Vol. 42 No. 1 Jan. 2012

陕南铜厂铜矿床成矿物质来源探讨

叶 霖^{1,2},杨玉龙^{1,2},高 伟^{1,2},刘铁庚¹

- 1. 中国科学院地球化学研究所矿床地球化学国家重点实验室,贵阳 550002
- 2. 中国科学院研究生院,北京 100039

摘要:陕南铜厂铜矿床是"勉一略一宁"矿集区内最具代表性的铜矿床,通过黄铜矿等单矿物及矿区地质体的微量与稀土元素地球化学对比研究发现:1)黄铜矿以富 Ni、Zn 和贫 Co 为特征,与晚元古代郭家沟组细碧岩类似,较闪长岩和钠长岩不同;矿床中存在轻稀土富集和稀土配分模式相对平坦两类黄铜矿,岩体内外接触带黄铁矿 Co/Ni 值差异表明其成矿物质具多源性;由矿区各地质体成矿元素背景可见,矿床成矿物质来源应以细碧岩为主、闪长岩为辅。2)黄铜矿 Eu 负异常明显,其 δEu 值明显低于闪长岩和细碧岩,这与成矿过程中富挥发分流体所形成云英岩化、钠长石化造成的 Eu 亏损有关,且黄铜矿 Y/Ho 值与钠长岩较为相似,暗示铜矿化与钠质交代作用关系密切。3)黄铜矿 Co、Ni 含量一般大于黄铁矿几倍到几十倍,与矽卡岩、斑岩、火山-次火山热液及火山-喷气型铜矿中黄铜矿差异明显,而与铜镍硫化物型矿床中黄铜矿类似,这可能与成矿作用继承了富 Ni 源区有关。该矿床成矿模式为:海西期,伴随着勉略洋盆闭合俯冲-碰撞形成勉略宁地区韧-脆性逆冲推覆构造、走滑断层,在区域变质流体与天水混合形成富碱和 CO₂ 的混合热液作用下,使地层——细碧岩和部分闪长岩中 Cu 等成矿物质大量析出,形成低温、低盐度成矿热液,沿矿区发育 EW 向与 NE 向两组韧性走滑断裂充填沉淀成矿。

关键词: 勉略宁地区; 铜厂; 铜矿床; 微量元素; 成矿物质来源; 矿床成因 中图分类号: P618.41 文献标志码: A 文章编号: 1671-5888(2012)01-0092-12

Source of Ore-Forming Materials of Tongchang Copper Ore Deposit in Southern Shaanxi Province, China

YE Lin¹, YANG Yu-long^{1,2}, GAO Wei^{1,2}, LIU Tie-geng¹

- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- 2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China

Abstract: The Tongchang deposit is the most typical copper deposit in Mianxian-Lueyang-Ningqiang (Mian-Lue-Ning) area in southern Shaanxi, China. By studying on trace elements and REEs geochemistry of chalcopyrite (pyrite) as well as geological bodies in the deposit, we can draw some conclusions as followings. Firstly, the chalcopyrite is characterized by enrichment of Ni and Zn, depletion of Co, which is similar to the spilite of Late Proterozoic Guojiagou Formaion, while different from diorite and albite rocks in the mine. There are two kinds of chalcopyrites with different REE patterns, one is enriched in LREE and the other has relatively flat REE pattern. The pyrite grains hosted in internal and external contact zones of the diorite intrusion have different Co/Ni ratios, suggesting multiple sources of ore-forming materials. Analyzing on the background values of those ore-

收稿日期:2011-05-02

基金项目:国家自然科学基金项目(40873038);国家"973"计划项目(2006CB403508)

作者简介:叶霖(1970—),男,副研究员,主要从事矿床地球化学研究,Tel:0851—5895591,E-mail:yelin@vip.gyig.ac.

cn.

forming elements in various geological bodies indicates that ore-forming material is mainly from the spilite and minor from the diorite. Secondly, the chalcopyrite is characterized by obvious negative Eu anomalies and its δEu value is much lower than those of the diorite and spilite. The depletion of Eu is likely related to greisenization and albitization caused by volatile fluids during mineralization. Furthermore, Y/Ho ratios of the chalcopyrite are similar to those of albite rocks, implying the close relationship between copper mineralization and Na replacement. Thirdly, due to the inheritance of the trace elements feature from source of ore-forming mineralizing materials, the Ni and Co content in the chalcopyrite is $n-n \times 10$ times than in the pyrite, corresponding to that in Cu-Ni sulfide type deposit and different from that in skarn-type, porphyry-type, volcanic-subvolcanic hydrothermal type as well as VMS Cu deposit. The metallogenic model of Tongchang copper deposit can be listed as following. During the Hercynian period, with the closure, subduction and collision of Mian-Lue ancient oceanic basin, the dutile-brittle thrusting nappe structure and strike-slip fault were formed in Mian-Lue-Ning area. The metasomatism of mixed hydrothermal by regional metamorphic fluid and rainwater, which rich in Na⁺, K⁺ and CO₂, resulted in the translation of ore-forming materials (e.g. Cu and Ni) from strata of Guojiagou Group and spilite (and diorite) to form the metallogenic hydrothermal fluid. The hydrothermal fluid was characterized by low temperature and salinity, and enriched in ore-forming materials. The Tongchang deposit was resulted from filling and metasomatism of the hydrothermal fluid in the EW-and NE-trending dutile strike-slip faults in this area.

Key words: Mian-Lue-Ning area; Tongchang; copper deposits; trace elements; source of oreforming materials; ore genesis

0 前言

"勉略宁"三角地区是秦岭造山带中一个重要的 矿化集中区,已发现多种类型的铜、铁、铅、锌、金和 银等多金属矿床(点)上百处。除金矿床为大超大 型外(煎茶岭和李家沟金矿床)[1],该区铜金多金属 矿床多与中酸性侵入体有关,产于岩体内外接触带, 但规模均不大(中-小型),如铜厂、元坝子、苍社、关 口垭、坪头山、西沟等石英闪长岩体内外接触带均已 发现不少铜矿体(点)①,表明该类型矿床在勉略宁 地区具有很好的找矿前景,因此,长期以来倍受广大 地质工作者重视[2-6]②。通过矿床地质[7-10]、同位素 地球化学[11-13]、成矿流体[14-15]、岩石学[16-17]等研究, 积累了大量宝贵的研究资料,提出了不少新理论和 新认识。但 20 世纪 90 年代以来,本区的找矿难度 越来越大,寻找大型-超大型铜金多金属矿床一直是 地质研究工作的难题。铜厂铜矿床是该区最主要和 最具代表性的铜矿床类型,其矿体分布与铜厂闪长 岩体密切相关,是最具找矿前景的铜矿化类 型[6,18-21]③。笔者通过该矿床中主要矿石矿物-黄铜矿的微量与稀土元素组成和矿石微量元素组成 特征,结合矿区地层与岩体微量及稀土元素地球化

学特征对比,探讨其成矿物质来源和矿床成因,为勉略宁地区与中酸性侵入岩有关的铜多金属矿床提供 找矿思路。

1 矿区及矿床地质特征

铜厂矿区位于甘孜—勉略宁地体之勉(县)—略 (阳)—阳(平关) 铜镍金多金属成矿区的中心部位,区内分布有中小型铜矿床(点) 10 多处。矿区出露地层以上元古界碧口群郭家沟组、接官亭组浅变质火山沉积岩和震旦系九道拐组正常沉积碳酸盐岩为主。其中:郭家沟组为海相细碧岩(Pt_2g)所组成,Rb-Sr 年龄为 1 038 $Ma^{[8]}$,主要分布于矿区南部构成南部基性火山岩带;而接官亭组以中酸性火山岩为主,其 Rb-Sr 同位素年龄为 $700\sim800$ $Ma^{[7]}$,仅分布于矿区北部红土石—东沟坝一带,构成北部酸性

① 秦克令. 陕西勉略宁区中酸性岩与铁、铜、金成矿关系研究报告. 西安:西安地质矿产研究所,1990:1-27.

② 修泽雷. 陕西略阳铜厂铁矿成因类型研究. 西安: 西安地质矿产研究所,1981.

