新疆东准噶尔野马泉花岗岩体的年龄和 地球化学特征

甘林^{1,2} 唐红峰^{1**} 韩宇捷^{1,2} GAN Lin^{1, 2}, TANG HongFeng¹** and HAN YuJie^{1, 2}

1. 中国科学院地球化学研究所地球深部物质与流体作用地球化学研究室,贵阳 550002

2. 中国科学院研究生院,北京 100049

1. Laboratory for Study of the Earth's Interior and Geofluids, Institute of Geochemistry, Chinese Aacdemy of Sciences, Guiyang 550002, China

2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China 2010-05-01 收稿, 2010-06-29 改回.

Gan L, Tang HF and Han YJ. 2010. Geochronology and geochemical characteristics of the Yemaquan granitic pluton in East Junggar, Xinjiang. Acta Petrologica Sinica, 26(8): 2374 – 2388

Abstract Yemaquan granitic pluton in East Junggar of Xinjiang is a granitic complex, which dominantly consists of granodiorite, monzogranite, and alkali-feldspar granite. These rocks have nearly coincident zircon U-Pb ages (~300Ma) within errors, suggesting that this pluton was emplaced in Late Carboniferous by the post-collisional magmatic activity in East Junggar. The geochemical compositions show that all of these rocks are metaluminous, and their major elements and trace elements, such as CaO, Al₂O₃, Na₂O, K2O, Rb, Sr have obviously linear relationship with SiO2. All these rocks display similar characteristics in incompatible-element spidergrams and REE patterns, and with SiO₂ content increasing, their negative Eu anomalies become stronger. In addition, in situ Hf isotope analysis of zircons reveal that the rocks in the Yemaquan pluton have much close Hf isotopic compositions, their $\varepsilon_{\rm Hf}(t)$ values ranging from +11.8 to +12.7. According to the age and geochemical characteristics, we argue that the Yemaquan granitic complex was probably formed by the same magma which experienced some evolution.

Key words Zircon U-Pb age; Hf isotopic composition; Magmatic evolution; Yemaquan granitic pluton; East Junggar; Xinjiang

新疆东准噶尔野马泉花岗岩体是一个主要由花岗闪长岩、二长花岗岩和碱长花岗岩组成的复式花岗岩体。三种 摘 要 岩石的锆石 U-Pb 年龄在误差范围内有很好的一致性(~300Ma),指示野马泉岩体是在晚石炭世侵位的,也属于东准噶尔地区 后碰撞阶段的岩浆作用产物。元素地球化学组成表明,花岗闪长岩、二长花岗岩和碱长花岗岩均属于准铝质,其主量元素和 微量元素如 CaO、Al,O、、Na,O、K,O、Rb、Sr 与 SiO, 之间有明显的线性关系, 三种岩石在不相容元素蛛网图和稀土元素配分模 式上均表现出相似的特征,Eu负异常程度也随着SiO,含量的增加而提高。此外,野马泉岩体不同岩石有非常近似的Hf同位 素组成,其 ε_{HI}(t)值为+11.8~+12.7。因此,年龄结果和地球化学特征说明,野马泉复式花岗岩体很可能是由同源岩浆通过 一定的岩浆演化形成的。

关键词 锆石 U-Pb 年龄; Hf 同位素组成; 岩浆演化; 野马泉花岗岩体; 东准噶尔; 新疆 中图法分类号 P588. 121

^{*} 本文受国家自然科学基金(40772044)和南京大学内生金属矿床成矿机制研究国家重点实验室开放基金(2009-15-9-8)联合资助. 第一作者简介: 甘林,男,1983 年生,硕士研究生,岩石学专业,E-mail: glcumt@163.com

通讯作者: 唐红峰, 男, 1963年生, 研究员, 岩石学和地球化学专业, E-mail: tanghongfeng@ vip. gyig. ac. cn

1 引言

作为中亚造山带的重要组成部分,包括天山-准噶尔-阿尔泰在内的新疆北部地区以其完整的后碰撞演化历史(从主碰撞、后碰撞到板内环境)、强烈的后碰撞构造-岩浆-成矿活动为显著特征,从而成为研究后碰撞构造-成矿的理想地区,而受到广泛关注(如肖序常等,1992;韩宝福等,1999;Chen and Jahn, 2004;李锦轶等,2006;王京彬和徐新,2006;肖文交等,2006;朱永峰等,2006,2007)。在东准噶尔地区,业已查明北侧靠近阿尔曼太蛇绿岩带出露的二台北花岗岩体(李宗怀等,2004;韩宝福等,2006)和南侧与卡拉麦里蛇绿岩带在空间上紧密共生的卡拉麦里富碱花岗岩带(韩宝福等,2006;唐红峰等,2007a,b;林锦富等,2007;Su et al., 2007;李月臣等,2007)均是该区后碰撞花岗质岩浆作用的产物。然而,出露于上述两个蛇绿岩带之间、呈岩基产出的野马泉花岗岩体尚缺乏详细的研究,这是目前东准噶尔地区花岗岩研究中的明显不足。

