文章编号:1008-0244(2001)04-27-08

萤石 Sr、Nd 同位素地球化学研究评述

许成,黄智龙,漆亮,李文博

(中国科学院地球化学研究所矿床地球化学开放实验室,贵州 贵阳 550002)

摘 要:本文通过大量实例综述了近年萤石 Sr. Nd 同位素在定年和示踪方面取得的进展,结果表明:萤石 Sm -Nd 同位素可以用于测定成矿作用的时代,但由于萤石 Nd 同位素初始值存在不均一性和受次生干扰的影响,所获数据最好用其它测年方法获得的数据加以验证;萤石 Sr. Nd 同位素组成是示踪成矿流体来源的有效 方法,利用 Sr. Nd 同位素组成还可定量估算出形成成矿流体不同端元所占的比例。

关键词: 萤石; Sr-Nd 同位素; 评述

中图分类号: P597 文献标识码: A

萤石(CaF2)是自然界最常见的氟化物矿物之 一,是一种广泛用于化工、冶金、玻璃陶瓷及精密 光学仪器等高新技术领域的重要矿物原料。自然 界的萤石既可以呈独立矿床产出,也可以在许多 金属(如 Pb、Zn、Au、Ag、W、Sb、REE 等)和非金属 (如重晶石等)矿床中呈脉石矿物产出,在有些金 属和非金属矿床中呈脉石矿物产出的萤石储量巨 大,本身具有综合利用价值,如内蒙古白云鄂博 REE-Nb-Fe 矿、贵州沿河丰水岭重晶石矿等。 众多文献资料表明^[1~3],萤石可出现在从中低盐 度的中低温热液型矿床到高盐度的高温岩浆型矿 床中,且其形成贯穿整个矿床的形成过程,因此这 种矿物中记录了许多有关成矿物质来源、成矿流 体来源与演化等方面的重要信息。可见,研究萤 石的地质、地球化学及成因、不仅对找寻萤石矿床 具有重要意义,而且对深入探讨与之共生矿床的 成因具有重要价值。

以往有关萤石结晶形态、晶体结构、物理性 质、光学性质等矿物学方面的研究已相当成熟,在 萤石化学成分、稀土元素、包裹体和稳定同位素组 成等地球化学方面的研究也取得了大量研究成 果,而萤石 Sr、Nd 同位素地球化学方面的研究程 度相对较低。自 60 年代末 Deans 等^[4] 成功地研

- 基金项目: 国家攀登计划预选项目(95-预-39)
- 第一作者简介: 许成(1977-), 男, 博士研究生, 现就读于中国科

学院地球化学研究所矿床地球化学专业 Journal Electronic Public

究了印度和巴基斯坦萤石的 Sr 同位素后, 国内外部分学者陆续进行了萤石 Sr、Nd 同位素地球化学研究, 近年来这方面的研究工作得到了长足发展, 积累了较为丰富的研究资料。本文主要综述利用 萤石 Sr、Nd 同位素测定矿床形成时代以及示踪成 矿流体来源方面的最新研究进展。

1 萤石Nd同位素定年

确定成矿时代是矿床成因研究的基础。目前 测定成矿年龄有U-Pb法、Pb-Pb法、K-Ar法、 Bb-Sr法以及裂变径迹法等多种方法,由于矿化 过程中常伴随多种蚀变作用以及矿化期后各种热 扰动事件(如构造活动、岩浆作用等),上述定年法 测定的对象——岩石或单矿物将受到影响,所获 得的年龄值往往具有多解性。虽然邱华宁^{7]}开发 的流体包裹体⁴⁰Ar-³⁹Ar 定年技术避免了岩石或 单矿物受矿化过程中蚀变作用和矿化期后各种热 扰动事件的影响,可直接获得成矿年龄,但该方法 制样难度大、价格昂贵,且成功率偏低,目前还没 有普及。相比之下,矿床中的脉石矿物萤石是成 矿过程中形成的矿物,其中稀土含量受矿化过程 中蚀变作用和矿化期后各种热扰动事件的影响相 对较小,且稀土元素之间具有较明显的分馏现象, Sm/Nd 比值范围大, 是一种应用 Nd 同位素测定 成矿年龄较为理想的矿物。值得说明的是,由于 萤石中 Rb 含量极低,部分甚至低于 ICP-MS 的 检测值, 因而⁸⁷Rb/⁸⁶Sr 比值太小, 失去/了 Sr 同位 smmg House. All rights reserved. http://www.cnki