③ 西北有色地质研究所,西北有色 711 地质总队. 陕西勉略宁地区与海相火山岩-沉积岩有关的铜多金属成矿条件和找矿预测研究. 汉中:西北有色 711 地质总队,1995.

火山岩带。晚元古代后,矿区虽然经历过多期次的 区域变质作用和构造运动,但总体看来,火山岩变 质程度不深,变质相属绢云母-绿泥石低级绿片岩 相。

矿区 EW、NE 和 NW 向断裂构造发育,铜矿体的产出明显受 EW 和 NE 向 F_1 和 F_2 两组断裂构造控制,如: EW 向 F_1^3 断层控制了 I -9 号铜矿体产出, F_1^2 断裂带上在 PD1261 坑道内也见到脉状矿 (化)体,则号矿体受 NE 向 F_2^4 断层控制等。根据矿体产出场特征, F_1 和 F_2 断层应形成于矿化前,早期断裂活动为成矿流体提供了通道和空间 [22]。矿区侵入岩主要为铜厂闪长岩: 该岩体出露于铜厂穹状背形中部,呈 NE 方向的大型岩株产出,长轴为 NE 向,平面距约 3 200 m,短轴宽约 1 400 m,为闪长岩与钠长岩组成的复式岩体;北部及东部与碧口群顶部碳酸岩、火山细碎屑岩以断层接触,南部及西部同细碧岩呈渐变接触关系;因岩体侵入时热交代作用,其围岩多发生不同程度的热蚀变。铜厂铜矿床为隐

伏-半隐伏矿床,矿体主要赋存于闪长岩体内及其围 岩内外接触带(图 1、图 2),呈相互平行的矿脉(体) 群产出,在走向上呈舒缓波状雁列变化,总体为东西 向延伸,间有北东向产出,倾向向南,倾角浅部较陡 $(60^{\circ} \sim 70^{\circ})$,向深部变缓 $(45^{\circ}$ 左右),矿体变富变厚。 到目前为止,已发现3个铜矿脉(体)密集带和10多 个工业矿体,单矿体均为脉状,在矿脉两侧,局部见 浸染状铜矿化。如: Ⅰ-9 号矿体为矿区最大矿体, 该矿体呈脉状、复脉状赋存于 F゚ 构造断裂片理化带 中(图 2),产状与断裂带产状一致,走向近 EW 向, 局部为 NE 向, 倾向向南, 倾角为 $45^{\circ} \sim 85^{\circ}$, 在 $900 \sim$ $1\ 200\ \mathrm{m}$ 标高产状变缓,倾角仅为 $45^{\circ}\sim60^{\circ}$,矿体厚 度 $0.2\sim6.5 \text{ m}$,控制走向延长达 1.700 m,延深 900m。该矿床地质储量为中型铜矿,远景储量为大型, 矿石中有用化学成分主要为铜,平均质量分数为2. $91\% \sim 5.44\%$,并含较多伴生有用组分,包括镍(0. $1\% \sim 0.28\%$)、钴(0.012% $\sim 0.040\%$)、金((0.1 \sim $4.8) \times 10^{-6}$)和银((10~30)×10⁻⁶)等。矿石具有

1. 闪长岩; 2. 钠长岩; 3. 细碧岩; 4. 细碧质角斑岩; 5. 凝灰质千枚岩夹白云质灰岩透镜体; 6. 碳质板岩; 7. 厚层白云岩; 8. 长湾花岗岩; 9. 辉绿岩; 10. 断层; 11. 地层界线; 12. 镇(村); 13. 铜矿体。 Pt_2g_3 . 晚元古代郭家沟组第一段; Pt_2g_3 . 晚元古代郭家沟组第二段; Zd_1 . 震旦纪断头崖组。

图 1 铜厂矿田地质图(据文献[8]修绘)

Fig. 1 Geological map of Tongchang ore field

1. 白云岩; 2. 碳质板岩; 3. 蛇纹岩; 4. 闪长岩; 5. 断层; 6. 推测断层; 7. 地层界线; 8. 铜矿体; 9. 铁矿体。

图 2 铜厂铜矿床后沟剖面(北段)(据文献[13]修改)

Fig. 2 Cross-section through the Hougou in Tongchang ore area

块状、角砾状、脉状和网脉状等构造,以交代结构、压碎结构和自形粒状结构等为主,其中块状构造的铜矿石均分布于主矿脉中,而细脉浸染状铜矿石则多分布于主矿脉的上、下盘附近。矿石中除黄铜矿和黄铁矿2个主要金属矿物外,主要金属矿物还有印铁矿、辉铜矿、辉铜矿、辉铜矿、辉铜矿、辉铜矿、辉铜矿、辉铜矿、岩石订物主要为石英、方解石、绢云母等。在上下盘围岩均为闪长岩,岩石因构造挤压形成出理化蚀变闪长岩,围岩蚀变有钾化、钠化、碳酸盐化和绢云母化等。在铜矿床北50~400 m元古宙蛇纹岩中产有火山沉积变质成因铜厂铁矿床(图2),其矿体为隐伏矿,多为透镜体产出,矿带长度约1100 m,延深500 m,平均厚32 m,矿石矿物以磁铁矿为主,与铜矿无成因联系。

2 分析测试方法

黄铜矿分别采自铜厂矿床 1139、1055 和 918 中段 I-9 号脉状矿体,其矿物组合特征基本相似,均为黄铜矿-黄铁矿-石英组合,偶含闪锌矿,经双目镜

下挑选(纯度>99%)足量;闪长岩和钠长岩样品采自矿区龚家沟—黄家沟—后沟—带,经薄片鉴定后确定岩性再破碎并磨至 200 目以下。研究中硫化物单矿物微量元素及稀土元素分析在国家地质分析测试中心用 ICP-MS 进行,岩石微量元素及稀土元素在中国科学院地球化学研究所国家重点实验室Finnigan-MAT Element ICP-MS 完成,分析方法见Qi L 等[23],分析过程中采用国际标样 GDPG-1 和OU-6。此外,文中黄铁矿采自矿区后沟—罗家沟I-9号矿体之岩体内外接触带,经双目镜下挑选(纯度>99%)后在中国科学院地球化学研究所采用湿化学方法分析其中主量及微量元素。本研究稀土元素的分析精度优于 5%,微量元素分析精度优于10%。分析结果见表 1, REE 模式采用 Boynton (1984) 球粒陨石推荐值 REE 数据标准化。

3 硫化物单矿物及矿区岩石微量元素特征

分析结果(表 1)显示:矿床中黄铜矿单矿物以 富 Ni((302~4 311)×10⁻⁶,均值 2 437×10⁻⁶,n=8)、 $Z_n((240\sim8480)\times10^{-6}$,均值 4.059×10^{-6} ,n=7)、贫 $Co((10\sim294)\times10^{-6}$,均值 111×10^{-6} ,n=8) 为主要特征,并含有微量 $Pb((28\sim261)\times10^{-6},$ 均 值 124×10^{-6} , n = 7), 其 Co/Ni 值为 0.03 \sim 0.14 (均值 0.06, n=7),远小于 1.00。显微镜及电子探 针观察结果显示,黄铜矿中除少量闪锌矿显微包体 外,并未含有任何富 Ni 和 Co 矿物的显微包裹体, 表明 Ni 和 Co 是以类质同象形式赋存于黄铜矿中 的。矿床中黄铁矿明显分为两类(表 1):一类以贫 $Co((70\sim103)\times10^{-6},$ 均值 $83\times10^{-6},n=3)$ 、富 Ni $((42\sim957)\times10^{-6},$ 均值 $481\times10^{-6},n=3)$ 为特征, 其 Co/Ni 值(0.17 \sim 0.60,均值 0.33,n=3)远小于 1.00,与黄铜矿中 Co、Ni 含量特征相似,该类黄铁 矿分布于岩体外接触带;另一类黄铁矿则相反,以贫 $Ni((46\sim 277)\times 10^{-6},$ 均值 $123\times 10^{-6}, n=3)$ 、富 $Co((107\sim383)\times10^{-6},$ 均值 $411\times10^{-6},n=3)$ 为特 征,其 Co/Ni 值(1.38 \sim 16.16,均值 8.07,n=3)远 远大于 1.00,与黄铜矿中 Co、Ni 含量特征明显不 同,显示内生成矿特征,该类黄铁矿分布于岩体内接 触带。此外,本矿床铜矿石中 Ni 质量分数较高,为 $(140\sim3~500)\times10^{-6}$ (均值 1 124×10^{-6}),最高达 3.25 %,相应地,其 Co/Ni 值较低(Co/Ni=0.002~ 0.42),该特征与黄铜矿类似。

