup>还 通过对北大西洋亚速尔群岛与之前留尼旺岛的对比 研究,进一步强调了径流在岩石风化过程中的主导 作用. Kump等人<sup>[22]</sup>通过将实验室模拟与野外天然情 况相结合研究,发现随着最终径流的增大,土壤水饱 和程度降低导致原生矿物溶解增加、次生矿物沉积减 少,这种过程的结果是溶解物化学通量的增加. Stefansson等人<sup>[23]</sup>通过分析冰岛西南部河流水化学组 成,指出径流是控制溶质通量和总化学剥蚀速率 (TCDR)的主导因子, TCDR和溶质通量会随着径流量 的增大而增大. Dessert等人<sup>[24]</sup>调查了流经印度北部 德干玄武岩河流的水化学,并结合前人研究成果,直 接指出玄武岩化学风化产生的CO2消耗速率随径流 量增加而增大.同样是对印度德干玄武岩的研究, Das等人<sup>[25]</sup>发现西部地区的硅酸盐岩风化速率约为 东部地区的4倍,并将其归因于西部地区高降水量、高 径流通量在控制风化速率中的主导作用.Wu等人<sup>[26]</sup> 在浠水河的研究中以及Balagizi等人<sup>[27]</sup>在东非维龙加 火山省的研究也发现了硅酸盐岩风化速率与径流量 呈显著正相关关系.

从机理角度分析,我们认为径流成为控制玄武 岩化学风化通量的重要因子主要源于三方面原因. 第一,由于硅酸盐矿物较慢的溶蚀速率,流经玄武岩 地层的河流通常都未饱和.而径流量增大往往与大 气降水增多密切相关,大气降水的补给在增大径流 量的同时,也进一步降低了水体矿物饱和度,提高了 水体对矿物的溶蚀能力.第二,在温度一定的情况 下,径流量的增大也增加了水-岩相互作用的表面积, 继而增加岩石化学风化通量<sup>[23]</sup>.第三,流域水体中 溶质存在化学稳定性行为<sup>[19,28]</sup>,即当流域内径流量 出现较大幅度变化时,水中溶质浓度仍能保持相对 稳定,并不会出现大幅度波动.岩石化学风化通量是 溶质浓度与径流量的乘积,溶质浓度保持相对稳定, 径流量增大,岩石化学风化通量也随之增大.

通过整理Gaillardet等人<sup>[9]</sup>研究中所选用的全球 62条主要河流流域面积和年径流通量,计算得出这 62条主要河流的平均径流深为0.37 m a<sup>-1</sup>,在本文中 定义径流深高于这个平均值即为高径流通量.从表1 中可以看出,在具有高径流通量特征的研究区,玄武 岩化学风化产生的CO<sub>2</sub>消耗通量普遍较高,而这些研 究区大多数位于热带或洋岛-岛弧地区,热带地区气 候湿热,有利于岩石风化<sup>[29,30]</sup>,洋岛-岛弧地区通常 降水充沛,较大的降水量也导致了较大的径流通量, 从而提高了化学风化产生的碳通量.而这种由于气候 特征导致的玄武岩风化并非由玄武岩本身属性导致.