收稿日期: 2000-10-25; 修回日期: 2001-11-29

素定年的意义。

1.1 萤石 Nd 同位素定年实例

Chesley 等^[8]利用萤石 Sm—Nd 法测定了英格 兰西南部与花岗岩有关的锡矿带成矿时代。测定 Sm—Nd 时代的萤石采自 South Confty 矿床和 Wheal Jane 矿床,其中 Wheal Jane 矿床的矿化围岩 为上泥盆统 Mylor 组板岩和页岩,二云母花岗岩 在矿区广泛出露, South Confty 矿床矿化切割了花 岗岩和 Mylor 组地层。两矿床中萤石的 Sm、Nd 含 量变化超过了两个数量级,¹⁴⁷ Sm/¹⁴⁴Nd 比值变化 在 0.12~0.95 之间。从图 1 可见,两矿区的萤石 均拟合出较好的 Sm—Nd 等时线,获得 South Confty 矿床和 Wheal Jane 矿床成矿时代分别为 266±3 Ma 和 259±7Ma,说明两矿床形成于同一时期;据 此计算出两矿床萤石的 ϵ_{Nd} 分别为—6.5 和—7.8, 不具明显差异,说明两矿床成矿物质均由矿区花 岗岩提供。

石矿床,主要分布在 Hicks Dome 矿区和 Cave — in — Rock 矿区,矿床产于海相碳酸盐岩地层中,矿 带西边有岩浆岩呈脉状、角砾和岩株出露,有资料 表明两矿区深部存在岩浆岩杂岩体,矿床的主要 矿石矿物是萤石(占 60%~90%),其次是闪锌 矿、方铅矿和黄铜矿等,由于缺乏准确的成矿时代 资料,故有关矿床成因众说纷纭。Chesley 等⁹¹ 在 研究矿床中萤石的产出地质特征和稀土元素地球 化学的基础上,用Sm—Nd 法测定了萤石的年龄。 图 2 是测定结果,可见矿区内萤石的¹⁴⁷Sm/¹⁴⁴Nd 变化范围较宽(0.1~0.9),拟合出较好的Sm—Nd 等时线,获得萤石的年龄值为277±16 Ma, ϵ_{Nd} 为 —13,该年龄值与 Brannon 等^[10]用 Rb—Sr 法测定 矿床中闪锌矿所获得的年龄值269±6 Ma 和270 ±4 Ma 非常接近,因而可代表矿床的成矿年龄。 另外,该年龄值与产出 Hicks Dome 矿区未蚀变侵 入岩角砾的⁴⁰Ar/³⁹Ar 年龄值272.7±1.4 Ma 和 271.7±1.4 Ma^[11]也基本一致,据此 Chesley 等⁹ 认为岩浆活动在研究区 MVT 矿床成矿过程中具 有提供热源和成矿流体的重要作用。

图 2 美国伊利诺斯州和肯塔基州之间 MVT 矿床萤石 Sm-Nd等时线测定结果(据 Chesley 等^[9])

Fig. 2. Sm-Nd isochrons of fluorite in MVT deposits between Illinois and Kentucky America.

Galindo 等^[5]利用萤石 Sm-Nd 同位素测定了 西班牙 Sierra del Guadarrama 地区产出海西期花岗 岩中富萤石-重晶石(+金属硫化物)矿脉的形成 时代。 萤石采自 Asturiana 矿区和 San Eusebio 矿 区,两矿区的赋矿围岩均为同时代的斑状黑云母 二长花岗岩。测定结果显示萤石的¹⁴⁷Sm/¹⁴⁴Nd 变 化范围在 0.153~0.405,¹⁴³Nd/¹⁴⁴Nd 在 0.512167 ~0.512430,在¹⁴⁷Sm/¹⁴⁴Nd⁻¹⁴³Nd/¹⁴⁴Nd 图(略)中 拟合出较好的等时线,获得年龄值为145土 18Ma、¹⁴³Nd/¹⁴⁴Nd 初始比值为 0.51205 ±0.0003, 由此计算的 εNd 为一7.6 ~ - 8.3。该年龄值与 Casquet 等^[12] 测得的与萤石一重晶石矿脉空间上 密切共生的绢英化蚀变矿物 K-Ar 年龄(152 ± 4Ma 和 156 ±6Ma) 相近。据此, Galindo 等⁵ 认为 - 重晶石矿脉是区域内晚侏罗纪与北 研究区萤石

