土壤 CO₂ 浓度与地表 CO₂ 通量的季节变化 及其相互关系

程建中¹,李心清^{1*},周志红^{1,2},王 兵¹,程红光¹,邢 英^{1,2},唐 源^{1,2}

(1. 中国科学院地球化学研究所 环境地球化学国家重点实验室, 贵阳 550002;2. 中国科学院研究生院, 北京 100049)

摘 要:采用气相色谱法对贵州喀斯特地区不同土地利用方式土壤剖面 CO₂ 浓度与地表 CO₂ 通量的季节变化特征进行为期 一年的观测。结果表明:土壤 CO₂ 浓度和地表 CO₂ 通量具有明显的季节变化规律,均表现为:从春季到 夏季浓度和通量逐渐 增加,而从秋季到冬季浓度和通量又逐渐降低,这与该区域的温度和降雨量变化趋势一致。不同土地利用方式土壤 CO₂ 浓度 和地表 CO₂ 通量与大气、土壤各层温度呈显著正相关关系,土壤湿度虽然也在一定程度上影响了 剖面 CO₂ 浓度和地表通量, 但二者之间并无显著相关性。相关性分析表明土壤 CO₂ 浓度和地表 CO₂ 通量之间呈显著的正相关关系,说明地表 CO₂ 排放 强烈依赖于土壤 CO₂ 浓度积累和分布。

关键词: 土壤 CO₂ 浓度; 地表 CO₂ 通量; 季节变化; 温度; 湿度; 喀斯特地区
中图分类号: S152.6 文献标识码: A 文章编号: 1672-9250(2011)02-0196-07

土壤组成了全球最大的碳循环库^[1]。1 m 厚的 土壤大约包含 1500~2000 Pg C, 远高于生物碳库 (400~600 Pg C)和大气碳库(785 Pg C)。土壤可 以通过凋落物沉积和分解, 微生物和植物根系呼吸 等自然过程储存和释放大量的碳^[2]。CO₂ 是最重要 的温室气体, 它主要通过土壤呼吸作用向大气释放, 同时该过程也是陆地生态系统中最为重要的碳循环 过程^[3]。模型估算表明全球表土CO₂ 的释放速率 为 76.5 Pg C ° a⁻¹, 大约是化石燃料燃烧和水泥制 造 CO₂ 产生量(7.8 Pg C ° a⁻¹)的 10 倍^[4.5]。

然而,对于陆地生态系统碳循环而言,除了地表 CO₂ 通量外,土壤剖面 CO₂ 浓度及其分布也一样重 要。土壤 CO₂ 的产生主要来源于植物根系呼吸和 土壤微生物对有机质的分解氧化,其浓度大小取决 于生物因素(植物根系、土壤微生物活性等)和环境 因素(土壤温度、湿度等)^[6-7],同时地表 CO₂ 的释放 与土壤剖面 CO₂ 产生和传输过程密切相关。当剖 面 CO² 产生后主要通过分子扩散和压力梯度两种 途径释放到大气中,因此土壤 CO² 可以反映和影响 地表 CO² 的释放,同时反过来对植物根系生长发 育、土壤微生物活动以及各种养料的物质循环也有 很大的影响。土壤 CO² 的传输主要受控于土壤空 气孔隙度,而土壤空气孔隙度的制约因素主要包括 土壤密度和含水量,当然,温度也会影响其传输速 率^[8]。地表 CO² 通量和土壤 CO² 浓度都主要受控 于 CO² 的产生和传输,因此二者之间是相互联系 的。但目前有关二者之间关系的研究报道还较 少^[8.9],故本文将研究区域选择在碳酸盐岩大量分 布的贵州喀斯特地区,期望通过对二者之间关系的 探讨,为进一步认识土壤 CO² 的产生、消耗、输送机 制及碳循环提供基础数据和科学依据。

- 1 材料与方法
- 1.1 研究区域自然概况

收稿日期: 2010-11-15; 改回日期: 2010-12-16

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

基金项目:中国科学院知识创新工程重要方向项目(KZCX2-YW-306-3);国家自然科学基金(40872212);国家重点基础研究发展规划(973)项 目(2006CB403205)