矿区郭家沟组细碧岩中 Cu 丰度极高,为

表 1 铜厂铜矿床单矿物、矿石、岩石微量元素分析结果

10	B-6 F-20 F	-32 E-24	E-40 L	L-3 L-	L-15 T-14-2*	岩体外接触带	岩体内接触带
MRK末年	מים						
(n=8) $(n=8)$ <	林姆 中福斯		黄铜矿	黄铜矿 黄铜矿	司矿 黄铜矿	黄铁矿(n=3)*	黄铁矿(n=3)*
313-1083(631) 104-295(7444) 101.01-202.03.03.03.03.03.03.03.03.03.03.03.03.03.	M 45	1	1.85	1	89		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.33 0.78		0.32		17		
48.—580(191) 80.338(193) 44.// -524 .0013	4 29 5 10		6.87	13.21 16.	16.76		
$0.47 \sim 0.8(0.34)$ $0.44 \sim 0.38(0.03)$ $0.01 \sim 0.047 \sim 0.08(0.03)$ $0.05 \sim 0.14$ $0.15 \sim 0.183(0.34)$ $0.81 \sim 0.83(0.15)$ $0.01 \sim 0.05(0.03)$ $0.05 \sim 0.14$ $0.05 \sim 0.10 \sim 0.05 \sim 0.14$ $0.08 \sim 0.05 \sim 0.14 \sim 0.05 \sim 0.05 \sim 0.14 \sim 0.05 \sim 0.05 \sim 0.14 \sim 0.05 \sim 0.14 \sim 0.05 \sim 0.05 \sim 0.14 \sim 0.05 \sim 0.05 \sim 0.14 \sim 0.05 $	0.02		0.01	0.01 0.03	03		
6, 48 - 8, 70(7, 36) 0, 83 - 10, 83(7, 15) 0, 01 - 0, 03 + 0, 03 0, 05 0, 17 4.76 3, 15 - 5, 13(4,01) 0, 18 - 6, 80(4, 21) 0, 01 - 0, 01 0, 03 0, 05 0, 17 4.76 90 - 7/22(130) 0, 68 - 6, 64(4, 24) 0, 05	0.06 0.10				25		
3.15-5, 13(4,01) $0.81-6, 80(4,91)$ $2.831-138, 54(79,71)$ 0.05	0.00		0.02		11		
$90 \sim 172(130)$ $24 \sim 240(167)$ $28.31 \sim 138.54(19.71)$ 0.19 0.12 0.19 0.12 0.35 $0.56 \sim 0.64(4.24)$ $0.66 \sim 0.64(4$	0.00		0 50		3, 18		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.60 1.17		0.00		17		
$0.56 \sim 1.34(0.93)$ $0.58 \sim 1.56(1.12)$ $-1.722(15)$ $11.722(16)$ $11.7222(16)$ $11.7222(16)$ $11.7222(16)$ $11.7222(16)$ $11.7222(16)$ $11.7222(16)$ $11.7222(16)$ $11.7222(16)$ $11.7222(16)$ 11.722	0.12		8000		0 07		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.06 0.05		50.0		0.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.81 6.23		5.12			(107/200 - 07	46~977(193)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302 3 689		4 309		358 2 195	47~951(401)	(071) 172.0*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.38 0.95		0.33		0.40		
T/7-186(99) $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(99)$ $3-186(13)$ $1.19-3.2$ $1.19-3.2$ $1.19-3.2$ $1.19-3.2$ $1.19-3.2$ $1.19-3.2$ $1.19-3.2$ $1.29-3.1.27(11.56)$ 0.72 $1.2.3$ 2.76 0.99 1.98 1.98 1.98 1.98 1.98 1.99 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.99 1.98 <	2.57 18.97		4.82	9.76 18.			
1. 19 -3 , 23	28 13 145 20		260, 50	74.45 98	98.69 130	$108 \sim 565(289)$	$130 \sim 174(152)$
$3 \sim 24(13)$ $1 \sim 11(4)$ $1.59 \sim 3.24(13)$ $1.71(4)$ $1.59 \sim 3.24(13)$ $1.71(4)$ $1.2 \sim 85(44)$ $1.59 \sim 3.1.27(11.56)$ 0.72 1.23 2.76 $16 \sim 19(17)$ $1.2 \sim 22(18)$ $0.54 \sim 2.16(1.56)$ 0.72 0.01 0.02 0.02 0.02 $0.17 \sim 1.23$ 0.02 $0.17 \sim 1.23$ 0.02 $0.03 \sim 1.44 \sim 3.54(2.94)$ $0.54 \sim 2.57(1.25)$ 0.01 0.02 0.02 0.02 $0.02 \sim 2.54(133)$ $1.2 \sim 56(29)$ $116.85 \sim 308.57(209.78)$ 240 7.72 1.73 $1.00 \sim 1.28(1.13)$ $0.39 \sim 0.91(0.67)$ $1.6.85 \sim 308.57(209.78)$ 2.40 $1.12 \sim 56(29)$ $1.6.85 \sim 308.57(209.78)$ 2.40 $1.12 \sim 1.02 \sim 1.02$ $1.00 \sim 1.28(1.13)$ $0.39 \sim 0.91(0.67)$ $1.6.80 \sim 1.02 \sim 1.02$ $1.00 \sim 1.02$ 1.0	00.00		0.31		0.35		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.31		128		10 51	$70 \sim 103(83)$	$107 \sim 383(411)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44 294		89 0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.72 1.23		90.0		.0.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01 0.02		0.04	-	0.00	506~10 344(3 893) 107~8 118(4 400)	$107 \sim 8\ 118(4\ 40)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	266 400 229 300		185 100	_		49~457(481)	28~1 028(397)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	240 7 172		8 480			(101) 106 - 71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.56 0.78		0.77		0. 60		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.84 11.26		6.64		7.47		
3.50-6.33(5.06) $0.80-5.34(4.06)$ $2.10-13.00(41.65)$ 14.51 10.08 36.17 $3.50-6.33(5.06)$ $0.80-5.34(4.06)$ $2.10-13.40(4.89)$ 1.70 1.23 4.50 $13.24(19)$ $320(16)$ $16.17-41.90(25.35)$ 6.76 5.17 18.09 $2.78-4.89(3.81)$ $0.62-4.33(3.42)$ $2.96-9.62(4.60)$ 1.26 1.30 3.42 $0.56-1.04(0.88)$ $0.59-1.53(1.05)$ $0.96-2.40(1.27)$ 0.21 0.37 0.80 $0.56-4.21(3.16)$ $0.96-2.40(1.27)$ 0.21 0.37 0.80 $0.48-0.73(0.59)$ $0.99-4.30(3.47)$ $0.56-4.21(3.16)$ $0.16-5.01(4.10)$ 0.15 0.39 0.36 $0.09-0.74(0.54)$ $0.48-0.77(0.64)$ 0.15 0.39 0.36 $0.70-4.35(3.46)$ $0.58-4.36(3.56)$ $0.96-0.5.13(4.05)$ $0.62-1.03(0.82)$ 0.15 0.98 0.36 $0.71-0.98(0.81)$ $0.14-1.01(0.75)$ $0.62-1.03(0.82)$ 0.15 0.15 0.15 0.15 0.14 0.15 0.14 0.15 0.14 0.15	7.26 5.22		1.05		34		