大西洋裂解过程中的张性断裂活动有关的热液活 动产物。

Galindo 等^[13] 还利用萤石 Sm—Nd 同位素测 定了阿根延 Sierras Pampeanas 地区 La Nueva 和 Bubu 萤石矿床的成矿时代,获得的年龄分别为 131 ± 22 Ma 和 117 ± 26 Ma、¹⁴³Nd/¹⁴⁴Nd 初始比值 分别为 0. 512045 ± 0. 000032 和 0. 512099 ± 0. 000024, 计算的 ϵ_{Nd} 分别为—7. 8~—8. 8和—7. 0 ~—8. 3,可见两矿床具有相同的成矿机制,可能 与区域内冈瓦纳大陆延升(早白垩纪)以及与大西 洋裂解过程中岩浆活动(晚侏罗纪)有关。

1.2 萤石 Nd 同位素定年评述

虽然上述实例成功地利用萤石 Nd 同位素确 定了矿床的成矿时代,但该方法也存在些问题。 Nagler 等^{14]} 在研究瑞士阿尔卑斯山脉中西部中温 热液脉岩过程中发现,萤石的 Sm—Nd 体系的初 始同位素组成存在不均一性和明显受次生作用的 影响,拟合的 Sm—Nd 等时线年龄与地质事件不 吻合; Nagler 等^{14]} 进一步的实验研究结果(表 1) 表明,受水淋滤后萤石的 Sm、Nd 含量明显降低, $(2^{147}Sm/^{144}Nd$ 比值变化不明显,并没有受到严重 的分裂,受水淋滤后萤石再受 0. 18 mol/L HCl 淋 滤,萤石的 Sm、Nd 含量明显升高,尤其是 Nd 含量 升高幅度更大,而¹⁴⁷Sm/¹⁴⁴Nd 比值明显降低,因而 次生流体循环流动使萤石发生溶解—沉淀的过 程,从而改变萤石的 Sm—Nd 体系,拟合出错误的 Sm—Nd 等时线年龄。Rosing^[15] 的研究结果也表 明,次生过程将改变¹⁴⁷ Sm/¹⁴⁴Nd 比值,从而影响 Sm—Nd 同位素定年。

表1 瑞士 Mont—Blanc 地区萤石 Sm-Nd 同位素分析结果 Table 1. Sm-Nd isotopic analyses of fluorite in Mont-Blanc, Swiss

样品	$Sm(imes 10^{-6})$	$Nd(\times 10^{-6})$	¹⁴⁷ Sm⁄ ¹⁴⁴ Nd	$^{143}N d' ^{144}Nd$	$\pm 2\sigma_{ m m}$
萤石(无色)	4. 02	7.30	0. 3325	0. 512400	± 0.000022
萤石(白色)	2.40	4. 36	0. 3328	0. 512398	± 0.000022
萤石(粉红色)	4. 31	8. 92	0. 2917	0. 512330	± 0.000026
萤石(棕色)	4. 34	21.3	0. 1235	0. 512337	± 0.000025
萤石(无色)	3. 77	8. 71	0. 2613	0. 512356	± 0.000052
萤石(粉红色)	4. 32	7.50	0. 3480	0. 512336	± 0.000023
实验后的萤石 $-1^{\mathbb{O}}$	0.116	0. 294	0. 2389		
实验后的萤石 -2^{2}	11.2	74.9	0. 0901	0. 512245	± 0.000020

注: 原始资料据文献[14 ; ① 为无色萤石在约 100 ℃条件下被 H₂O 淋滤 3 个星期; ② 为被 H₂O 淋滤 3 个星期后的萤石再在 100 ℃条件下被 0. 18 mol/L HCl 淋滤。

从上述萤石 Nd 同位素定年实例中可见, 萤 石¹⁴⁷Sm/¹⁴⁴Nd 比值变化范围宽是拟合出较好 Sm -Nd 等时线(即成功获得年龄值)的重要条件之 -。Menuge 等^[16]认为, 萤石¹⁴⁷Sm/¹⁴⁴Nd 比值变化 范围宽并不是拟合出较好 Sm-Nd 等时线的唯一 条件, 无论是萤石矿床还是其它矿床中的萤石脉 石矿物一定范围的¹⁴⁷Sm/¹⁴⁴Nd 比值总是存在的, 因为氟稀土配合物控制了萤石/流体稀土的配分 系数, Nd-F 配合物的稳定常数相对大于 Sm-F 配合物。Menuge 等^[16]总结了利用萤石 Sm-Nd 同位素定年的基本条件: 样品是单一的手标本, 有 相同的生长相, 并且不同矿脉中 Nd 同位素的不 均一性由围岩的 Nd 同位素成分控制。