第一作者简介:程建中(1983—),男,重庆垫江人,博士,助理研究员,研究方向为土地利用与气候变化。E-mail; chengj anz hong @gmail. com *通讯作者:李心清,博导,研究员。E-mail; xinqinglee@hotmail. com

197

龙洞堡郊区位于贵州省贵阳市中心区东面,地 处云贵高原东斜坡上,属全国东部平原向西部高原 过渡型地带,平均海拔 1000 m 左右,主要的土壤类 型有石灰土、黄壤、水稻土等,具有典型的亚热带湿 润温和型气候。夏无酷暑,冬无严寒,阳光充足,无 霜期长(270~280 天),雨水充沛,年均降雨量 1100 mm,夏季(6~8 月)的降水约 550 mm。70%以上的 降雨多集中在4~8 月,其中夜间降雨量占总降雨量 的 70%。空气不干燥,四季无风沙,年平均气温在 14.8℃左右。其中,最热的7月下旬,平均气温为 23.2℃,最冷的1月上旬,平均气温是 3.9℃。

1.2 研究方法

1.2.1 样地的设置

本研究共设置了 3 种土地利用方式, 森林样地 (N26°32′41.3″, E106°46′46.9″), 主要营造树种为 马尾松(*Pinus m assoni ana*), 平均胸径约 15 cm, 平 均树高约 13 m, 林下有油茶(*Camellia olei fera* Abel)等灌丛植被。草地(N 26°32′32.2″, E106°46′ 22 6″), 此样地在 2007 年冬天曾被当地农民烧荒 过, 大量灌丛林被烧毁, 如今只有草本植物遍布于整 个山头。农田(N26°32′43.4″, E106°46′43.5″), 按 照当地典型农业生产活动方式套种玉米和大豆, 播 种玉米和大豆前需对耕地翻耕。玉米播种同时施底 肥, 5 月中旬施尿素和复合肥, 9~10 月中旬收获玉 米。

1.2.2 土壤与地表 CO2 的采集和测定

在各采样点随机划一块 0.5 m×0.5 m 采样区 域,2008年6月-2009年5月,每月月初(8号)和月 底(23号)分别采集土壤剖面和地表气体,采样时间 主要集中在当天上午9:00-11:00。土壤空气样品 采集参照郑乐平[19] 研制的采样装置,略微改进。内 径为 6.0 mm "T" 字形不锈钢管底端磨尖并在其上 均匀分布通气孔(孔径:2mm)若干,以便土壤空气 自由进出,不锈钢管的另一端用带真空垫的阀门封 住,并与三通阀相连,以便取气。采样时将标有不同 刻度集气管插入土壤指定的深度(0,3,6,12,15,20)cm),并立即针管排空管中空气,平衡2~3h后,用 60 mL 注射器采集土壤剖面气体样品贮存至预先抽 成高真空(0.01 mbar)的 35 mL 胶塞玻璃气瓶内, 样品带回实验室后立即使用 HP6890 气相色谱仪测 定 CO2 浓度。CO2 浓度的测定使用 Porapak Q 填 充柱分离,经Ni催化剂高温催化后(375℃),火焰原 子检测器(FID)分离检测,分离柱和检测器的温度

分别为 50 [℃]和 250 [℃], 载气为高纯 N², 流速 20 mL [°]min⁻¹。按照土壤 CO² 平均浓度为同一时刻不同 深度土壤空气中 CO² 浓度平均值的思想, 通过不同 刻度集气管内 CO² 样品浓度便可分别计算土壤剖 面 0~10 cm 和 10~20 cm CO² 的平均浓度。地表 气体通量样品的采集和计算方法参照文献^[1]。