$\begin{array}{c} 3.50-6.33(5.06) \\ 3.50-6.33(5.06) \\ 0.80-5.34(4.06) \\ 13-24(19) \\ 0.5-6.33(5.06) \\ 0.80-5.34(4.06) \\ 0.13-24(19) \\ 0.62-4.33(3.42) \\ 0.65-1.04(0.88) \\ 0.29-1.53(1.05) \\ 0.96-2.40(1.27) \\ 0.96-2.40(1.27) \\ 0.126-1.04(0.88) \\ 0.29-1.53(1.05) \\ 0.96-2.10(1.27) \\ 0.96-2.10(1.27) \\ 0.126-1.04(0.88) \\ 0.29-1.53(1.05) \\ 0.96-2.10(1.07) \\ 0.96-2.10(1.07) \\ 0.16-2.10(1.07) \\ 0.16-3.10(1.07) \\ 0.16-3.10(1.08) \\ 0.16-3.15(2.29) \\ 0.16-3.15(2.29) \\ 0.16-3.15(2.29) \\ 0.16-3.15(2.29) \\ 0.16-3.15(2.29) \\ 0.16-3.10(1.0.37) \\ 0.16-3.10(10.31) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.35) \\ 0.14-1.01(0.31) \\ 0.14-1.01(0$	14.51 10.08		1,99		3, 23		
3.50-6.350.09 $3.50.09$	1.70 1.23		0.26		0.45		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 76 5.17		1.14	1.15 2.	2.04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.26 1.30		0.45	0.45 0.	0,63		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 0 27		0.14	0.08	0.10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.21		0.87		0.87		
$0.48 \sim 0.73(0.59)$ $0.09 \sim 0.74(0.54)$ $0.45 \sim 0.77(0.64)$ 0.15 0.30 0.30 0.30 0.30 $0.30 \sim 4.35(3.46)$ $0.58 \sim 4.36(3.26)$ $3.00 \sim 5.13(4.05)$ 0.83 2.13 2.03 $0.71 \sim 0.98(0.81)$ $0.14 \sim 1.01(0.75)$ $0.62 \sim 1.03(0.82)$ 0.15 0.43 0.39 $0.71 \sim 0.98(0.81)$ $0.14 \sim 1.01(0.75)$ $0.62 \sim 1.03(0.82)$ 0.15 0.41 1.20 1.07 $0.30 \sim 0.39(0.33)$ $0.06 \sim 0.47 \sim 2.91(2.08)$ $0.27 \sim 0.51(0.38)$ 0.06 0.14 0.39 $0.27 \sim 0.51(0.38)$ 0.06 0.16 0.14 $0.31 \sim 0.94$ 0.94 $0.$	1.04 1.04				19		
3.00-4.35(3.46) $0.58-4.36(3.26)$ $3.00-5.13(4.05)$ 0.83 2.13 2.03 $0.71-0.98(0.81)$ $0.14-1.01(0.75)$ $0.62-1.03(0.82)$ 0.15 0.15 0.43 0.39 $0.71-0.98(0.81)$ $0.14-1.01(0.75)$ $0.62-1.03(0.82)$ 0.15 0.41 1.20 1.30 0.39 $0.30-0.39(0.33)$ $0.06-0.42(0.30)$ $0.27-0.51(0.38)$ 0.06 0.16 0.14 $0.30-0.39(0.33)$ $0.05-0.42(0.30)$ $0.27-0.51(0.38)$ 0.06 0.16 0.14 $0.31-0.41(0.35)$ $0.05-0.36(0.28)$ $0.77-0.43(0.60)$ 0.03 0.12 0.14 $0.31-0.41(0.35)$ $0.09-0.36(0.28)$ $0.77-0.43(0.60)$ 0.03 0.12 0.11 $0.77-0.735(109)$ $18-714(83)$ $47.19-270.27(0.21)$ 34.68 30.29 87.16 $5.45-8.88(7.01)$ $4.98-7.64(5.11)$ $1.60-23.02(6.43)$ 16.04 3.77 13.43	0.15 0.30		0.10		1 20		
0.71-0.98(0.81) $0.14-0.10(0.75)$ $0.62-0.103(0.82)$ 0.15 0.43 $0.390.71-0.98(0.81)$ $0.47-2.91(2.08)$ $1.66-3.15(2.29)$ 0.41 1.20 $1.070.30-0.39(0.33)$ $0.06-0.42(0.30)$ $0.27-0.51(0.38)$ 0.06 0.16 $0.140.30-0.39(0.33)$ $0.05-2.62(2.01)$ $1.72-3.19(2.37)$ 0.31 0.94 $0.840.31-0.41(0.35)$ $0.09-0.36(0.28)$ $0.27-1.43(0.60)$ 0.03 0.12 $0.110.31-0.41(0.35)$ $0.09-0.36(0.28)$ $0.27-1.43(0.60)$ 0.03 0.12 $0.110.31-0.41(0.35)$ $0.99-0.36(0.28)$ $0.27-1.43(0.60)$ 0.03 0.12 $0.110.31-0.41(0.35)$ $0.99-0.36(0.28)$ $0.28-118(11(6.58)$ 0.01 0.03 0.01 $0.010.01$ 0.01 0.02 0.02 0.03	0.83 2.13		1. 22		99.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.15 0.43		0. 25		0.20		
$0.30 \sim 0.39(0.33)$ $0.06 \sim 0.42(0.30)$ $0.27 \sim 0.51(0.38)$ 0.06 0.16 0.14 $0.30 \sim 0.39(0.33)$ $0.06 \sim 0.42(0.30)$ $0.55 \sim 2.62(2.01)$ $1.72 \sim 3.19(2.37)$ 0.31 0.94 0.84 $0.31 \sim 0.41(0.35)$ $0.09 \sim 0.36(0.28)$ $0.27 \sim 1.43(0.60)$ 0.03 0.12 0.11 $0.31 \sim 0.41(0.35)$ $18 \sim 114(83)$ $47.19 \sim 270.92(100.31)$ 34.68 30.29 87.16 $5.45 \sim 88(7.01)$ $4.98 \sim 7.64(5.91)$ $2.58 \sim 18.11(6.58)$ 10.61 3.38 10.61 $4.52 \sim 9.63(6.69)$ $3.84 \sim 8.04(5.11)$ $1.60 \sim 23.02(6.43)$ 16.04 3.77 13.43	0.41 1.20		0, 71		0, 70		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.06 0.16		0.10		0.10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.31 0.94		0.61		0.61		
0.31 $^{\circ}$ 0.41 $^{\circ}$ 0.51	0.03 0.12		0.08		0.08		
5. $45 \sim 4.88(7.01)$ 4. $98 \sim 7.64(5.91)$ 2. $58 \sim 18.11(6.58)$ 10. 61 3. 38 10. 61 4. $52 \sim 9.63(6.69)$ 3. $84 \sim 8.04(5.11)$ 1. $60 \sim 23.02(6.43)$ 16. 04 3. 77 13. 43	34, 68 30, 29		9.04		12.06		
$4.52 \sim 9.63(6.69)$ $3.84 \sim 8.04(5.11)$ $1.60 \sim 23.02(6.43)$ 16.04 3.77 13.43	10.61 3.38	10.61 1.21			1.82		
4. 36~9. 03(0, 03)	16.04 3.77	13.43 1.16	6 1.17		1.47		
$\frac{1}{1000} = \frac{1}{1000} = 1$	0.57 0.78	0.83 0.67	0.70		, 40		
0.05 0.09 0.09 0.09 0.09 0.09 0.09 0.09	0.99 0.96	1.00 0.94	0.92		0.97	} !	ì
○ 1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0	1055 坑道	39 坑道	6	918 坑道		朝) 矿区后沟一岁条沟	₹