### 2 玄武岩河流较高溶解无机碳浓度的形成与 流域中微量碳酸盐矿物的快速风化有关

岩石化学风化消耗CO<sub>2</sub>的本质是矿物与CO<sub>2</sub>溶于 水后形成的H<sub>2</sub>CO<sub>3</sub>间的化学反应.方解石等碳酸盐矿 物不仅大量赋存在碳酸盐岩中,也与页岩、片麻岩、 片岩、热液交换花岗岩、原始花岗岩等密切相关.因 此硅酸盐岩流域岩石风化消耗CO<sub>2</sub>并不一定是硅酸 盐矿物的贡献,很有可能是广泛分布在硅酸岩中的 如方解石等微量碳酸盐矿物快速溶解造成的<sup>[11]</sup>.本 文设定大气CO<sub>2</sub>分压为400 ppm, 温度为25℃, 计算 了当方解石溶解达到平衡时, HCO3的浓度为1.04 mmol L<sup>-1</sup>, 定义高于这个平衡浓度即为高溶解无机 碳(DIC)浓度.由此可见,微量碳酸盐矿物风化可以 造成DIC浓度值较高(表1). 以往的科学研究多利用 水中Sr浓度及<sup>87</sup>Sr/<sup>86</sup>Sr的比值来区分水中溶解物质来 源于硅酸盐还是碳酸盐.通常碳酸盐岩流域水体中 Sr浓度高,而<sup>87</sup>Sr/<sup>86</sup>Sr比值低; 硅酸盐岩流域水体中 Sr浓度低,而<sup>87</sup>Sr/<sup>86</sup>Sr比值高.Blum等人<sup>[33]</sup>通过研究 巴基斯坦北部高喜马拉雅结晶岩系(HHCS)的Raikhot 流域内地表水、基岩和河流泥沙中主要元素及Sr同位 素地球化学特征,发现水中82%的HCO3通量是来自 于分布在以长英质片麻岩和花岗岩为主导的硅酸盐 岩中仅约1%的碳酸盐矿物的风化,因此以往利用Sr 通量特征及<sup>87</sup>Sr/<sup>86</sup>Sr比值指示喜马拉雅地区风化物质 来源并计算其硅酸盐岩风化速率,往往高估了硅酸 盐岩风化引起的CO2消耗速率. Jacobson等人<sup>[34]</sup>在该 地区的研究也发现, 该处以硅酸盐岩为主的地层中, 仅占约1.4%的碳酸盐矿物在5.5万年的风化中减少到 了约0.02%, 但却贡献了高达98%的Ca和90%的Sr. Harris等人<sup>[35]</sup>对发源于高喜马拉雅山结晶岩系的恒 河支流胡特可西河(Bhote Kosi)的研究也发现,即便 流域中硅酸盐岩占据主导地位,但微量碳酸盐矿物 在高喜马拉雅贡献了>75%的溶解态Ca和Mg元素, 而在小喜马拉雅的贡献则更是超过了92%. Blum等 人[33]的研究中还指出喜马拉雅地区热液浸染方解石 在变质过程中与具有较高<sup>87</sup>Sr/<sup>86</sup>Sr特征的硅酸盐岩达 到再平衡, 而硅酸盐岩地层中微量变质方解石的溶 解造成了喜马拉雅山脉河流具有高Sr通量和高 <sup>87</sup>Sr/<sup>86</sup>Sr的特点,这也与Palmer和Edmond<sup>[36]</sup>, Galy等 人<sup>[37]</sup>, White等人<sup>[38]</sup>, Jacobson和Blum<sup>[39]</sup>, English等 人<sup>[40]</sup>, Oliver等人<sup>[41]</sup>以及Bickle等人<sup>[42]</sup>的研究发现一 致. 新西兰南阿尔卑斯山也存在相似的情况, 山体抬 升加剧了机械侵蚀,这使得硅酸盐岩体中的碳酸盐 矿物得以暴露,加之碳酸盐的快速溶解动力学特征, 造成了碳酸盐化学风化速率占总岩石化学风化速率 的比例升高<sup>[43]</sup>. Dessert等人<sup>[24]</sup>在对印度德干玄武岩 风化碳汇的研究中,分析了河水中的Sr浓度及Sr同位 素组成,从数据中可以看出, Machak, Panjkra, Aner 等采样点处的样品具有较高的Sr浓度和较低的<sup>87</sup>Sr/<sup>86</sup>Sr 比值, 这反映了碳酸盐风化的特征, 这也是为什么这 三处样品的HCO3浓度较高(分别为5.49, 4.20和3.69

mmol L<sup>-1</sup>)的原因. 此外, Gupta等人<sup>[31]</sup>对流经印度德 干玄武岩的讷尔默达河(Narmada River)水化学组成 分析发现占比较少的岩性反而对于玄武岩流域风化 特征具有重要影响,其中碳酸盐岩的风化速率占总 风化速率的28%~45%,而占比超过70%的德干玄武 岩风化速率仅占总风化速率的38%~58%. Jacobson等 人<sup>[44]</sup>采用Ca同位素技术对流经冰岛玄武岩的河流中 风化物质来源进行了判别,研究指出以往研究是基 于所有的Ca<sup>2+</sup>和HCO<sub>3</sub>离子都来源于例如斜长石、斜 辉石等钙质硅酸盐矿物溶解的假设. 然而冰岛 80%~85%的基岩都是玄武岩,其中广泛分布着热液 成因方解石,由于方解石快速的溶解速率以及较高 的溶解度,即便微量方解石也可以影响河流水化学 组成. 研究发现, Ca同位素示踪数据表明冰岛河流中 高达85%的Ca来源于热液成因方解石的风化,而非 钙质硅酸盐矿物的溶解. Goldsmith等人<sup>[32]</sup>在对小安 迪列斯多米尼加岛玄武岩/安山岩化学风化碳汇的研 究中,分析认为多米尼加河流中较低的Ca/Mg比与玄 武岩地层更匹配,但也没有直接证据可以排除河流 中的Ca<sup>2+</sup>来自于浸染方解石. 该研究(表1)中HCO3<sup>-</sup>的 浓度最高可以达到2.65 mmol L<sup>-1</sup>, 而这显然高于纯 玄武岩化学风化所能形成的HCO<sub>3</sub>浓度,因此我们认 为多米尼加河流中较高的HCO式浓度可能来自于浸染 方解石的化学风化.

由此看来,以往基于Ca/Sr和<sup>87</sup>Sr/<sup>86</sup>Sr两端元混合 方程的计算大大高估了硅酸盐岩风化引起的CO<sub>2</sub>消 耗.考虑到浊沸石相的存在,地热流体循环,以及方 解石沉积是伴随玄武岩喷发普遍存在的特征<sup>[32]</sup>,以 往对于玄武岩风化碳汇的研究可能忽略了玄武岩地 层中微量碳酸盐矿物风化消耗CO<sub>2</sub>的重要贡献,由此 玄武岩风化碳汇通量也被高估,那么玄武岩风化在 调控气候中的作用也应被重新评价.

对于岩石风化碳汇的研究,准确分辨风化物质来源十分重要.单纯地采用端元法可能导致硅酸盐岩风 化贡献被高估等问题,因此应当选用水化学组成、 C-Sr-Ca同位素特征建立完善的指标体系,精确厘定 不同端元对岩石风化引起的CO2消耗速率的贡献.