1.2.3 土壤理化性质和环境因子测定

采用电位法测定土壤 pH (H₂O), 水土比为 2.5 [•]1。土壤无机氮采用 2 mol °L⁻¹ KCl (土液比 1 · 5)浸提, 铵态氮测定采用靛酚蓝比色法^[12], 硝态氮 采用双波长比色法^[13]。土壤有机碳和氮含量先用 1 mol °L⁻¹盐酸处理, 烘干后采用元素分析仪 (PE 2400 II)测定。土壤温、湿度测定在每次采集气体样 品时, 用温度计分别测定大气温度, 地表温度, 土壤 5、10、15、20 cm 温度, 同时用铝盒和环刀采集土壤 (0 ~ 10 cm)带回实验室用烘干法测定土壤含水量 和计算容重。按下式计算土壤充水孔隙度 (WF-PS);

土壤总孔隙度=1-土壤容重/2.65

土壤充水孔隙度(WFPS%)=(土壤重量含水 量×土壤容重)×100/土壤总孔隙度

所有的统计分析均采用 SPSS15.0 (SPSS Inc., Chicago, USA), 土壤(0~20 cm)平均 CO₂ 浓度及地表 CO₂ 通量与土壤温度、湿度之间的相关 性分析采用 person 相关系数和 two-tailed 显著性 检验,显著性在 0.05 水平上为显著, 0.01 水平上为 极显著, 图形的绘制采用 Microsoft Excel 2003 和 CorelDraw X4.

2 结果与讨论

2.1 不同土地利用方式土壤理化特征

不同土地利用方式土壤理化性质见表 1。草地 土壤有机碳和总氮含量最高,森林次之,农田最低, 但不同土地利用方式下土壤 C/N 基本一致(从 13.2±0.7到14.3±1.3)。农田土壤 pH 值为7.2, 其余样地 pH \leq 7.0。森林样地 NH⁴₄-N 含量最高 (5.3±0.6 mg°kg⁻¹),草地次之,农田最低(1.3± 0.2 mg°kg⁻¹),而不同土地利用方式土壤 NO³₃-N 含量次序正好与 NH⁴₄-N 相反,其中农田 NO³₃-N 高达 7.9±1.4 mg°kg⁻¹。森林土壤 WFPS 显著 高于农田,草地 WFPS 位于森林和农田之间。

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 1 不同土地利用方式土壤理化性质

Table 1 Soil physical and chemical characteristics of the different land use

土地 类型	有机碳 (%)	氮含量 (%)	C/N (mol)	$\mathrm{N}\mathrm{H}_4^+$ - N (mg ° kg ⁻¹)	$\mathrm{NO_3^N}$ (mg ° kg ⁻¹)	无机氮 (mg ° kg ⁻¹)	$pH_{(H_20)}$	W F PS (%)
森林	3.6±0.3	0.29 ± 0.01	14.3±0.7	5.3±0.6	3.0±0.5	8.3	6.0±0.2	72.6 \pm 2.8
草地	5.1±0.3	0.42 ± 0.03	14.2±0.3	3.7±0.8	3.6±0.7	7.3	6.7±0.1	60.1±3.1
农田	3.2±0.2	0.28 ± 0.02	13.2 ± 0.7	1.3±0.2	7.9±1.4	9.2	7.2 \pm 0.2	48.9±3.0

平均值土标准误 (Mean ± Standard error)

2.2 土壤 CO2 浓度与地表 CO2 通量的季节变化规律

从图 1 中可以看出,森林和草地土壤 CO2 浓度 从 08 年 6 月到 12 月逐渐降低, 09 年 1 月到 5 月又 逐渐升高。除草地外,其余不同土地利用方式土壤 CO2 浓度和地表 CO2 通量也表现出类似的变化特 征。总的来说, 二者的季节变化规律均比较明显, 且 变化趋势也基本一致。夏季(08年的6月-8月)为 一年中土壤CO2 浓度和地表CO2 排放通量最高值, 但各月份之间波动较大,秋季(9月-11月)逐渐降 低, 而冬季(08年12月-2009年2月)平均浓度和通 量均最低且相对稳定,春季(09年3月-5月)浓度 和通量又缓慢升高。这种变化趋势与该区域的温度 和降雨量密切相关(图1),因为该地区在冬季(08年 12月-09年2月)温度较低且降雨量十分稀少,此时 土壤微生物活性和植物根系的生理活动都比较弱, 故剖面 CO₂ 浓度和地表 CO₂ 通量均较低且相对比 较稳定^{14,15]}。进入3月,土壤温度逐渐升高,微生 物和植物根系活动随之加强,因此土壤 CO2 的产生 速率呈现缓慢上升现象。一旦进入6月雨季,土壤 温度和湿度迅速增加,此时十壤温度在 20℃左右,