综上所述,由于成矿过程中 Nd 同位素交换 造成萤石可能的 Nd 同位素初始值分散,加上后 期流体循环流动使萤石发生溶解一沉淀的过程影 响其 Sm—Nd 体系, 萤石 Sm—Nd 同位素定年方法 并不完善, 需要借助其它地质年代测定法综合确 定。如李长江等^[17] 就利用萤石裂变径迹法辅以 全岩 K—Ar 法成功地确定了我国浙江萤石矿床 的形成时代。

2 萤石 Sr、Nd 同位素示踪

2.1 萤石 Sr 同位素示踪

萤石 Sr 同位素组成是示踪成矿物质和成矿 流体来源的重要手段之一。由于 Sr 与 Ca 相似的 地球化学特征,两者易于发生类质同象相互替代, 而 Rb 则相反,不易与 Ca 发生类质同象相互替代, 因而萤石是一种相对富 Sr 而贫 Rb 的矿物,如笔 者测定了四川冕宁稀土矿床中 20 件萤石样品的 微量元素含量,其中 Sr 含量在 2042×10⁻⁶~6173 ×10⁻⁶ 平均 3210×10⁻⁶, 而 Rb 含量大都低于检 测限,最高仅为 1.79×10⁻⁶; Deer 等^{18]} 的研究结 果表明, 萤石中 Ca 的位置只接受少量的 Sr 而不 接受 Rb。正因为萤石是一种相对富 Sr 而贫 Rb 的矿物,在成矿过程中这种矿物的 Sr 同位素组成 不受⁸⁷ Bb 衰变的影响,较好地保存了成矿流体本 身的 Sr 同位素组成信息,因而萤石 Sr 同位素组成 能较好地示踪成矿流体的来源。

Barbieri 等¹⁹利用萤石 Sr 同位素组成确定了 意大利西西里岛西北部产出石灰岩地层中的热液 萤石(和重晶石)成矿流体的来源,该区萤石 的⁸⁷Sr/⁸⁶Sr比值为 0.70785~0.70790, 与石灰岩地 层的⁸⁷Sr/⁸⁶Sr比值(0.70752~0.70789)相近,因而 认为形成萤石的绝大部分 Ca 源于石灰岩地层。 墨西哥东马德雷山脉萤石矿化的围岩也是石灰岩 地层, 矿区有富 F 火成岩出露。Ruiz 等^{20]} 测定萤 石的⁸⁷Sr/⁸⁶Sr比值为 0.70743~0.70745,该比值相 对低于矿区石灰岩地层的⁸⁷Sr/⁸⁶Sr 比值(0.70758 ~0.70772), 高于富 F 火成岩的⁸⁷ Sr/⁸⁶ Sr 比值 (0.7063),考虑到矿区其它古生代基岩和沉积岩 的⁸⁷Sr/⁸⁶Sr比值大于石灰岩, Ruiz 等^[20] 认为萤石 成矿物质和成矿流体由石灰岩地层和富 F 火成岩 共同提供,这与 Kesler^[2]提出的萤石成矿模式相 似,即部分来源于火成岩的富 F 流体与富 Ca 围岩 相互作用成矿 $(2F^- + H_2O + CaCO_3 \rightarrow CaF_2 +$ $HCO_3^++OH^-)_{\circ}$

美国 Deardroff 萤石矿床是上述列举的伊利诺 伊一肯塔基 MVT 矿带中的代表矿床,该矿床萤石 与方解石、重晶石及硫化物(方铅矿和闪锌矿等) 共生, 萤石形成相对早于方解石、重晶石和硫化 物。图3是该矿床碳酸盐岩地层(赋矿围岩)、萤 石、方解石和重晶石的 Sr 同位素组成测定结果, 可见萤石的⁸⁷Sr/⁸⁶Sr比值明显高于赋矿碳酸盐岩 地层, 暗示 成矿流体为多来源的混合流体。 Richardson 等^[2] 根据该区萤石流体包裹体和稳定 同位素资料,认为成矿流体来源于盆地热卤水; Ruiz 等^[23] 考虑到盆地流体通常并不富含 F, 认为 成矿流体中的 F 可能主要有三种来源, 即与富 F 火成岩有关的岩浆流体、从基岩中淋滤出F、从沉 积岩中淋滤出 F。从图 3 还可看出, 萤石 的⁸⁷Sr/⁸⁶Sr比值也高于方解石和重晶石,早阶段萤 石的⁸⁷Sr/⁸⁶Sr比值相对高于晚阶段萤石,方解石 (相对晚阶段形成)的⁸⁷Sr/⁸⁶Sr比值接近碳酸盐岩 地层,这些特征说明萤石成矿过程中伴随成矿流 体中放射性成因 Sr 逐渐减少, Ruiz 等^{23]}认为这种

现象可能与成矿流体来源的端元组分含量变化有 关,即早期成矿流体中相对高⁸⁷ Sr/⁸⁶ Sr 比值的端 元组分占优势,而晚期成矿流体中则以相对低⁸⁷ Sr/⁸⁶Sr比值的端元为主。

图 3 美国 Deardroff 矿区碳酸盐岩围岩、萤石、方解石 和重晶石的 Sr 同位素组成 原始资料据文献[22];箭头指向晚期。

Fig. 3. Strontium isotopic composition of limestone, fluorite, calcite and barite from Deardroff of America.