### 3 外源酸溶解玄武岩中微量碳酸盐形成 DIC,不构成大气碳汇

河流中的DIC除来自于碳酸对岩石的溶解,也可 能来自于如硫酸等外源酸对碳酸盐的溶解,而这种

#### 表1 重要硅酸盐岩流域化学风化速率及"大气"CO2消耗速率<sup>a)</sup>

Table 1 Chemical weathering rates and "atmospheric" CO<sub>2</sub> consumption rates of some key watersheds draining silicate rocks

| 高碳通量影响<br>因素类型                               | 研究地点                | 岩性            | 气温                      | 年均降水量                  | 径流深                 | DIC                   | CO <sub>2</sub> 消耗速率   | 数据   |
|----------------------------------------------|---------------------|---------------|-------------------------|------------------------|---------------------|-----------------------|------------------------|------|
|                                              |                     |               | $T(^{\circ}\mathbb{C})$ | $P (\text{mm a}^{-1})$ | $R (m a^{-1})$      | $(mmol L^{-1})$       | $(t C km^{-2} a^{-1})$ | 来源   |
| 高径流通量                                        | 冰岛西南部               | 玄武岩           | 4.9                     | 400~4000               | $1.98^{*}$          | 0.57                  | 12.98                  | [18] |
|                                              | 留尼旺火山岛弧             | 玄武岩           | 8.0~14.0/<br>20.0~26.0  | 7000                   | 0.64~ <b>7.06</b> * | 0.25~3.56             | 15.6~52.8              | [20] |
|                                              | 亚速尔群岛               | 火山岩           | 14.0~18.0               | 740~2400               | 0.54~ <b>0.92</b> * | 0.20~4.12             | 3.12~10.44             | [21] |
|                                              | 印度德干高原              | 玄武岩           | 10.0~14.0/<br>31.0~37.0 | 700~2500               | 0.48~ <b>1.69</b> * | 0.17~4.16             | 4.32                   | [25] |
|                                              | 刚果(金)维龙加火<br>山省     | 玄武岩           | 19.2                    | 1400~1500              | 0.83~ <b>3.33</b> * | 0.9~11.3              | 4.8~444                | [27] |
|                                              | 印度西南<br>Nethravati河 | 角闪片麻岩/麻<br>粒岩 | 30.0                    | 3600~4200              | 3.30*               | 0.17~0.54             | 3.48                   | [29] |
| 微量碳酸盐矿<br>物风化形成<br>高DIC浓度                    | 菲律宾吕宋岛              | 火山岩/蛇绿岩       | 27.3±0.8                | 2446~3344              | 2.11~2.54*          | 0.01~10.8             | 42.96~71.88            | [30] |
|                                              | 印度德干高原              | 玄武岩           | 25.0                    | 1150                   | -                   | 1.15~ <b>5.49</b> **  | 6.96~30.48             | [24] |
|                                              | 印度德干高原              | 玄武岩           | 8.0~42.0                | 600~1800               | 0.30~0.85           | 0.65~ <b>5.62</b> **  | 2.04~9.24              | [31] |
|                                              | 小安迪列斯多米尼<br>加岛      | 玄武岩/安山岩       | 24.8~27.8               | 1000~10000+            | -                   | 0.10~ <b>2.65</b> **  | 13.2~16.8              | [32] |
| 外源酸溶解微<br>量碳酸盐矿<br>物 产 生 高<br>DIC浓度          | 印度德干高原              | 玄武岩           | 10~14/31~37             | 700~2500               | 0.48~1.69           | 0.17~ <b>4.16</b> **  | 4.32                   | [25] |
| 深部CO <sub>2</sub> 参与<br>岩石风化形<br>成高DIC浓<br>度 | 留尼旺火山岛弧             | 玄武岩           | 8.0~14.0/<br>20.0~26.0  | 7000                   | 0.64~7.06           | 0.25~ <b>3.56</b> *** | 15.6~52.8              | [20] |
|                                              | 亚速尔群岛               | 火山岩           | 14.0~18.0               | 740~2400               | 0.54~0.92           | 0.20~ <b>4.12</b> **  | 3.12~10.44             | [21] |
|                                              | 刚果(金)维龙加火<br>山省     | 玄武岩           | 19.2                    | 1400~1500              | 0.83~3.33           | 0.9~ <b>11.3</b> **   | 4.8~444                | [27] |
|                                              | 菲律宾吕宋岛              | 火山岩/蛇绿岩       | 27.3±0.8                | 2446~3344              | 2.11~2.54           | 0.01~ <b>10.8</b> **  | 42.96~71.88            | [30] |

a)\*,字体加粗表示强调该研究区径流深远高于文中计算全球62条主要河流平均径流深;\*\*,字体加粗表示强调该研究区DIC浓度 远高于文中计算大气CO₂分压为400 ppm,温度为25℃时方解石达到溶解平衡时的DIC浓度

溶解过程并没有消耗CO2,因此并不能构成大气碳 汇. Spence和Telmer<sup>[45]</sup>在加拿大科迪勒拉山脉开展了 岩石风化研究,通过分析河水中主要离子浓度、  $\delta^{13}C_{DIC}$ 和 $\delta^{34}S_{SO}$ 特征,发现风化产生阳离子通量的 25%来源于硫酸对碳酸盐岩和硅酸盐岩的溶解,而 硫酸溶解碳酸盐岩贡献的DIC通量甚至可以达到碳 酸溶解钙镁硅酸盐贡献DIC通量的近1/2. Ali和 Atekwana<sup>[46]</sup>在研究中也通过分析同位素特征和水化 学组成,指出在自然和人类活动环境中,金属硫化物 会氧化生成硫酸,继而与碳酸盐岩发生中和反应. Rad等人<sup>[47]</sup>对小安迪列斯群岛的研究发现大部分采 样的泉点都具有相对较高的SO<sub>4</sub>-浓度、较低的pH以 及较高的TDS,而且富集例如Li,B等微量元素,这些 特征表明泉水中可能含有硫酸, 而如果这部分硫酸 与岩石中微量的碳酸盐矿物反应,将有助于增加DIC 浓度. 除硫化物氧化产生硫酸外, 人类活动也会向河