比较适宜土壤微生物活动和植物根系生长,导致土 壤 CO₂ 浓度不断升高,土壤 CO₂ 排放量随之达到高 峰,但在高温多雨的夏季,由于干湿交替经常发生, 频繁地影响微生物和植物根系活动强度,从而引起 土壤 CO₂ 浓度和通量波动较大^[16]。

土壤 CO₂ 浓度随着剖面深度的增加浓度逐渐 增大(图 1),不同土地利用方式下土壤 CO₂ 平均浓 度(0~10 cm)的变化范围为: 0.05%~0.42%,均 值 0.20±0.01%,而 10~20 cm 深度的浓度变化则 为 0.06%~1.01%,均值为 0.34±0.04%,出现这 种现象的原因可能由于喀斯特地区土层较薄,有机 质主要集中于上表层土壤(< 10 cm),下表层土壤 (> 10 cm)有机质含量逐渐减少^[17]。虽然上表层土 壤有机质含量较高,但由于上表层疏松,由根呼吸和 微生物呼吸产生的 CO₂ 很快就通过气体交换释放 到大气中,越靠近表层的地方向大气释放的 CO₂ 越 多,故浓度较低。随着深度增加,土壤粘性增大,气 体交换受阻,且部分微生物和植物根系活动不断消 耗土壤中的 O₂ 同时释放 CO₂ 并在土壤深层积累, 导致 CO₂ 浓度较高 ^[18,19]。

Fig. 1 Relationship between soil average CO2 concentration and surface CO2 flux under different land uses.

The hollow circle represents the average CO₂ concentration in soil at $0 \sim 10$ cm depth and the solid

circle represents the average CO_2 concentration in soil at $10 \sim 20$ cm depth

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2.3 土壤 CO² 浓度和地表 CO² 通量与温、湿度的 关系

温度直接影响土壤微生物和植物根系活性,同时也影响植物光合作用产物的形成及其向下运输过程,但过低的温度会制约着这两种过程,同时温度过高会导致土壤水分消耗,从而也会影响土壤 CO₂ 的 产生和地表 CO₂ 的释放^[20]。从表 2 中可以看出,不同土地利用方式土壤 CO₂ 浓度与各层温度之间均 具有显著的正相关关系,说明土壤温度在很大程度 上影响土壤 CO₂ 浓度,这与其他研究结果基本一 致^[20,21]。温度对地表 CO₂ 通量的影响,除草地外, 森林和农田与土壤各层温度显著正相关,但相关性 较前者偏低。此外,土壤平均 CO_2 浓度与各层温度 的相关程度差异较大,与表层土壤 (0 cm)温度的相 关性较低,土层越深,相关性越高,而地表 CO_2 通量 与土壤各层温度的相关程度差异不大。在土壤 15 cm处,不同土地利用方式此层温度均能单独解 释土壤 CO_2 浓度 39.7% ~77.3%的变异,但仅能解 释地表 CO_2 通量的 4.9% ~58.7%的变异,进一步 说明地表 CO_2 的释放除与土壤温度有关外,还与土 壤质地,土壤剖面 CO_2 的扩散速率等因素有关。

表 2 土壤剖面平均 CO2 浓度(0~20 cm)及地表 CO2 通量与环境因子的相关性分析

Table 2	Correlation analysis	between mean CO ₂	concentrations in	soil profiles	$(0 \sim 20 \text{ cm})$
---------	----------------------	------------------------------	-------------------	---------------	--------------------------