2.2 萤石 Nd 同位素示踪

萤石 Nd 同位素组成在探讨矿床成因过程中 的意义已在"萤石同位素定年实例"中提及,由于 萤石中的稀土元素主要来源于成矿流体中的 F-REE 配合物,所以其 Nd 同位素组成也是判别成 矿流体(尤其是 F)来源的有力工具之一。

印度 Amba Dongar 萤石矿床产于碳酸岩中, Simonetti 等^[24] 测得矿床中萤石的¹⁴³Nd/¹⁴⁴Nd 比值 在0.51240~0.51247之间, 与碳酸岩的¹⁴³ Nd/¹⁴⁴ Nd 比值(0.51248~0.51253)相似,明显不同于矿 区其它地层岩石的¹⁴³Nd/¹⁴⁴Nd 比值(0.51122~0. 51149),因而认为形成萤石的F大部分来源于正 在固化的碳酸岩岩浆分异的流体, Jago 等^[29] 的实 验结果支持这种观点,即碳酸岩岩浆在相对低压 条件下能分异出相对富 F 的流体,但萤石 的⁸⁷Sr/⁸⁶Sr比值(0.70910~0.71425)明显高于碳酸 岩(0.70549~0.70628)。Simonetti 等²⁴认为该区 成矿流体中的 Ca 除由碳酸岩提供外,还有地壳来 源,矿区萤石 Pb 同位素组成证实了这种推断。

巴西 Ribeira 萤石矿区由 Mato Preto、Braz、Mato Dentro、Volta Grande、Sete Barras 等多个矿床组成, Ronchi 等[2q] 根据矿床的围岩特征、矿物组成、矿

shing House. All rights reserved. http://www.cnki.net

30

31

石类型等特征将该区萤石矿床分成三种类型,即 层控矿床 (如 Volta Grande、Sete Barras 和 Mato Dentro 等)、脉状矿床(也称构造充填矿床;如 Braz 等) 和岩浆矿床(与碳酸岩有关:如 Mato Preto 等)。矿 床萤石 Nd 同位素分析结果显示, 三个层控矿床 的¹⁴³Nd/¹⁴⁴Nd 比值和 ε_{Nd}值均不具明显差别(变化 范围分别为 0.511481~0.511843 和-15.5~-22.4), 脉状矿床的¹⁴³Nd/¹⁴⁴Nd 比值和 ɛмd值(变化 范围分别为 0.511849~0.511910 和一14.2~-15.4)与层控矿床相近,而岩浆矿床的¹⁴³Nd/¹⁴⁴Nd 比值和 ENd 值(变化范围分别为 0.512578~0. 512609和-0.6~-1.2)与层控矿床和脉状矿床 相差甚远。在图4中层控矿床和脉状矿床具有较 好的线性关系。据此, Ronchi 等^[26] 认为 Ribeira 萤 石矿区层控矿床和脉状矿床具有相同的物质来 源,而岩浆矿床的成矿物质具有另外一种来源。

图 4 巴西 Ribeira 矿区萤石 T_(DM)— 1/[(¹⁴⁷Sm/¹⁴⁴Nd)_{DMo} - (¹⁴⁷Sm/¹⁴⁴Nd)_{sample}] 图

原始资料据文献[26];图中T_{OM})为模式年龄

2.3 萤石 Sr、Nd 同位素定量示踪

成矿流体具有"多源性"已被广大地质工作者 所认可,换句话说,成矿流体即为来自不同端元流 体的"混合流体"。Sr、Nd 同位素组成是定量估算 成矿流体中不同端元流体所占比例的有效方法之 一,最简单和实用的是同位素二元混合模式,该模 式在研究岩浆混合作用和成矿流体混合过程方面 已得到成功应用^[27],在此不再详述。本文旨在简 单介绍 Li,答^[28] 利用萤石 Sr、Nd 同位素组成探讨 浙江武义地区杨家萤石矿床成矿流体(主要指F) 来源过程中提出的三元混合模式。