流中输入外源酸,例如Das等人<sup>[25]</sup>对德干玄武岩风化 碳汇的研究中发现C同位素,结果表明河流中DIC来 自硅酸盐和碳酸盐两个端元,而更富集<sup>13</sup>C(碳酸盐风 化端元)的样品同时具有方解石过饱和或者高CI<sup>-</sup>、高 SO<sub>4</sub><sup>2</sup>特征.这表明了人类活动向河流中排放的外源 酸加剧了微量碳酸盐的溶解,从而贡献了高DIC通 量.对于玄武岩流域而言,HCO<sub>3</sub>浓度较碳酸盐岩流 域低很多,因此在玄武岩流域中,如果存在由于外源 酸中和微量碳酸盐产生的HCO<sub>3</sub>,那么外源酸的影响 则会显著夸大玄武岩风化"碳汇"效应.也就是说,在 计算玄武岩化学风化碳汇通量时扣除其中由于外源 酸溶解碳酸盐矿物产生的HCO<sub>3</sub>通量是十分重要的.

当然,并非所有岩石风化碳汇研究都选取HCO<sub>3</sub> 浓度来计算碳汇通量,也存在一些研究<sup>[25,43,48,49]</sup>选用 阳离子通量来计算碳汇通量.这些研究在计算岩石 风化消耗大气CO<sub>2</sub>通量时同样需要考虑扣除外源酸 的影响,因为外源酸溶解硅酸盐矿物或碳酸盐矿物 会增加水中阳离子的输入<sup>[45]</sup>,从而使得利用阳离子 通量计算岩石风化碳汇通量值偏高.

### 4 深部CO<sub>2</sub>参与岩石风化形成DIC不构成 大气碳汇,而可能成为碳源

玄武岩为岩浆喷出地表冷却后凝固形成, 岩浆 的上移和喷发需要通道, 而构造活动(如断裂)则为其 提供了运移通道, 同时这些构造的发育也成为深部 气体运移至地表的重要通道. 因此参与玄武岩风化 过程的CO<sub>2</sub>不一定全部来自于大气和土壤, 也有可能 来自地球深部. 而如果参与风化过程的CO<sub>2</sub>来自地球 深部, 则往往可以造成河流DIC浓度值较高(表1), 但 在这种情况下玄武岩风化不仅没有构成一个重要的 碳汇机制, 反而可能成为一个庞大的碳源<sup>[50]</sup>. 因为 风化产物中的HCO<sub>3</sub>在方解石沉积的过程中, 向大气 释放CO<sub>2</sub>, 而其中的C, 则是来源于深部, 其化学方 程式如下:

CaSiO<sub>3</sub>+2C<sub>D</sub>O<sub>2</sub>+H<sub>2</sub>O→Ca<sup>2+</sup>+2HC<sub>D</sub>O<sub>3</sub><sup>-</sup>+SiO<sub>2</sub>, (1) Ca<sup>2+</sup>+2HC<sub>D</sub>O<sub>3</sub><sup>-</sup>⇒CaC<sub>D</sub>O<sub>3</sub>↓+C<sub>D</sub>O<sub>2</sub>↑+H<sub>2</sub>O, (2) 其中, C<sub>D</sub>代表来自深部的C.

Robert和Blair<sup>[51]</sup>分析了位于夏威夷基拉韦厄火 山顶1262 m钻孔中,参与到玄武岩化学风化过程的 地热水的水化学组成以及氢氧同位素特征.他们发 现受1974年底火山喷发、岩浆脱气活动的影响,水中 二氧化碳分压(pCO<sub>2</sub>)急剧上升.这说明以地热水为 载体, 深部CO2参与到玄武岩风化过程中. Louvat和 Allègre<sup>[20]</sup>的研究指出热泉在留尼旺岛玄武岩风化中 扮演了重要角色,他们在留尼旺岛上绝大多数活跃 地区,都发现了深部CO2对河流水化学的贡献,并且 大大增强了玄武岩的化学风化, 而这种CO<sub>2</sub>的输入不 能够算作大气CO2消耗.此外在山间水流湍急处,水 中CO2会与大气产生强烈交换,也就是说深部CO2会 在此过程中释放到大气. Louvat和Allègre<sup>[21]</sup>对圣米格 尔岛的研究也发现,在活火山地区,并不是所有被消 耗的CO<sub>2</sub>都来自于大气,参与玄武岩风化过程的CO<sub>2</sub> 通量也许直接来自于岩浆上升脱气. 岩浆脱气则造 成河水酸化,从而加剧了玄武岩的风化.他们还将研 究结果与对留尼旺岛的研究进行对比,发现留尼旺 岛火山活动更活跃, 玄武岩化学风化速率也更高. Kimberley和Abu-Jaber<sup>[52]</sup>通过对约旦东北部玄武岩高 原上碳酸盐岩脉主微量元素、同位素等分析, 证实了