注:括号内数值为平均值;一为未测;*为中国科学院地球化学研究所彭绍松南级工程师分析(湿化学法)。

 $(58.16\sim572.18)\times10^{-6}$,平均 210.43×10⁻⁶ (n=9);该类岩石以富 Ni、Zn 贫 Co 和 Co/Ni 值(0.34~ 0.91,均值 0.56,n=7)小于 1.00 为特征,其中 Ni 和 Zn 质量分数分别为(6.39~76.34)× 10^{-6} 和 $(116.85\sim308.57)\times10^{-6}$,平均值分别为 40.10× 10^{-6} 和209.78× 10^{-6} (n=8),而 Co 质量分数仅为 $(5.86\sim44.17)\times10^{-6}$,平均值为 25.04×10⁻⁶ (n=8)^[6]。分析结果(表 1)显示:铜厂闪长岩体中 Cu 的 丰度为 $(3.17\sim50.30)\times10^{-6}$,平均 16.23×10^{-6} (n =8),接近或低于地壳平均值 $(63\times10^{-6})^{[24]}$ 和一般 闪长岩平均值 $(35 \times 10^{-6},$ 维诺格拉多夫, 1956);该 类岩石以富 Co 贫 Ni、Zn 和 Co/Ni 值(5.39~ 13.60,均值 9.80, n=8)大于 1.00 为特征,其中:Co 质量分数相对较高,为 $(62\sim119)\times10^{-6}$,平均为 89 $\times 10^{-6} (n=8)$; 而 Ni 和 Zn 质量分数较低,分别为 $(6.72\sim13.34)\times10^{-6}$ 和 $(25\sim41)\times10^{-6}$,平均值分 别为 9.65×10^{-6} 和 33×10^{-6} (n=8)。此外,矿区钠 长岩中Cu等成矿元素质量分数均明显低于闪长 岩,其中: Cu 为 $(1.44\sim3.54)\times10^{-6}$,平均为 2.94 $\times 10^{-6}$ (n=8), Co 为(24~85) $\times 10^{-6}$, 平均为 44 \times 10^{-6} (n = 8), Ni 为(4.97~9.04)× 10^{-6} , 平均为 $7.57 \times 10^{-6} (n=8)$, Zn 为 $(12 \sim 56) \times 10^{-6}$, 平均为 $29 \times 10^{-6} (n=8)$ (表 1)。

4 硫化物单矿物及矿区岩石稀土元素地球 化学特征

4.1 矿区侵入岩及地层岩石

闪长岩为矿区中酸性侵入岩,是主要赋矿围岩。 其稀土总量相对较高($\Sigma REE = (76.57 \sim 135.24) \times$ 10⁻⁶,表 1),以轻稀土富集和 Eu 负异常明显为主要 特征,稀土配分模式为中等向右倾斜曲线(图 3),其 LREE/HREE 值(5.45~8.88,均值 7.01,n=8)较 高, δ Eu 为 0.62~0.84(均值为 0.74,n=8)。钠长 岩为闪长岩遭受钠质交代作用的产物[16],该类岩石 稀土元素总量明显低于闪长岩,变化范围较大 $(\Sigma REE = (17.84 \sim 113.62) \times 10^{-6})$,轻稀土富集程 度略低于闪长岩,其 LREE/HREE = 4.98~7.64 (均值 5.91, n=8), 稀土配分模式相对于闪长岩较 平缓(图 3),以 Eu 正异常为主要特征(δ Eu=0.68~ 1.64,均值 1.07, n=8)。元古宙郭家沟组细碧岩是 矿区出露的主要地层,该类岩石稀土总量相对较高, 变化 范 围 较 大,∑ REE 为 (47. 19 ~ 270.92)× $10^{-6[6]}$, LREE/HREE 值 (2. 58 ~ 18. 11, 均值为

6.58, n=8)相对于闪长岩较低,因此在稀土配分模式图中右倾程度相对于闪长岩较缓(图 3);该类岩石以 Eu 弱负异常或异常不明显为主要特征,其 δEu 为 $0.70\sim1.08$,平均为 0.89(n=8)。

图 3 矿区闪长岩、钠长岩与细碧岩稀土配分模式图 Fig. 3 REE model diagram of diorite, albite, spilite

图 4 铜厂矿床黄铜矿稀土配分模式图

Fig. 4 REE model diagram of chalcopyrite

4.2 黄铜矿

黄铜矿的稀土总量相对最低(表 1),其 Σ REE 为(7.62~87.16)×10⁻⁶,一般小于 35×10⁻⁶,平均为 28.33×10⁻⁶ (n=7),LREE/HREE 值多低于闪长岩,为 1.21~10.61,平均为 4.31(n=7),与钠长岩较接近,其(La/Yb) $_N$ =0.87~16.04,平均为5.42 (n=7),以 δ Eu(0.40~0.83)负异常明显和 δ Ce(\pm 0.97)无明显异常为主要特征。由表 1 和图 4 可以看出,本矿床黄铜矿单矿物有两类稀土配分模式:一类黄铜矿(如 D-6、E-20 和 E-32 号样品)稀土总量相对较高,其 Σ REE=(30.29~87.16)×10⁻⁶,平均为

 50.71×10^{-6} (n=3),轻稀土明显富集(LREE/HREE 值平均为 8.20,一般大于 10,(La/Sm)_N>1,平均 2.96,n=3),稀土配分模式与闪长岩较相似,为中等向右倾斜曲线,以 δ Eu ($0.57\sim0.83$)负异常明显和 δ Ce($0.96\sim1.00$)无明显异常为特征;另一类黄铜矿(E-24、E-40、L-3 和 L-15)稀土总量较低(Σ REE=($7.62\sim17.45$)× 10^{-6} ,平均为 11.54×10^{-6} ,n=4),轻稀土富集程度较低,重稀土相对富集,其 LREE/HREE 值为 $1.21\sim1.82$,均小于 2.00,(La/Sm)_N为 $0.87\sim1.47$,稀土配分曲线为较平缓曲线,与闪长岩明显不同,但同样以 δ Eu ($0.40\sim0.70$)负异常明显和 δ Ce($0.92\sim0.97$)无明显异常为特征,与郭家沟组细碧岩较为相似。

5 讨论

5.1 成矿物质来源

如前所述,黄铜矿及铜矿石中微量元素组成以富 Ni、Zn 和贫 Co 为特征,与矿区出露主要地层——晚元古代郭家沟组细碧岩类似,而与闪长岩和钠长岩中成矿元素组成特征明显不同。在 Co-Ni-Zn 三角图(图 5 左)中,黄铜矿、铜矿石和岩体外接触带黄铁矿投影点均分布于低 Co 富 Ni、Zn 区域,与地层——郭家沟组细碧岩分布区域相当,而与闪长岩和钠长岩所分布的富 Co 区域明显不同,岩体内接触带黄铁矿投影点则落入闪长岩和钠长岩区域。此外,微量元素 Sr-Zr-Cr(图 5 右)、Nb-Y-Ce等三角图(图略)中黄铜矿投影点多落入细碧岩区域,远离闪长岩和钠长岩投影区。上述结果表明,本矿床 Cu 等成矿物质来源应以郭家沟组细碧岩为主。事实上,矿化区中 Cu 和 Ni 异常常伴生出现,表明

Cu 矿化与基性火山岩有密切关系。矿区地层晚元古代郭家沟组细碧岩中 Cu 等成矿元素丰度异常高^[6],且在中低温绿泥石化、绿帘石化等蚀变过程^[8]和片理化过程^[25]中 Cu 等成矿物质已大量析出,可见矿区细碧岩是有利的矿源层。

矿区钠长岩为闪长岩受钠质交代形成[16]。尽 管闪长岩中 Cu 等成矿元素丰度不高,但分析结果 显示,钠长岩中 Cu 等成矿元素含量仅为闪长岩的 几分之一到几十分之一,表明闪长岩在遭受钠质交 代过程中可能有部分 Cu 等成矿物质析出。因此, 不排除闪长岩提供矿物质来源的可能性。同时,岩 体内外接触带黄铁矿 Co/Ni 值差异(内接触带黄铁 矿大于 1.00,外接触带黄铁矿小于 1.00)也证明了 成矿物质的多源性。稀土元素作为成矿物质来源示 踪已得到广泛运用[26]。本矿床中存在2种稀土配 分模式类型的黄铜矿,从目前光薄片鉴定结果来看, 并未发现这两类黄铜矿存在生成早晚的关系,这两 类黄铜矿在矿物组合(矿相鉴定)和产出位置等均无 显著差异,可以认为它们是同一矿化阶段的产物。 因此,其稀土元素组成特征和配分模式的差异可能 表明其成矿物质来源的多源性,暗示成矿物质为不 同源区的混合。其中:轻稀土富集型黄铜矿成矿物 质来源于闪长岩比例相对较高,而稀土配分模式较 平坦黄铜矿可能主要来源于细碧岩。可见,本矿床 Cu 等成矿物质来源应以矿区地层——郭家沟组细 碧岩为主,可能闪长岩也提供了部分物源。