杨家萤石矿床产于上侏罗统一下白垩统的火 山碎屑岩,矿化围岩以流纹质晶屑凝灰岩和熔结 凝灰岩为主,基岩为前寒武纪变质岩,因而围岩、 基岩和地幔均可能为成矿流体提供 F。Li 等^{28]} 提出了如下计算三种 F 来源所占比例的公式:

 $E_{1} = (D_{1}/D_{2} \times C_{1}/C_{2})/(D_{1}/D_{2} \times C_{1}/C_{2} + D_{3}/D_{2})$ $\times C_{3}/C_{2} + 1)$ $E_{2} = 1/(D_{1}/D_{2} \times C_{1}/C_{2} + D_{3}/D_{2} \times C_{3}/C_{2} + 1)$ $E_{3} = 1 - (E_{1} + E_{2})$

式中 E_1 、 E_2 、 E_3 为源自围岩、基岩和地幔 F 的所占 比例, C_1 、 C_2 、 C_3 为三种来源的 F/Sr 或 F/Nd, D_1 、 D_2 、 D_3 由下列公式计算:

	XM	X2	\mathbf{X}_{3}		X ₁	$\mathbf{X}_{\mathbf{M}}$	X ₃
$D_1 =$	YM	Y_2	Y_3	$D_2 =$	· Y1	$\mathbf{Y}_{\mathbf{M}}$	Y ₃
	1	1 1			1	1 1	
	X ₁	$\mathbf{X}_{\mathbf{M}}$	\mathbf{X}_{3}				
$D_3 =$	Y ₁	\mathbf{Y}_2	${\rm Y}_{\rm M}$				
	1	1 1					

式中 X₁、X₂、X₃ 为三种来源的⁸⁷Sr/⁸⁶Sr 比值, Y₁、 Y₂、Y₃ 为三种来源的¹⁴³Nd/¹⁴⁴Nd 比值, X_M、Y_M 分 别代表萤石的 Sr、Nd 含量。

将表 2 中的数据代入上式, 当 C_1 、 C_2 、 C_3 为三 种来源的 F/Sr 时, 计算出 E_1 =0.17、 E_2 =0.78、 E_3 =0.05; 当 C_1 、 C_2 、 C_3 为三种来源的 F/Nd 时, 计算 出 E_1 =0.25、 E_2 =0.60、 E_3 =0.15。计算结果均说 明杨家萤石矿床成矿流体中的 F 主要由前寒武纪 变质基岩提供, 少部分来源于矿化围岩, 同时有极 少量的地幔 F 参与成矿。

2.4 萤石 Sr、Nd 同位素示踪评述

以上实例均表明萤石 Sr、Nd 同位素组成在示 踪成矿流体来源方面具有重要意义,从示踪结果 看,形成萤石的成矿流体中 Ca 和 F 的来源并不完 全相同, Eill^[29] 的实验研究也表明,富 F 的热液并 不一定富 Ca。因此,萤石成矿流体的形成一般都 存在富 F 热液与富 Ca 围岩相互作用的过程,富 F 热液与围岩进行物质交换过程中, Sr 同位素组成 出现有规律的变化。但 Sallet等^[30] 认为萤 石⁸⁷Sr/⁸⁶Sr 比值的变化可能不是萤石沉淀作用或 物质平衡后重新分配的结果,而是⁸⁷ Rb 在富 F、高 Bb/Sr 的岩浆中长时间结晶分异作用的结果,根。

1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.j

2001 年

表 2 杨家萤石矿床成矿流体来源定量示踪有关参数

Table 2. Parameters for quantitatively tracing ore-fluid source in Yangjia fluorite deposit, China

端元	$F(\times 10^{-6})$	$\mathrm{Sr}~(imes~10^{-6})$	Nd (\times 10 ⁻⁶)	F/Nd	F⁄ Sr	¹⁴³ Nd⁄ ¹⁴⁴ Nd (均值)	⁸⁷ Sr/ ⁸⁶ Sr (均值)
围岩	605	340	32	1. 78	18.91	0. 51 1340	0.7140
基岩	910	177	31	5. 14	29.35	0. 512034	0.7936
上地幔	100	120	5	0. 83	20.00	0. 512537	0.7039
萤石						0. 51 1902	0.7520

注: 原始资料据文献[28]。

据以下 Cavazzini^[31] 提出的公式,还可大致估计出 萤石的结晶时间。

 $8^{87} \text{Sr}/8^{6} \text{Sr} = (8^{7} \text{Sr}/8^{6} \text{Sr})_{0} + \Lambda R_{0} (8^{7} \text{Sr}/8^{6} \text{Sr})_{0}$ $\times t \times (1 - F^{b+1})/(b+1)$ $b = D_{Bb} - D_{Sr}$