深部岩浆CO2上升脱气,极大程度地加剧了岩石风 化,同时也产生了大量的方解石条带、蒙脱石以及针 铁石. 这些风化产物有助于上层滞水水位的保持, 从 而进一步增大了风化速率. Hurwitz等人<sup>[53]</sup>分析了位 于黄石火山高原的黄石河水系水化学组成,并由此 计算了硅酸岩风化消耗CO2速率.他们发现大量的岩 浆脱气以及地热水与岩石相互作用提供了至少82% 的TDS通量、83%的阳离子通量以及72%的HCO<sub>3</sub>通 量.此外,他们还发现部分低温化学风化速率来自于 深部CO<sub>2</sub>上升参与的低温水解反应,而这部分CO<sub>2</sub>并 非来自大气,因此也并不能称作"大气碳汇". Schopka等人<sup>[30]</sup>发现菲律宾吕宋岛蛇纹石和火山岩风 化消耗CO2的速率可高达42.96~71.88 t C km<sup>-2</sup> a<sup>-1</sup>, 这一数值是全球目前玄武岩风化消耗CO2平均速率 的6~10倍, 是热带玄武岩风化消耗CO2最高速率的 2~3倍. 除该地区地处热带有利于岩石化学风化外, 该区构造十分发育,火山活动活跃,因此认为该区如 此高的CO2消耗速率极有可能与深部CO2参与岩石风 化过程有关. 当然, 这一推测需要进一步的观测以及 更完善的指标体系分析来验证. Balagizi等人<sup>[27]</sup>对东 非维龙加火山省的研究发现, 该处玄武岩风化速率 最高可达2780 t km<sup>-2</sup> a<sup>-1</sup>, 而由此产生的"大气"CO<sub>2</sub>消 耗速率最高达444 t C km<sup>-2</sup> a<sup>-1</sup>, 这两个速率均远高于 之前文献中关于玄武岩地层的报道,而DIC的δ<sup>13</sup>C特 征表明有来自岩浆的CO<sub>2</sub>输入含水层/土壤,因而导 致玄武岩风化速率增加.

由此可见, 深部CO<sub>2</sub>参与玄武岩风化过程可能是 导致玄武岩风化速率以及由此引发的"大气"CO<sub>2</sub>消 耗速率被高估的重要原因. 如果扣除掉深部CO<sub>2</sub>对玄 武岩风化的影响, 那么玄武岩风化在消耗大气CO<sub>2</sub>中 的贡献是否还显著以及其是否还能成为一个重要的 碳汇机制, 则需要进一步的研究厘定.

## 5 碳酸盐风化在岩石风化碳汇研究中的重要意义

以往的研究多认为碳酸盐风化无法形成地质长时间尺度(百万年以上)的长期碳汇<sup>[3,4,54]</sup>,从而导致 其在当代消耗大气CO<sub>2</sub>、调节气候变化中的重要意义 被忽视. 然而从岩石风化碳汇研究的现实意义及其 最新研究进展来看,我们必须重新认识这一问题<sup>[11]</sup>. 研究岩石风化碳汇的现实意义在于揭示岩石风化碳 汇的现代过程及其控制机理<sup>[13]</sup>,进而达到通过人为 增汇、调控气候的目的,由此看来关注人类短时间尺度(千年以下)的岩石风化碳汇则更具现实意义.研究发现<sup>[19,55-58]</sup>,土地利用模式的改变可以调控水循环强度以及水中HCO<sub>3</sub>的产生,进而影响岩石风化碳汇强度.人类通过改变土地利用方式,增加水中HCO<sub>3</sub>的产生,从而控制大气CO<sub>2</sub>浓度的过快增长,调控区域碳循环过程.对于地质长时间尺度而言,由于地表水体水生碳泵效应(biological carbon pump effects, BCP effects)的发现<sup>[10-12,59]</sup>,碳酸盐风化形成长期碳汇成为现实:地表水体沉水植物光合利用水中DIC,并将其转化成有机碳(OC)埋藏在河流、水库、湖泊和海洋中,因此对于碳酸盐风化碳汇通量(carbon sink flux, CSF)的计算公式应该如下:

 $CSF = F_{DIC} + F_{TOC} + F_{SOC} = Q \times (0.5 \times [DIC] + [TOC]) + F_{SOC},$ (3)

其中, *F*<sub>DIC</sub>为溶解无机碳通量, *F*<sub>TOC</sub>为总内源有机碳 通量, *F*<sub>SOC</sub>为埋藏内源有机碳通量, *Q*为流域出口径 流总量, [DIC]是溶解无机碳浓度, [TOC]是总内源有 机碳浓度, 0.5是因为碳酸盐风化碳汇中只有一半的 碳来自于大气, 另一半来自于碳酸盐本身. 而此处的 埋藏内源有机碳通量*F*<sub>SOC</sub>就是地质时间尺度的长期 碳汇.

刘再华<sup>[13]</sup>根据上述公式计算得出陆地碳酸盐风 化形成的大气CO<sub>2</sub>净汇是0.48 Pg C a<sup>-1</sup>,远高于 Gaillardet等人<sup>[9]</sup>0.14 Pg C a<sup>-1</sup>的估算结果. Mulholland 和Elwood<sup>[60]</sup>, Dean和Gorham<sup>[61]</sup>, Einsele等人<sup>[62]</sup>及 Cole等人<sup>[63]</sup>的研究估算了陆地地表水体埋藏有机碳 的通量为0.2~0.3 Pg C a<sup>-1</sup>,也证实了这部分有机碳主 要来源于"水生碳泵效应",这一数值也高于 Gaillardet等人<sup>[9]</sup>的估算结果. 这是因为相比硅酸盐, 碳酸盐溶解速率在其百倍以上<sup>[22,64,65]</sup>,也就是说碳酸盐风化消耗CO<sub>2</sub>产生HCO<sub>3</sub>的能力相较硅酸盐而言要强很多.据Liu等人<sup>[11]</sup>的初步估算,前者约为后者的15倍,这也导致有更多的HCO<sub>3</sub>被沉水光合生物转化为埋藏有机碳,形成长期碳汇.