野马泉岩体原名库兰喀孜干岩体,又名小红山岩体。在 20世纪80年代末,对该岩体的岩石学及地球化学特征开展 了初步研究,但因缺乏具体的年龄数据,被认为是形成于加 里东晚期的火山弧钙碱性深成岩(李锦轶,1988,2004;肖序 常等,1992)。最近,韩宝福等(2006)报道了对野马泉岩体1 件碱长花岗岩开展 SHRIMP 锆石 U-Pb 定年的结果(296± 4Ma),初步确定该岩体是后碰撞岩浆作用的产物。但是,根 据东准噶尔地区发育的两个古生代蛇绿岩带、晚石炭世的沉 积特征和大面积出露的后碰撞花岗岩,可以确定该地区古生 代以来经历了俯冲-碰撞和后碰撞两个构造演化阶段。而野 马泉岩体出露面积大、岩石类型多样,并且高精度的地球化 学组成研究还是一个空白。因此,为了确认野马泉岩体的时 代及其构造属性,探讨它的岩浆起源与演化,对不同岩性开 展系统的年代和地球化学组成研究是非常必要的。本文报 道的是我们最近针对上述问题开展工作的初步结果。

2 地质概况和样品岩石学特征

野马泉岩体位于清河县南部、奇台县东北部,地理位置 上属准噶尔盆地东北缘的卡拉麦里地区。在构造上处于卡 拉麦里蛇绿岩带与阿尔曼太蛇绿岩带中间位置。该岩体侵 入泥盆系的碎屑沉积岩,大致呈北北西向展布,其形状不规 则,长约 20km,最宽处可达 15km,总面积超过 100km²(图 1)。

前人通过1:20万区域地质调查,将野马泉岩体划分出 三个岩性带(图1),自外而内,岩体岩性逐渐由花岗闪长岩-二长花岗岩-碱长花岗岩演变。我们在野外考察后发现,由 于风化剥蚀等原因,不同岩性接触带的界线较为模糊。尽管 出露面积大,但能采集到新鲜样品的位置不多。

花岗闪长岩为灰色,中-粗粒花岗结构,主要由斜长石 (~45%)、石英(~20%)、微斜长石和正长石(~15%)、暗 色矿物普通角闪石(~12%)及黑云母(~8%)组成,副矿物 有锆石、磷灰石和含铁氧化物。二长花岗岩为灰色或灰白 色,粗粒花岗结构或似斑状结构,主要由斜长石(25%~ 45%),微斜长石和正长石(20%~30%)、石英(18%~ 30%)和暗色矿物黑云母及普通角闪石(两者含量相当,合计 占 15% ~ 20%) 组成,副矿物有锆石、榍石、磷灰石和含铁氧 化物。碱长花岗岩为浅肉红色,中粒花岗结构,以发育条纹 长石和钠长石为特征,石英含量高(~35%),暗色矿物为黑 云母,副矿物有锆石和含铁氧化物。上述三种花岗岩类的出 露范围基本与原1:20万区域地质调查所确定的岩性带对 应。但我们的考察和研究显示,在图1的花岗闪长岩带,局 部产出有以普通角闪石(~30%)和环带构造发育的斜长石 (~55%)为主要矿物组成、石英含量较少(~10%)、钾长石 罕见的石英闪长岩(样品 XH08-10);在二长花岗岩带,局部 有偏基性的花岗闪长岩产出(样品 XH08-07)。尽管这两件 样品因暗色矿物、石英和钾长石发育程度的不同,岩石名称 与对应岩性带有别,但后文的结果显示,它们与对应岩性带 的其他样品有相同的微量元素组成,因此可以放在同一岩性 带讨论。

3 分析方法

锆石是由作者在无污染条件下按常规方法(包括手工破 碎和淘洗、磁选、重液分离)选出的,并在双目镜下挑纯后制 成环氧树脂样品靶,再先后在偏光显微镜和阴极发光系统上 进行观察和照相。锆石的 U-Pb 年龄测定是在南京大学内生 金属矿床成矿机制研究国家重点实验室的 LA-ICP-MS 系统 上完成的。使用 Agilent 公司生产的 7500a 型等离子质谱仪 (ICP-MS)和 New Wave Research 公司产的 UP-213 型(λ= 213nm) 激光器(LA), 以氦气作载气。分析时激光频率为 5Hz,能量密度 15~20J• cm⁻²,激光束斑直径一般为 32μm, 样品 XH08-11 因为锆石颗粒细而改用 21µm(此时频率不变 但适当增加激光强度)。用外标(锆石 GEMOC/GJ-1,其 U-Pb 年龄值 601Ma) 对仪器和激光熔样导致的质量偏倚和 U-Pb 分异进行校正,数据处理采用 GLITTER 程序(Griffin et al., 2008), 普通 Pb 按照 Andersen (2002)的方法进行校正, 锆石 的 U-Pb 年龄谐和图和²⁰⁶ Pb/²³⁸ U 年龄权重平均值由 Isoplot/ Ex Version 3.23(Ludwig, 2003) 得到,通过未知锆石的 U、Th 信号强度与同一分析回次中标准锆石 GJ-1(其 U、Th 含量分 别为330×10⁻⁶和8×10⁻⁶)强度平均值的对比,估算单个分 析点锆石的 U、Th 含量。详细分析方法和流程见 Xu et al. (2009)。