由于 Y 和 Ho 具有相同的价态和离子半径,八次配位时,两者的离子半径分别为 1.019×10^{-10} 和 1.015×10^{-10} ,Y 和 Ho 常常具有相同的地球化学性质,在许多地质过程中,Y/Ho 值并不发生改

图 5 铜厂铜矿床黄铜矿与各类岩石 Co-Ni-Zn 及 Sr-Zr-Cr 三角图

Fig. 5 The triangular chart of Co-Ni-Zn and Sr-Zr-Cr of chalcopyrite and rocks in ore area

变[27],因此,可以利用 Y和 Ho 对成矿流体及现代海底热液进行研究[28-30]。研究表明,矿床中黄铜矿 Y/Ho 值为 $23.72\sim26.79$,均值为 25.76(n=8),与钠长岩较为相似($21.85\sim26.36$,均值为 23.12,n=8),略高于闪长岩($21.65\sim23.32$,均值为 22.38,n=8),变化范围在晚元古代郭家沟组细碧岩 Y/Ho 值($8.86\sim51.95$,均值为 20.60,n=8)区间(图 6),暗示铜矿化与钠质交代作用关系密切,而与现代海底热液流体差异明显。此外,上述两类黄铜矿均以 δ Eu 负异常明显为特征,且明显低于闪长岩和细碧岩的 δ Eu 值。由于该矿床与矿化密切相关的蚀变主要是绢云母化、钠化、钾化和硅化,一般而言,富挥发分(F,CI)流体所形成的云英岩化、钠长石化会造成 Eu 亏损[31],因此,本矿床所形成的黄铜矿 δ Eu 值均小于闪长岩和细碧岩的 δ Eu 值。

BAB. 弧后盆地; MAR. 中大西洋洋脊; EPR. 东太平洋洋脊^[28-29]。 图 6 铜厂铜矿床中钠长岩、闪长岩、黄铜矿、现代海底热 液和海水的 Y/Ho 值比较

Fig. 6 Y/Ho ratios of albite, diorite, spilite and chalcopyrite from Tongchang ore area, modern submarine hydrothermal fluids and seawater

5.2 矿床成因

矿床中铜矿石 Co/Ni 值以小于 1.00 为特征 (多小于 0.50),且黄铜矿单矿物 Co/Ni 值 $(0.03 \sim 0.14$,平均 0.06,n=7)也远小于 1.00。已有的研究 [32] 表明:铜镍硫化物型铜矿床中黄铜矿以 Co/Ni <1 为特征,且分布于高镍区;而矽卡岩型、斑岩型及火山-喷气型铜矿中黄铜矿 Co/Ni > 1,主要分布在低镍区。本矿床黄铜矿在黄铜矿 Co-Ni 图中投影点多分布在高镍区域附近(图 7),而与矽卡岩型、斑

岩型及火山-喷气型铜矿中黄铜矿投影点明显不同。此外,矿床中黄铜矿 Co、Ni 含量一般大于黄铁矿中 Co、Ni 几倍到几十倍,该特征与其他类型铜矿床如三江地区的呷村块状硫化物型矿床[33] 和江西省德兴斑岩型铜矿床[34] 黄铁矿中 Co、Ni 含量一般大于黄铜矿中 Co、Ni 含量一般大于黄铜矿中 Co、Ni 含量 $1\sim2$ 个数量级正好相反,表明铜厂铜矿与上述类型矿床成因不同。结合矿区地层及岩体微量和稀土元素地球化学特征,笔者认为本矿床黄铜矿 Co、Ni 特征尽管与铜镍硫化物型铜矿床中黄铜矿特征类似,但由于其成矿物质来源以矿区地层郭家沟组细碧岩为主,相应矿石矿物继承了源区微量元素组成特征。

A. 铜厂黄铜矿; B. 铜厂岩体外接触带黄铁矿; C. 铜厂岩体内接触黄铁矿; D. 铜镍硫化物矿床中黄铜矿; E. 斑岩型或斑岩-浅成热液型铜(铜金)矿床中的黄铜矿; F. 火山-喷气型铜矿床中的黄铜矿; G. 矽卡岩型铜矿床中的黄铜矿。1. 红旗岭; 2. 金川; 3. 冷水箐; 4. 丹巴; 5. 玉龙; 6. 小西南岔; 7. 城门山; 8. 折腰山; 9. 小铁山; 10. 铜厂沟; 11. 城门山; 12. 封山洞; 13. 武山。

图 7 铜厂铜矿床黄铜矿 Co-Ni 图(底图据文献[32])

Fig. 7 Co-Ni distribution diagram for chalcopyrite from Tongchang copper deposit (base map after reference[32])

了成矿物质来源比例上的差异。

图 8 铜厂铜矿床黄铁矿 Co-Ni 关系图(不同地质边界的 定义据文献[35-36])

Fig. 8 Co-Ni distribution diagram for pyrite and chalcopyrite from Tongchang copper deposit (geological boundary after references[35-36])

事实上,铜厂铜矿床具有以下地质地球化学特 征:①矿体主要赋存于铜厂闪长岩体北部内外接触 带(大致平行的挤压片理化带构造)的片理化带(韧 性-脆性剪切带)中,以脉状矿体为主,成矿方式是热 液在岩体及构造带中充填,而在碳酸盐岩石中则以 交代为主,这些韧性剪切带的形成与印支—燕山期 区域上强烈的推覆挤压作用有关[22];②矿体虽然受 EW 向和 NE 向断裂控制,根据矿体产出地质特征, F_1 和 F_2 断层应形成于矿化前,早期断裂活动为成 矿流体提供了通道和空间,且在矿脉两侧,局部见浸 染状铜矿化,暗示本矿床应为热液充填交代形成;③ 成矿流体并非为岩浆水,而是以变质流体和大气降 水组成的混合流体,以低温($142 \sim 188$ °C,平均 171℃)、低盐度(w(NaCl)为 3.2%~9.0%,平均为 5.5%)和低密度(0.915~0.999 g/cm³,平均 0.925 g/cm³)为特征[14];④黄铜矿单矿物 Rb-Sr 同位素等 时线年龄为 359 Ma[13],明显晚于铜厂闪长岩形成 时代(842±6.5) Ma(锆石 SHRIMP U-Pb 法[17]), 而与矿区钠长岩 Rb-Sr 年龄(348 Ma^[16])大体相当, 和秦岭地区海西早期大规模钠质活动[37-38]较吻合, 暗示矿床的形成可能与钠质交代作用有关。可见, 铜厂矿床成矿历史与造山型金矿形成于碰撞和增生 等板块汇聚边界的挤压-压扭变形过程特点[39-40]具 有一定相似性。通过黄铜矿等硫化物微量元素与稀

土元素地球化学研究发现,该矿床成矿物质来源复杂,但以矿区主要出露地层——晚元古代郭家沟组细碧岩为主,其成矿作用与矽卡岩型、斑岩型、火山喷气型、火山-次火山热液型及块状硫化物型铜矿床明显不同,而与区域钠质交代作用有关。

6 结论

- (1)矿区晚元古代郭家沟组细碧岩中 Cu、Ni 等成矿元素背景值较高,是矿区有利的物源区。
- (2)闪长岩可能为本矿床物源之一。岩体内外接触带黄铁矿 Co/Ni 值差异也证明了矿床成矿物质的多源性,其 Co,Ni 组成特征差异可能反映了成矿物质来源比例上的差异。
- (3)稀土元素特征和配分模式的差异显示了成矿物质的多源性,其中:轻稀土富集型黄铜矿成矿物质来源于闪长岩比例相对较大,而稀土配分模式较平坦黄铜矿可能主要来源于细碧岩。
- (4)黄铜矿 Y/Ho 值与钠长岩较为相似,略高于闪长岩,变化范围在晚元古代郭家沟组细碧岩区间,暗示铜矿化与钠质交代作用关系密切。此外,黄铜矿以 Eu 负异常明显为特征,且 δ Eu 明显低于闪长岩和细碧岩的 δ Eu 值,这与成矿过程中富挥发分(F,Cl)流体所形成的云英岩化、钠长石化造成 Eu 亏损有关;
- (5)根据黄铜矿单矿物 Co/Ni 值判断与铜镍硫化物型铜矿床中黄铜矿特征类似,这可能与其成矿物质来源以富 Ni 矿区地层郭家沟组细碧岩为主、成矿过程继承了源区微量元素组成特征有关。