### 6 结论与展望

以往对于玄武岩风化碳汇的研究中所采用的混 合端元法是基于岩石在化学风化过程中是均一溶蚀 的假设进行的,而实际风化过程中,元素释放可能存 在差异.同时混合端元法、Ca/Sr和<sup>87</sup>Sr<sup>,86</sup>Sr两端元混 合方程忽略了因为BCP效应和方解石沉积对离子浓 度的影响,同时也忽略了分布在硅酸盐岩中微量碳 酸盐矿物风化的重要贡献,尤其如果存在外源酸参 与碳酸盐溶解不能产生大气碳汇,另外多数研究也 并未对深部CO<sub>2</sub>参与玄武岩风化的量予以扣除,这些 造成了玄武岩风化碳汇能力被高估.而选择热带、洋 岛-岛弧作为研究区,则因其湿热气候、降水量较大、 径流通量较高等特点,会导致玄武岩风化消耗CO<sub>2</sub>的 能力拓展到全球时被夸大.因此,玄武岩风化可能并 不足以构成一个重要的碳汇机制,需要进一步研究 厘定.

"水生碳泵效应"的发现,完善了碳酸盐风化碳 汇由短期向长期转化的机制,加之碳酸盐的快速溶 解动力学特征,使得碳酸盐风化成为一个重要的、不 可忽视的碳汇机制<sup>[10,11]</sup>.因此,重新认识岩石风化碳 汇,重视碳酸盐风化碳汇的机制及其影响因素,有利 于为区域碳循环调控提供更有力的科学支撑,这应 该是下一步可能取得突破的重要方向之一.

### 参考文献

- 1 Ebelmen J J. Sur les produits de la décomposition des espècesminérales de la famille des silicates. Ann Min, 1845, 7: 3-66
- 2 Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long term stabilization of Earth's surface temperature. J Geophys Res, 1981, 86: 9776–9782
- 3 Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci, 1983, 283: 641–683
- 4 Li G, Elderfield H. Evolution of carbon cycle over the past 100 million years. Geochim Cosmochim Acta, 2013, 103: 11-25
- 5 Meybeck M. Concentrations des eauxfluviales en elements majeurs et apports en solution aux oceans. Rev Géol Dynam Géogr Phys, 1979, 21: 215–246
- 6 Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci, 1987, 287: 401-428
- 7 Wolff-Boenisch D, Gislason S R, Oelkers E H, et al. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta, 2004, 68: 4843–4858