土地利用	气温	0 cm 温度	5 cm 温度	10 cm 温度	15 cm 温度	20 cm 温度	WFPS($0 \sim 10 \text{ cm}$)
杰林	0. 810 * *	0. 844 * *	0. 824 * *	0. 824 * *	0. 833 * *	0.820 * *	0. 393
<u> </u>	(0.695 * *)	(0.759 * *)	(0.766 * *)	(0.756 * *)	(0.766 * *)	(0.757 * *)	(0.393)
甘地	0.818 * *	0. 849 * *	0.881 * *	0.865 * *	0. 879 * *	0.869 * *	0.105
- 平地	(0.100)	(0.083)	(0.241)	(0.244)	(0.222)	(0.210)	(-0.213)
т .П	0.882 * *	0.847 * *	0.859 * *	0.872 * *	0.877 * *	0.886 * *	0.216
北田	(0. 429 *)	(0.397)	(0.431 *)	(0.461 *)	(0. 449 *)	(0. 443 *)	(-0.077)

采用 person 相关系数和 two-tailed 显著性检验,"*"表示相关性显著($p \le 0.05$),"**"表示相关性极显著($p \le 0.01$),括号内的数字表示土 壤 CO₂ 通量与环境因子之间的相关系数

土壤水分也是影响土壤 CO2 浓度和地表 CO2 释放的重要环境因子之一,但两者之间并不是简单 的线性关系,过低水分影响微生物和植物根系活动, 水分过高将消耗土壤中 O2 使土壤处于过饱和状 态^[19, 22]。大量研究证实:土壤水分对于 CO₂ 产生和 释放的影响远小干温度,只有在极端干旱和大量降 雨的条件下,土壤水分才瞬时地影响 CO2 的产生速 率^[23, 24]。本研究表明, 虽然随着十壤 WFPS 增加, CO_2 的扩散受阻,在一定程度上增加了土壤 CO_2 的 积累 $(r = 0.105 \sim 0.393)$, 但土壤 CO₂ 浓度、地表 CO_2 通量与土壤 WFPS 之间均无显著线性相关(p>0.05)(表 2),同时土壤 WFPS 也仅能单独解释土 壤 CO_2 浓度和地表 CO_2 通量变异程度的 0.6~ 15.4%,出现这种现象的主要原因可能在于贵州喀 斯特地区的土层较薄,土壤保水能力差,一旦有降雨 发生,大量雨水易随地下径流损失掉。土壤 WFPS 在一年四季变化过程中很难达到土壤微生物永久性 萎蔫点或者超过田间持水量,不足以影响微生物与 植物根系活动,因此难以表现出含水量对土壤 CO₂ 产生的影响。同时如果水分变化范围太小,土壤

CO₂ 浓度和地表 CO₂ 通量受水分变化的影响也可能被其它因子的影响或系统误差所掩盖^[25]。

2.4 土壤 CO2 浓度对地表 CO2 通量的影响

土壤剖面 CO2 浓度取决于土壤 CO2 的产生和 传输,了解土壤剖面不同深度 CO₂ 的产生有助于更 好地理解地表 CO2 的释放机制和预测全球温度变 化^[26]。地表CO₂通量的影响因素很多,主要包括温 度、湿度、土壤 pH、土壤质地等,同时这些因素也强 烈地影响着土壤剖面 CO2 浓度的积累。贵州喀斯 特地区不同土地利用、不同深度土壤 CO2 浓度与地 表 CO2 通量的关系见图 2, 从图中看出, 不同深度二 者之间均具有显著的正相关关系,同时土壤 CO2 浓 度能单独解释地表 CO2 通量 32.4%~76.4%的变 异,特别是在森林、农田土壤的 10~20 cm 深度,二 者之间具有极显著的正相关关系 $(R^2 = 0.76; 0.62,$ p<0.01),这与其他研究结果是基本一致的^[8.9],这 进一步说明地表 CO2 的释放强烈依赖于土壤剖面 CO₂ 浓度的分布。正是由于二者之间良好的线性 关系,国内外学者通过 Fick 第一定律结合剖面 CO2 浓度梯度变化和土壤理化性质参数可以成功地模拟