可见,本矿床成矿物质来源应以矿区地层——晚元古代郭家沟组细碧岩为主,不排除闪长岩提供了部分成矿物质。近年来的研究表明,勉略宁三角地区构造演化历史与秦岭造山带存在一定相似性,古生代一中生代勉略洋盆的打开-板块俯冲-碰撞-陆内造山是勉略宁三角地区物质、结构构造的一次重要的改造时期,也是三角地区重要的成矿时期^{①②[2]}。因此,本矿床可能的成矿模式为:海西期,伴随着勉略洋盆闭合俯冲-碰撞形成勉略宁地区复式倒转褶皱及韧-脆性逆冲推覆构造、走滑断层,由

① 秦克令. 陕西勉略宁区中酸性岩与铁、铜、金成矿关系研究报告. 西安:西安地质矿产研究所,1990:1-27.

② 修泽雷. 陕西略阳铜厂铁矿成因类型研究. 西安: 西安地质矿产研究所,1981.

于区域变质流体与天水混合形成富碱 (Na^+,K^+) 和 CO_2 的混合热液,在这种混合热液作用下,使地层——晚元古代郭家沟组细碧岩(及闪长岩)中 Cu 等成矿物质大量析出,形成低温、低盐度成矿热液,沿矿区所发育的 EW 向与 NE 向两组韧性走滑断裂充填沉淀并形成铜矿体。

参考文献 (References):

- [1] 赵震宇,王世称,孟令顺,等. 陕南地区金矿床综合信息预测[J]. 吉林大学学报:地球科学版,2004,34(2): 287-291.
 - Zhao Zhen-yu, Wang Shi-cheng, Meng Ling-shun, et al. Synthetic Information Prediction of the Gold Mineral Resources in Southern Shaanxi Province[J]. Journal of Jilin University: Earth Science Edition, 2004, 34(2):287-291.
- [2] 任文清,周鼎武,刘方杰. 勉略宁三角地区构造演化与金属矿产成矿特征[J]. 西北地质科学,1999,20(2):60-67.
 - Ren Wen-qing, Zhou Ding-wu, Liu Fang-jie. Regional Tectonic Evolution and Features of Metal Mineral Resources of Mian-Lue-Ning Triangle Area [J]. Northwest Geoscience, 1999, 20(2): 60-67.
- [3] 杨志华,苏生瑞,李勇,等. 秦岭—巴山地区成矿背景和成矿作用的新进展[J]. 陕西地质,2001,19(1):1-23.
 - Yang Zhi-hua, Su Sheng-rui, Li Yong, et al. New Advances in the Study of Ore-Forming Background and Mineralization in Qinling-Bashan Region[J]. Geology of Shaanxi, 2001, 19(1):1-23.
- [4] 任小华. 陕西勉县—略阳—阳平关及周边地区矿产资源调查新进展[J]. 中国地质, 2001,28(11):38-39.

 Ren Xiao-hua. The New Progress of Mineral Resources Investigation in Mianxian-Lueyang-Yangpingguan and Its Surroundingarea, Shaanxi[J]. Geology in China,2001, 28(11): 38-39.
- [5] 姚书振,丁振举,周宗桂,等.秦岭造山带金属成矿系统 [J]. 地球科学:中国地质大学学报,2002,27(5):599-604.
 - Yao Shu-zhen, Ding Zhen-ju, Zhou Zong-gui, et al. Metallogenic Systems of Qinling Orogen [J]. Earth Science: Journal of China University of Geosciences, 2002, 27(5): 599-604.
- [6] 韩润生,马德云,刘丛强,等. 陕西铜厂矿田构造成矿动力学[M].昆明:云南科技出版社,2003. Han Run-sheng, Ma De-yun, Liu Cong-qiang, et al. Dynamics of Tectonic Ore-Forming Process of

- Tongchang Orefield, Shaanxi[M]. Kunming: Yunnan Science and Technology Press, 2003.
- [7] 李军. 陕南铜厂矿区古火山机构和铁铜矿床成矿特征 [J]. 西北金属矿产地质,1990(1):24-29.

 Li Jun. The Ancient Volcanic Apparatus and the Metallogenic Characteristics of Fe-Cu Ore Deposit, Tongchang Ore Area, Shaanxi[J]. North-West Metal Minerals and Geology,1990(1):24-29.
- [8] 王东生.陕西省略阳县铜厂铜矿床地质特征及成矿分析[J].西北金属矿产地质,1992,25(2):8-20.
 Wang Dong-sheng. The Geological Feature and Mineralization of Tongchang Cu Deposit, Lueyang, Shaanxi Provience [J]. Northwest Metal Minerals Geology,1992,25(2):8-20.
- [9] 吴俞斌,姜福芝,王玉往.陕西铜厂矿田古火山机构与成矿关系研究[J].矿床地质,1994,13(增刊):54-56. Wu Yu-bin, Jiang Fu-zhi, Wang Yu-wang. The Research on the Relationship Between Paleovolcanic Apparatus and the Mineralization, Tongchang Ore Field, Shaanxi[J]. Mineral Deposit, 1994, 13(Sup.): 54-56.
- [10] 方维萱. 秦岭造山带大型-超大型金属矿床形成大陆动力学条件分析[J]. 西北地质、1998、19(3):11-17. Fang Wei-xuan. The Analsys for the Condition of Continent Kinetics of Large and Super Large Metal Deposits in Qinling Orogenic Zone[J]. North-West Geology, 1998, 19(3): 11-17.
- [11] 赵统. 陕西铜厂铁矿床同位素组成特征及其与矿床成因的关系[J]. 西北地质,1981(4):1-11.

 Zhao Tong. The Isotopic Feature and Its Relationship with the Origin of Mineralization for Tongchang Fe Deposit, Shaanxi[J]. Northwest Geology,1981(4): 1-11.
- [12] 秦克令,付世平,宋得光. 碧口地体同位素地质年代学及其意义[J]. 西北地质科学,1992,13(2):97-108.

 Qin Ke-ling, Fu Shi-ping, Song De-guang. Isotopic Geochronology and Its Significance in Bikou Terrain, China[J]. Northwest Geoscience,1992, 13(2): 97-
- [13] 丁振举,姚书振,周宗桂,等. 陕西略阳铜厂铜矿床成矿时代及地质意义[J]. 西安工程学院学报,1998,20 (3):24-27.
 - Ding Zhen-ju, Yao Shu-zhen, Zhou Zong-gui, et al. Metallogenic Chronology and Its Geologic Significance of Tongchang Copper Ore Deposit, Shaanxi Province [J]. Journal of Xi'An Engineering University, 1998, 20(3):24-27.

- [14] 叶霖,刘铁庚,邵树勋.铜厂铜矿包裹体地球化学研究[J].矿物学报,1997,17(2):194-199.
 - Ye Lin, Liu Tie-geng, Shao Shu-xun. Inclusion Geochemistry of Tongchang Cu Deposit in the Mian-Lue-Ning Area, South Shaanxi [J]. Acta Mineralogica Sinica, 1997, 17(2):194-199.
- [15] 周圣华. 陕西铜厂铜金多金属矿床地质特征及成矿流体地球化学[J]. 中国地质,2008,35(2):298-304.

 Zhou Sheng-hua. Geological Characteristics and Geochemistry of Ore Forming Fluid in the Tongchang Copper-Gold Polymetallic Deposit, Shaanxi [J]. Geology in China,2008,35(2):298-304.
- [16] 叶霖,刘铁庚. 陕南勉略宁地区铜厂矿区的钠长岩[J]. 矿物岩石,1997,17(4):9-14.
 Ye Lin, Liu Tie-geng. The Albitite in Tongchang Ore Area in the South of Shaanxi Province[J].
 Journal of Mineralogy and Petrology, 1997, 17(4): 9-14.
- [17] 叶霖,程增涛,陆丽娜,等. 陕南勉略宁地区铜厂闪长岩岩石地球化学及 SHRIMP 锆石 U-Pb 同位素年代学[J]. 岩石学报,2009,25(11):2866-2876.