1046

- 8 Bluth G J S, Kump L R. Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta, 1994, 58: 2341–2359
- 9 Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO<sub>2</sub> consumption rates deduced from the chemistry of large rivers. Chem Geol, 1999, 159: 3–30
- 10 Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO<sub>2</sub> budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci Rev, 2010, 99: 162–172
- 11 Liu Z, Dreybrodt W, Liu H. Atmospheric CO<sub>2</sub> sink: Silicate weathering or carbonate weathering? Appl Geochem, 2011, 26: S292–S294
- 12 Yang M, Liu Z, Sun H, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: Insights from lipid biomarker and geochemical analysis. Chem Geol, 2016, 73: 132–141
- 13 Liu Z H. New progress and prospects in the study of rock-weathering-related carbon sinks (in Chinese). Chin Sci Bull, 2012, 57: 95–102 [刘再华. 岩石风化碳汇研究的最新进展和展望. 科学通报, 2012, 57: 95–102]
- 14 Jacobson A D, Blum J D, Walter L M. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: Insights from the carbonate geochemistry of stream waters. Geochim Cosmochim Acta, 2002, 66: 3417–3429
- 15 Garrels R M, Mackenzie F T. Evolution of Sedimentary Rock. New York: W. W. Norton & Company, 1971
- 16 Bricker O P, Rice K C. Acid deposition to streams. Environ Sci Technol, 1989, 23: 379-385
- 17 White A F, Blum A E. Effects of climate on chemical weathering in watershed. Geochim Cosmochim Acta, 1995, 59: 1729–1747
- 18 Gislason S R, Arnorsson S, Armannsson H. Chemical weathering of basalt in southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. Am J Sci, 1996, 296: 837–907
- 19 Zeng C, Liu Z, Zhao M, et al. Hydrologically-driven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China. J Hydrol, 2016, 533: 74–90
- 20 Louvat P, Allègre C J. Present denudation rates on the island of Réunion determined by river geochemistry: Basalt weathering and mass budget between chemical and mechanical erosions. Geochim Cosmochim Acta, 1997, 61: 3645–3669
- 21 Louvat P, Allègre C J. Riverine erosion rates on Sao Miguel volcanic island, Azores archipelago. Chem Geol, 1998, 148: 177-200
- 22 Kump L R, Brantley S R, Arthur M A. Chemical weathering, atmospheric CO<sub>2</sub> and climate. Annu Rev Earth Planet Sci, 2000, 28: 611–670
- 23 Stefansson A, Gislason S R. Chemical weathering of basalts, southwest Iceland: Effect of rock crystallinity and secondary minerals on chemical fluxes to the ocean. Am J Sci, 2001, 301: 513–556
- 24 Dessert C, Dupré B, François L M, et al. Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the <sup>87</sup>St/<sup>86</sup>Sr ration of sea water. Earth Planet Sci Lett, 2001, 188: 459–474
- 25 Das A, Krishnaswami S, Sarin M M, et al. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls. Geochim Cosmochim Acta, 2005, 69: 2067–2084
- 26 Wu W, Zheng H, Yang J, et al. Chemical weathering, atmospheric CO<sub>2</sub> consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chem Geol, 2013, 356: 141–150
- 27 Balagizi C M, Darchambeau F, Bouillon S, et al. River geochemistry, chemical weathering, and atmospheric CO<sub>2</sub> consumption rates in the Virunga Volcanic Province (East Africa). Geochem Geophys Geosyst, 2015, 16: 2637–2660
- 28 Godsey S E, Kirchner J W, Clow D W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process, 2009, 23: 1844–1864
- 29 Gurumurthy G P, Balakrishna K, Riotte J, et al. Controls on intense silicate weathering in a tropical river, southwestern India. Chem Geol, 2012, 300-301: 61–69
- 30 Schopka H H, Derry L A, Arcilla C A. Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines. Geochim Cosmochim Acta, 2011, 75: 978–1002
- 31 Gupta H, Chakrapani G J, Selvaraj K, et al. The fluvial geochemistry, contributions of silicate, carbonate and saline-alkaline components to chemical weathering flux and controlling parameters: Narmada River (Deccan Traps), India. Geochim Cosmochim Acta, 2011, 75: 800–824
- 32 Goldsmith S T, Carey A E, Johnson B M, et al. Stream geochemistry, chemical weathering and CO<sub>2</sub> consumption potential of andesitic terrains, Dominica, Lesser Antilles. Geochim Cosmochim Acta, 2010, 74: 85–103
- 33 Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology, 1998, 26: 411–414
- 34 Jacobson A D, Blum J D, Chamberlain C P, et al. Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: Carbonate versus silicate weathering rates as a function of landscape surface age. Geochim Cosmochim Acta, 2002, 66: 13–27
- 35 Harris N, Bickle M, Chapman H, et al. The significance of Himalayan rivers for silicate weathering rates: Evidence from the Bhote Kosi tributary. Chem Geol, 1998, 144: 205–220
- 36 Palmer M R, Edmond J M. Controls over the strontium isotope composition of river water. Geochim Cosmochim Acta, 1992, 56: 2099–2111

- 37 Galy A, France-Lanord C, Derry L A. The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh. Geochim Cosmochim Acta, 1999, 63: 1905–1925
- 38 White A F, Bullen T D, Vivit D V, et al. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim Cosmochim Acta, 1999, 63: 1939–1953
- 39 Jacobson A D, Blum J D. Ca/Sr and <sup>87</sup>Sr/<sup>86</sup>Sr geochemistry of disseminated calcite in Himalayan silicate rocks from Nanga Parbat: Influence on river-water chemistry. Geology, 2000, 28: 463–466
- 40 English N B, Quade J, DeCelles P G, et al. Geologic control of Sr and major element chemistry in Himalayan Rivers, Nepal. Geochim Cosmochim Acta, 2000, 64: 2549–2566
- 41 Oliver L, Harris N, Bickle M, et al. Silicate weathering rates decoupled from the <sup>87</sup>Sr/<sup>86</sup>Sr ratio of the dissolved load during Himalayan erosion. Chem Geol, 2003, 201: 119–139
- 42 Bickle M J, Bunbury J, Champan H J, et al. Fluxes of Sr into the headwater of the Ganges. Geochim Cosmochim Acta, 2003, 67: 2567–2584
- 43 Jacobson A D, Blum J D. Relationship between mechanical erosion and atmospheric CO<sub>2</sub> consumption in the New Zealand Southern Alps. Geology, 2000, 31: 865–868
- 44 Jacobson A D, Andrews M G, Lehn G O, et al. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes. Earth Planet Sci Lett, 2015, 416: 132–142
- 45 Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO<sub>2</sub> fluxes: Evidence from major ions,  $\delta^{13}C_{DIC}$ , and  $\delta^{34}S_{SO_1}$  in rivers of the Canadian Cordillera. Geochim Cosmochim Acta, 2005, 69: 5441–5458
- 46 Ali H N, Atekwana E A. The effect of sulfuric acid neutralization on carbonate and stable carbon isotope evolution of shallow groundwater. Chem Geol, 2011, 284: 217–228
- 47 Rad S, Louvat P, Gorge C, et al. River dissolved and solid loads in the Lesser Antilles: New insight into basalt weathering processes. J Geochem Explor, 2006, 88: 308–312
- 48 Wu W. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation. Sci Total Environ, 2016, 541: 468–482
- 49 Han Y, Huh Y. A geochemical reconnaissance of the Duman (Tumen) River and the hot springs of Mt. Beakdu (Changbai): Weathering of volcanic rocks in mid-latitude setting. Chem Geol, 2009, 264: 162–172
- 50 Gaillardet J, Galy A. Himalaya-carbon sink or source? Science, 2008, 320: 1727–1728
- 51 Robert I T, Blair F J. Waters associated with an active basaltic volcano, Kilauea, Hawaii: Variation in solute sources, 1973–1991. Geol Soc Am Bull, 1996, 108: 562–577
- 52 Kimberley M M, Abu-Jaber N. Shallow perched groundwater, a flux of deep CO<sub>2</sub>, and near-surface water-rock interaction in Northeastern Jordan: An example of positive feedback and Darwin's "warm little pond". Precambrian Res, 2005, 137: 273–280
- 53 Hurwitz S, Evans W C, Lowenstern J B. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA. Chem Geol, 2010, 276: 331–343
- 54 Bickle M J, Tipper E, Galy A, et al. On discrimination between carbonate and silicate inputs to Himalayan rivers. Am J Sci, 2015, 315: 120–166
- 55 Cochran M F, Berner R A. Promotion of chemical weathering by higher plants: Field observations on Hawaiian basalts. Chem Geol, 1996, 132: 71–77
- 56 Berner R A. The rise of plants and their effect on weathering and atmospheric CO<sub>2</sub>. Science, 1997, 276: 544–546
- 57 Raymond P A, Oh N H, Turner R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature, 2008, 451: 449–452
- 58 Zhao M, Zeng C, Liu Z, et al. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China. J Hydrol, 2010, 388: 121–130
- 59 Liu H, Liu Z, Macpherson G L, et al. Diurnal hydrochemical variations in a karst spring and two ponds, Maolan Karst Experimental Site, China: Biological pump effects. J Hydrol, 2015, 522: 407–417
- 60 Mulholland P J, Elwood J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon-cycle. Tellus, 1982, 34: 490–499
- 61 Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 1998, 26: 535–538
- 62 Einsele G, Yan J, Hinderer M. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change, 2001, 30: 167–195
- 63 Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 2007, 10: 171–184
- 64 Plummer L N, Wigley T M L, Parkhurst D L. Kinetics of calcite dissolution in CO<sub>2</sub>-water system at 5°C to 60°C and 0.0 to 1.0 atm CO<sub>2</sub>. Am J Sci, 1978, 278: 179–216
- 65 Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H<sub>2</sub>O-CO<sub>2</sub> solutions in turbulent flow: The role the diffusion boundary layer and the slow reaction H<sub>2</sub>O+CO<sub>2</sub>↔H<sup>+</sup>+HCO<sub>3</sub><sup>-</sup>. Geochim Cosmochim Acta, 1997, 61: 2879–2889