测数据来看, 二者之间具有很好的一致性^[8,27], 但 Risk 等^[28] 认为当土壤极端干旱(体积含水量为 9%)时, 地表 CO₂ 通量与剖面 CO₂ 浓度的关系并不 理想, 表现出与气体扩散传输理论不一致的现象, 因 此通过土壤剖面 CO₂ 浓度梯度变化来模拟贵州喀 斯特地区地表 CO₂ 通量将是未来研究的一个重点。 因为它不仅有利于在减少土壤扰动的情况下认识土 壤 CO₂ 释放过程和机制, 同时也可以克服某些特殊 条件下(比如通量箱安装困难)地表 CO₂ 通量的测 定。

出地表 CO2 释放特征。从其中一些模拟结果和实

3 结 论

贵州喀斯特地区不同土地利用方式下土壤剖面 CO₂ 浓度和地表 CO₂ 通量均具有明显的季节变化 规律,总体上表现为:夏季土壤 CO₂ 浓度和地表 CO₂ 通量高,冬季低的特点。土壤温、湿度均在一 定程度上影响了土壤 CO₂ 的产生,但相对于湿度来 讲,不同土地利用方式土壤空气 CO₂ 浓度和地表 CO₂ 通量的变化规律与大气、土壤温度的关系更为 密切,随着温度升高二者均呈线性增加。此外,土壤 CO₂ 浓度与地表 CO₂ 通量之间具有显著正相关关 系,同时土壤 CO₂ 浓度能单独解释土壤 CO₂ 通量 32.4%~76.4%的变异,这进一步说明在今后的研 究中可以结合 Fick 定律和剖面 CO₂ 浓度梯度等参 数来模拟贵州喀斯特地区地表 CO₂ 的释放特征。