式中: $\Lambda = 1.42 \times 10^{-11} a^{-1}$, $R_0 = ({}^{87}\text{Rb}/{}^{86}\text{Sr})_0$, t 为结晶时间, F 为残余熔体比例, D_{Rb} 、 D_{Sr} 分别为Rb、Sr 分配系数。

3 结 语

以上是对近年萤石 Sr、Nd 同位素定年和示踪 研究的综述,结果表明:萤石 Sm—Nd 同位素可以 用于测定成矿作用的时代,但由于萤石 Nd 同位 素初始值存在不均一性和受次生干扰的影响,所 获数据最好用其它测年方法获得的数据加以验 证;萤石 Sr、Nd 同位素组成是示踪成矿流体来源 的有效方法,由于萤石中 Sr 与 Ca 有相似的地球 化学性质、稀土元素大部分来源于成矿流体中 F 一稀土配合物,因而 Sr 同位素组成多用于示踪成 矿流体中 Ca 的来源,Nd 同位素组成则是判别成 矿流体中 F 来源的重要手段,并且利用 Sr、Nd 同 位素组成还可定量估算出形成成矿流体不同端元 所占的比例。

值得注意的是,本文所举实例大都是萤石矿 床,其实萤石在许多从中低盐度的中低温热液型 矿床到高盐度的高温岩浆型金属(如 Pb、Zn、Au、 Ag、W、Sb、REE 等)和非金属(如重晶石等)矿床呈 脉石矿物产出^[1~5],且其形成贯穿整个矿床的形 成过程,这种矿物中记录了许多有关成矿物质来 源、成矿流体来源与演化等方面的重要信息,因此 对这些矿床中萤石的 Sr、Nd 同位素地球化学的研 究,在确定矿床形成时代以及探讨矿床成因方面 同样具有重要意义。