1048

# Is basalt weathering a major mechanism for atmospheric CO<sub>2</sub> consumption?

ZENG QingRui<sup>1,2</sup> & LIU ZaiHua<sup>1\*</sup>

<sup>1</sup> State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry Chinese Academy of Sciences, Guiyang 550081, China; <sup>2</sup> University of Chinese Academy of Sciences, Beijing 100049, China

\* Corresponding author, E-mail: liuzaihua@vip.gyig.ac.cn

In the science of global change, a main focus of researchers who investigate the global carbon cycle is determining the fate of missing carbon sinks. Because atmospheric  $CO_2$  that is consumed by carbonate chemical weathering is thought to return to the atmosphere through the precipitation of carbonate, it is widely accepted that it is silicate weathering, rather than carbonate weathering, that constitutes the major mechanism of atmospheric  $CO_2$  consumption. In particular, the chemical weathering of basalt, which is a type of silicate rock, is considered to be an important "carbon sink" due to the CO<sub>2</sub> drawdown that occurs during the basalt-carbonic acid reaction. However, the high CO<sub>2</sub> consumption rates of basalt chemical weathering may also derive from the following four aspects, as identified in the extant literature. First, study areas with high carbon fluxes (CF) are usually ocean islands, volcanic arcs or situated in tropical regions, where precipitation is high, which results in large runoff depth. This may be one of the primary reasons for the high CF, since CF is equal to the product of the runoff depth and the concentration of bicarbonate. In addition, because of the presence of chemostatic behaviors of the concentration of bicarbonate, CF is mainly determined by runoff depth. In other words, high runoff depth will directly result in high CF. Furthermore, the interface between water and minerals will be enlarged, while the saturation state of water will be decreased, by the increase of runoff depth. Therefore, more minerals will take part in the dissolution, and the dissolving capacity of water will be increased. However, this kind of high CF results from high runoff depth, rather than basaltic properties. Second, the high concentration of dissolved inorganic carbon (DIC) may result from the chemical weathering of trace amounts of carbonate dispersed in silicate rock, rather than silicate minerals. This should be regarded as the contribution of carbonate chemical weathering, rather than silicate chemical weathering. Third, the reactions between exogenous acid and trace amounts of carbonate will contribute to DIC fluxes, during which no atmospheric  $CO_2$  is consumed. Fourth, the  $CO_2$  that participates in the rock chemical weathering in basalt watersheds may be from a deep-source, rather than the atmosphere or soil. If this is the case, the deep-source  $CO_2$ consumed by rock chemical weathering will be released into the atmosphere with the precipitation of carbonate in the oceans. In other words, the riverine DIC may become a carbon source instead of a carbon sink. Therefore, further research is needed to conclusively determine whether basalt chemical weathering constitutes a major consumption mechanism for atmospheric CO<sub>2</sub>.

### carbon sink, basalt weathering, runoff, carbonate weathering, deep-source CO2

doi: 10.1360/N972016-01023