 Ye Lin, Cheng Zeng-tao, Lu Li-na, et al. Petrological Geochronology and Zircon SHRIMP U-Pb of Tongchang Diorites, Mianluening Area, Southern Shaanxi Provience, China [J]. Acta Petrologica Sinica,2009, 25(11): 2866-2876.
- [18] 蒋林奎. 陕西略阳铜厂铜矿成矿远景初步预测[J]. 西北金属矿产地质,1988(2):21-25. Jiang Lin-kui. Primary Prediction for the Metallogenic Prospect of Copper in Tongchang Area, Lueyang, Shaanxi[J]. North-West Metal Minerals and Geology, 1988(2): 21-25.
- [19] 蒋林奎,唐荣道.陕南勉略宁地区铜矿床类型及找矿方向[J].西北金属矿产地质,1991(2):8-13.

 Jiang Lin-kui, Tang Rong-dao. Deposit Type and Exploration Direction of Copper in Nian-Lue-Ning Area, Shaanxi[J]. North-West Metal Minerals and Geology,1991(2):8-13.
- [20] 雷祖志,李军,姜明辉. 陕西勉略宁地区中部火山岩带铜银金矿床统计预测及成矿远景研究[J]. 西北金属矿产地质,1991(2):35-43.

 Lei Zu-zhi, Li Jun, Jiang Ming-hui. The Study on Statistical and Metallogenic Prospect for Cu, Ag and Au Ore Deposits in Middle Vocanic Belt, Mian-Lue-Ning Area, Shaanxi[J]. North-West Metal Minerals and Geology,1991 (2): 35-43.
- [21] 陈守余,胡道光,周宗桂. 陕西勉略宁地区致矿地质

- 异常结构及找矿预测[J]. 地球科学:中国地质大学学报, 1999,24(5):472-475.
- Chen Shou-yu, Hu Dao-guang, Zhou Zong-gui. Structural Analysis of Ore-Generating Geological Anomaly Field and Forecasting of Ore Prospecting, Mian-Lue-Ning Region, Shaanxi Province, China[J]. Earth Science: Journal of China University of Geosciences, 1999, 24(5): 472-475.
- [22] 汪军谊,张复新. 勉略宁地区区域地质背景、矿床类型及其成矿特点[J]. 西北地质科学,1999,20(2):68-75.
 - Wang Jun-yi, Zhang Fu-xin. The Regional Geology Background, Types of Deposits and Characters of Ore-Formation in Mian-Lue-Ning Area [J]. Northwest Geoscience, 1999, 20(2):68-75.
- [23] Qi L, Hu J, Gregoire D C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry[J]. Talanta, 2000, 51(3): 507-513.
- [24] 黎彤,倪守斌. 地球和地壳的化学元素丰度[M]. 北京:地质出版社,1990.
 - Li Tong, Ni Shou-bin. Abundance of Chemical Elements in the Earth and Crust [M]. Beijing: Geological Publishing House, 1990.
- [25] 李福让,王瑞廷,高晓宏,等. 陕西省略阳县徐家沟铜矿床成矿地质特征及控矿因素[J]. 地质学报,2009,83(11):1752-1761.
 - Li Fu-rang, Wang Rui-ting, Gao Xiao-hong, et al. Geological Characteristics and Controlling Factors of Xujiagou Copper Deposit in Lueyang County, Shaanxi Province, China[J]. Acta Geologica Sinica, 2009,83 (11):1752-1761.
- [26] 丁振举,刘丛强,姚书振,等. 东沟坝多金属矿床矿质 来源的稀土元素地球化学限制[J]. 吉林大学学报: 地球科学版,2003,33(4):437-442.
 - Ding Zhen-ju, Liu Cong-qiang, Yao Shu-zhen et al. The REE constraints on ore sources of the Donggouba polymetallic deposit[J]. Journal of Jilin University: Earth Science Edition, 2003, 33(4):437-442.
- [27] Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Cryst, 1976, A32;751-767.
- [28] Bau M, Dulski P. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behavior During Near-Vent Mixing and for the Y/Ho Ratio of

- Proterozoic Seswater[J]. Chem Geol, 1999, 155: 77-90.
- [29] Douville E, Bienvenu P, Charlou J I. Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems[J]. Geochim Cosmochim Acta, 1999, 63: 627-643.
- [30] 毛光周,华仁民,高剑峰,等. 江西金山金矿床含金黄铁矿的稀土元素和微量元素特征[J]. 矿床地质, 2006,25(4):412-426.

 Mao Guang-zhou, Hua Ren-min, Gao Jian-feng, et al. REE Composition and Trace Element Features of Gold-Bearing Pyrite in Jinshan Gold Deposit, Jiangxi Province[J]. Mineral Deposits, 2006, 25(4): 412-426.
- [31] 王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989.
 Wang Zhong-gang, Yu Xue-yuan, Zhao Zhen-hua.
 Rare Earth Elements Geochemistry [M]. Beijing:
 Science Press,1989.
- [32] 陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征[J]. 岩石矿物学杂志, 1995,14(4):345-354.
 Chen Dian-fen. Characteristics of Main Metallic Minerals in Some Copper-Nickel Sufide Deposits of China[J]. Acta Petroologica et Mineralogica, 1995, 14(4):345-354.
- [33] 叶庆同,石桂华,叶锦华,等. 怒江、澜沧江、金沙江 地区铅锌矿床成矿特征和成矿系列[M]. 北京:北京 科学技术出版社,1991:79-93. Ye Qing-tong, Shi Gui-hua, Ye Jin-hua, et al. Lead-Zinc Deposits in Nujiang-Lanchangjiang-Jinshajiang Region[M]. Beijing: Beijing Science and Technology Press,1991:79-93.
- [34] 芮宗瑶,黄崇轲,齐国明,等. 中国斑岩铜(钼) 矿床 [M]. 北京: 地质出版社,1984:156-159. Rui Zong-yao, Huang Chong-ke, Qi Guo-ming, et al. Porphyry Copper (Molybdenum) Deposits of

- China[M]. Beijing: Geological Publishing House, 1984:156-159.
- [35] Bajwah Z U, Seccombe P K, Offler R, Trance Element Distribution, Co: Ni Ratios and Gensis of the Big Cadic Iron-Copper Deposit, New South Wales, Australia[J]. Mineralium Deposita, 1987, 22: 292-303.
- [36] Brill B A. Trance Element Contents and Partitioning of Elements in Ore Minerals from the CSA Cu-Pb-Zn Deposit, Australia[J]. Can Mineral, 1989, 27:263-274.
- [37] 马国良,祁思敬,李英,等. 厂坝铅锌矿床中钠长岩的成因探讨[J]. 地质地球化学,1998,26(2):29-33.

 Ma Guo-liang, Qi Si-jing, Li Ying, et al. Genesis of Albitites in Changba Pb-Zn Ore Deposit[J]. Geology Geochemistry, 1998, 26(2):29-33.
- [38] 李勇,苏春乾,刘继庆. 东秦岭造山带钠长岩的特征、成因及时代[J]. 岩石矿物学杂志,1999,18(2):121-127.

 Li Yong, Su Chun-qian, Liu Ji-qing. Characteristics and Genesis of the Albitite in the Fast Cipling
 - and Genesis of the Albitite in the East Qinling Orogenic Belt[J]. Acta Petrological et Mineralogica, 1999, 18(2):121-127.
- [39] 陈衍景. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质、2006、33(6): 1181-1196.

 Chen Yan-jing. Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential [J].

 Geology in China, 2006、33(6): 1181-1196.
- [40] 陈衍景, 倪培, 范洪瑞,等. 不同类型热液金矿床的流体包裹体特征[J]. 岩石学报, 2007, 23(9): 2085-2108.
 - Chen Yan-jing, Ni Pei, Fan Hong-rui, et al. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits [J]. Acta Petrologica Sinica, 2007, 23(9): 2085–2108.