- [1] Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48(1): 7–20.
- [2] Drewitt G B, Black T A, Nesic Z, et al. Measuring forest floor CO₂ fluxes in a Douglas fir forest [J]. A griculture and Forest Meteorology, 2002, 110(4): 299-317.
- [3] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44B: 81-99.
- [4] Raich J W, Potter C S. Global patterns of carbon dioxide emission from soils [J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36.
- [5] Forster P, Ramaswamy V, Artaxo T, et al. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, et al. (eds.)]. Cambridge University Press Cambridge, United Kingdom and New York, NY, USA. 2007. [EB/OL]. http://www.ipcc.ch/pdf/assessment report/ar4/wg1/ar4-wg1-chapter2.pdf.
- [6] Buyanovsky G A, Wagner G H. Annual cycles of carbon dioxide level in soil air [J]. Soil Science Society of America ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [7] Amundson R G, Davidson E A. Carbon dioxide and nitrogenous gases in the soil atmosphere [J]. Journal of Geochemical Exploration, 1990, 38(1-2):13-41.
- [8] Jassal R, Black A, Novak M, et al. Relationship between soil CO₂ concentrations and forest—floor CO₂ effluxes [J]. Agriculture and Forest Meteorology, 2005, 130(3-4): 176-192.
- [9] 梁福源, 宋林华, 王静. 土壤 CO₂ 浓度昼夜变化及其对土壤 CO₂ 排放量的影响 J]. 地球科学进展, 2003, 22(2): 170-176.
- [10] 郑乐平. 土壤气体采样装置的研制[J]. 地质地球化学, 1999, 27(1): 113-114.
- [11] 程建中,李心清,周志红,等.西南喀斯特地区几种主要土地覆被下土壤CO₂-C通量研究[J].地球化学,2010,39 (3):258-265.
- [12] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
- [13] 陈明昌, 张强, 杨晋玲. 土壤硝态氮含量测定方法的选择和验证[]]. 山西农业科学, 1995, 23(1): 31-36.
- [14] Gunn J, Trudgill S T. Carbon dioxide production and concentrations in the soil atmosphere: A case study from New Zealand volcanic ash soils J. Catena, 1982, 9(1-2): 81-89.
- [15] Kucera C L, Kirkham D R. Soil respiration studies in tall grass prairie in Missouri [J]. Ecology, 1971, 52(5): 912-915.
- [16] 林丽莎,韩士杰,王跃思.长白山阔叶红松林土壤 CO₂释放通量[J].东北林业大学学报,2005,33(1):11-13.
- [17] 李孝良,陈效民,周炼川,等.西南喀斯特石漠化过程中土壤有机质组分及其影响因素[J].山地学报,2010,28(1): 56-62.
- [18] Oh N H, Kim H S, Richter D D. What regulates soil CO₂ concentrations? A modeling approach to CO₂ diffusion in deep soil profiles [J]. Environmental Engineering Science, 2005, 22(1):38-45.
- [19] Jassal R S, Black T A, Drewitt G B, et al. A model of the production and transport of CO₂ in soil: predicting soil concentrations and CO₂ efflux from a forest floor [J]. A gricultural and Forest Meteorology, 2004, 124(3-4): 219-236.
- [20] Kiefer R H. Soil carbon dioxide concentrations and climate in a humid subtropical environment [J]. The Professional Geographer, 1990, 42(2):182-194.
- [21] Rightmire C T. Seasonal variations in PCO₂ and Cl₃ content of soil atmosphere [J]. Water Resources Research, 1978, 14(4):691-692.
- [22] Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biology, 1998, 4(2): 217-227.
- [23] Anderson J M. Carbon dioxide evolution from two temperate, deciduous woodland soils [J]. Journal of Applied Ecology, 1973, 10(2): 361-378.
- [24] Edwards N T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor [J].
 Soil Science Society of America, 1975, 39(2); 361-365.
- [25] 陈全胜,李凌浩,韩兴国,等.水分对土壤呼吸的影响及其机理[]].生态学报,2003,23(5):972-978.
- [26] Hashimoto S, Tanaka N, Suzuki M, et al. Soil respiration and soil CO₂ concentration in a tropical forest, Thailand [J]. Journal of Forest Research, 2004, 9(1):75-79.
- [27] Pingintha N, Leclerc M Y, Beasley J P, et al. Assessment of the soil CO₂ gradient method for soil CO₂ efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient [J]. Tellus 2010, 62B:47-58.
- [28] Risk D, Kellman L, Beltrami H. Soil CO₂ production and surface flux at four climate observatories in eastern Canada
 [J]. Global Biogeochemical Cycles 2002, 16(4): 1122-1133.

Seasonal Variation and Relationship Between Soil CO₂ Concentrations and Surface CO₂ fluxes

CHENG Jian-zhong¹, LEE Xin-qing¹, ZHOU Zhi-hong^{1, 2},

WANG Bing¹, CHENG Hong-guang¹, XING Ying^{1, 2}, TANG Yuan^{1, 2}

 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;
 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract Seasonal variations in the concentrations of soil air CO_2 and surface CO_2 fluxes under different land uses were studied in the karst regions of Guizhou by GC technique for one year. The results showed that the seasonal variation regularities of soil CO_2 concentrations and surface CO_2 fluxes were very obvious, i.e., increasing from spring to summer and decreasing from autumn to winter in response to temperature and precipitation changes in this region. Subsurface CO_2 concentrations and surface CO_2 fluxes under different land uses were significantly positively correlated with air temperature and soil temperature at different depths. Soil moisture (WFPS) influenced soil CO_2 concentrations and surface fluxes to some extent, but in almost all fields, there was no obvious correlation between them. The correlation analysis results showed there was a significant and positive relationship between soil CO_2 concentrations and surface CO_2 fluxes strongly depended upon the accumulation and distribution of CO_2 concentrations in the soil profile.

Key words, soil CO₂ concentration; surface CO₂ flux; seasonal variation; temperature and moisture; karst region