参考文献

- [1] Kesler S E. Geochemistry of Manto fluorite deposits northern Coahuila, Mexico [J]. Econ. Geol., 1977, 72: 204~218.
- [2] Stong D F, Fryer B J. Genesis of the St. Lawrence fluorspar deposites as indicated by fluid inclusion, REE and isotopic data[J]. Econ. Geol., 1984, 79: 142~158.
- [3] Ekambaram V, Brookins D G. REE geochemistry of fluorite-carbonate deposits in western Montana, USA[J]. Chem. Geol., 1986, 54: 319~331.
- [4] Akande O, Mucke A. Mineralogical textural and paragenetic studies of the Pb-Zn-Cu mineralization in the lower Benue Trough (Nigerica) and their genetic implication [J]. J. Afr. Earth Sci., 1989, 9: 23~29.
- [5] Galindo C, Tomos F. The age and origin of barite-fluorite (Pb-Zn) veins of the Sierra Del Guadarrama (Spannish Central, Spain): a radiogenic (Nd-Sr) and stable isotope study[J]. Chem. Geol., 1994, 112: 351 ~ 364.
- [6] Deans T, Powell J I. Trace elements and strontium isotopes in carbonatites fluorites and limestone from India and Pakistan[J]. Nature, 1968, 218; 750~752.
- [7] 邱华宁. 流体包裹体 40Ar-39Ar 计时技术及其矿床定年应用[J]. 矿物岩石地球化学通报, 1999, 18(2): 71~78.
- [8] Chesley J T, Halliday A N, Scrivener R C. Samanium— neodymium direct dating of fluorite mineralization [J]. Science, 1991, 252: 949~951.
- [9] Chesley J T, Halliday A N, Kyser T K, Spry P G. Direct dating of Mississippi Valley-type mineralization: use of Sm-Nd in fluorite 21994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [10] Brannon J C. Podesk F A, McLimans R K. A Permian Rb—Sr age for sphalerite from the Upper Mississippi Valley zinc-lead district Wisconsin[J]. Nature, 1992, 356: 509~511.
- [11] Snee L W, Hayes T H. 40Ar/39Ar geochronology of intrusive rocks and Mississippi Valley-type mineralization and alteration from the Illinois-Kentuck fluorspar district [abs.] [R]. U S Geol Sur Open-File Report, 1992, 92-1: 59~60.
- [12] Casquet C, Caballero J M, Galindo C, et al. Dating of hydrothermal events in the Sierra del Guadarrama Iberian Hercynian Belt, Spain[J]. *Terra Abstr.*, 1991, 3: 2.
- [13] Galindo G, Pankhurst R J, Casquet C, et al. Age. Sr- and Nd isotope systematics and origin of teo fluorite lodes. Sierras Pampeanas. Argentina J. Inter. Geol. Rov., 1997, 39: 948~954.
- [14] Nagler Th F, Pettke Th, Marshall D. Initial isotopic heterogeneity and second disturbance of the Sm⁻ Nd system in fluorite and fluid inclusions: a study on mesothermal vein from the central and western Swiss Alps J. Chem. Geol., 1995, 125: 241~248.
- [15] Rosing M T. The theoretical effect metasomatismon Sm⁻ Nd isotopic systems [J]. Geochim. Cosmochim. Acta, 1990, 54: 1337 ~1341.
- [16] Menuge J F, Feely M. Origin and granite alteration effect of hydrothermal fluid: isotopic evidence from fluorite veins. Co. Galway, Ireland [J]. *Mineral Deposit*, 1997, 32: 34~43.
- [17] 李长江,蒋叙良.浙江萤石矿床的裂变径迹年龄测定及有关问题讨论[J].地球化学,1989,(2):181~188.
- [18] Deer W A, Howie R A. An introduction to the forming minerals M]. New York: Longman Press. 1966, 511 ~ 515.
- [19] Barbieri M, Bellanca A. Use of strontium isotopes to determine the source of hydrothermal fluorite and barite from northwesterm Sicily (Italy) [J]. Chem. Geol., 1987, 66: 273~278.
- [20] Ruiz J, Kesler S E. Strontium isotope geochemistry of fluorite mineralization associated with fluorine-rich igneous rocks from the Sierra Madre occidental. Mexico: possible exploration significance[J]. *Econ. Geol.*, 1985, 80: 33~42.
- [21] Kesler S E. Geochemistry of Manto fluorite deposits northern Coahuila, Mexico J. Econ. Geol., 1977, 72: 204~218.
- [22] Richardson C K, Pinckney D M. The chemical and thermal evolution of the fluids in the cave—in—rock fluorspar district, Illinois
 [J]. Econ. Geol., 1984, 79: 1833~1856.
- [23] Ruiz J, Richardson C K. Strontium isotope geochemistry of fluorite, calcite and barite of the cave—in—rock fluorite district, Illinois[J]. Econ. Geol., 1988, 88: 203 ~ 210.
- [24] Simonetti A, Bell k. Nd, Pd, and Sr isotope systematics of fluorite at the Amba Dongar carbonatite complex, India: evidence for hydrothermal and crustal fluid mixing J. Econ. Geol., 1995, 90: 2018~2027.
- [25] Jago B C, Gittins J. The role of fluorite in carbonatite magna evolution [J]. Nature, 1991, 349: 56~58.
- [26] Ronchi L H, Touray J C. The Ribeira fluorite district, south Brazil J. Mineral Deposit, 1993, 28: 240~252.
- [27] 中国科学院地球化学研究所. 高等地球化学 M . 北京: 科学出版社. 1998 203~241.
- [28] Li C J. Wang G W. Isotopic geochemistry of Chinese fluorite deposits J. Inter. Geol. Rev., 1996, 38: 1054~1067.
- [29] Ellis J.A. Explored geothermal systems. In: Geochemistry of Hydrothermal Ore Deposits (Barnes H L. Eds) [M]. New York: Wiley Interscience. 1979, 632~678.
- [30] Sallet R. Moritz R. Fluorite 87Sr/ 86Sr and REE constraints on fluid-melt relation. crystallization time span and bulk DSr of e-volved high-silica granites, Tabuleiro granites, Santa Catarina, Brazil[J]. Chem. Geol., 2000, 164: 81~92.
- [31] Cavazzini G. Increase of 87Sr' 86Sr in residual liquids of high Rb/Sr magmas that evolve by fractional crystallization [J]. Chem. Geol., 1994, 118: 321~326.

Sr-Nd ISOTOPE GEOCHEMISTRY OF FLUORITES—A REVIEW

Xu Cheng, Huang Zhilong, Qi liang, Li Wenbo (Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002)

Abstract

In recent years, great advance has been made in Sr-Nd isotope geochemistry of fluorites, especially in dating and tracing. Detailed Sr-Nd isotopic geochemistry study of fluorites shows: (1) the Sm-Nd isotope dating of fluorites may directly indicate metallogenetic epoch, but because of initial isotopic heterogeneity and secondary disturbance of the Sm-Nd system in fluorites, the age of ore-formation requires confirmation by other independent geochronometers, (2) it is very useful to trace the origin and quantitatively estimate the end-member ratios of ore-forming fluids in terms of the Sr-Nd isotopic composition of fluorites.

Key words: fluorite; Sr-Nd isotope; review