锆石激光原位 Hf 同位素分析是在中国科学院地球化学研究所环境地球化学国家重点实验室的 LA-MC-ICP-MS 系统上完成的。所用仪器是 Nu Plasma 多接收器等离子质谱仪

图 1 新疆东准噶尔野马泉花岗岩体地质简图(据1:20万库普幅及奥什克山幅地质图^①简化,小图据肖序常等,1992;刘家远等,1996 简化)

Fig. 1 Geological sketch of the Yemaquan granitic pluton in East Junggar, Xinjiang (after Xiao et al., 1992; Liu et al., 1996)

(MC-ICP-MS) 和 UP-213 型激光器。详细的仪器参数,分析 流程和干扰校正方法见唐红峰等(2008)。其中,对每 0.2 秒 积分时间的单个数据点进行¹⁷⁶ Yb 干扰扣除时,Yb 的质量歧 视因子 β_{Yb}由对应时间测定的单个¹⁷³ Yb/¹⁷¹ Yb 比值计算。本 文样品分析时,使用的激光频率为 10Hz,束斑直径是 60µm, 能量密度为 4 ~ 6J • cm⁻²,用氦气(流速 0.60 ~ 0.85L • min⁻¹)作载气,在激光器后面用一个'Y'字形的三通将激光 剥蚀物与氩气(流速 1.10 ~ 1.15L • min⁻¹)混合后通入等离 子质谱仪。本次样品分析时,国际标准锆石 91500 的¹⁷⁶ Hf/¹⁷⁷ Hf 测定结果为 0.282306 ± 34 (2SD, n = 55)。

全岩主量元素和微量元素分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。其中,主量元素采用熔片法,在 PW4400型X射线荧光光谱仪上测定,经GSR1和GSR3标样监控,单个元素的分析精度优于2%。微量元素采用HF+HNO3密闭高压溶样,详细的样品溶解流程见Qietal.(2000),溶解好的样品溶液在四级杆等离子体质谱仪(Q-HCP-MS,型号为ELANDRC-e)上测定,对标样的重复测定表明,微量元素的分析精度优于10%。

① 新疆地质局区域地质测量大队.1966.1:20万库普幅及奥什克山幅地质图

图 2 野马泉岩体的锆石阴极发光图像 每个颗粒上的圆圈表示激光 U-Pb 年龄分析位置,旁边数字为与表1 对应的分析点序号 Fig. 2 CL images of the zircons from Yemaquan pluton

分析结果 4

4.1 锆石 U-Pb 年龄

野马泉花岗岩体的锆石无色透明或略带浅黄色,无明显 包裹体。如图2的阴极发光图像所示,锆石晶体自形,总体 以柱面发育的长柱状为特征(二长花岗岩样品 XH08-03 的少 数锆石颗粒呈短柱状),有明显的韵律环带,显示出典型的岩 浆锆石特征。由 LA-ICP-MS 锆石 U-Pb 定年结果(表 1) 可 见,这些锆石有较高的Th/U比值(除两个颗粒稍低外,其余 都大于 0.5), 而且 Th、U 之间有良好的正相关关系, 进一步 表明它们属于原生的岩浆结晶锆石。

根据表1的结果,利用 Isoplot/Ex Version 3.23(Ludwig, 2003) 得到锆石 U-Pb 年龄谐和图及²⁰⁶ Pb / ²³⁸ U 年龄的权重平 均值(图3)。从中可以看到,本次研究的4件野马泉花岗岩 样品总体数据点都投影在谐和曲线上或其附近。其中,碱长 花岗岩样品 XH08-01 的 18 个锆石分析点的²⁰⁶ Pb/²³⁸ U 年龄

值在 293~312Ma 之间, 它们的权重平均值为 304 ± 3Ma (2σ, 下同, MSWD = 2.2) (图 3a)。二长花岗岩两件样品, 样品 XH08-03 的 17 个锆石分析点的²⁰⁶ Pb/²³⁸ U 年龄值在 291 ~304Ma之间,它们的权重平均值为 298 ± 2Ma (MSWD = 1.2) (图 3b), 样品 XH08-09-1 的 20 个锆石分析点的 206 Pb/238 U 年龄值在 298~303 Ma 之间, 它们的权重平均值为 300 ± 2Ma (MSWD = 0.14) (图 3c)。花岗闪长岩样品 XH08-11的14个锆石分析点的206 Pb/238 U年龄值在279~ 315Ma之间,它们的权重平均值为 297 ± 6Ma (MSWD = 8.8) (图 3d)。

4.2 元素地球化学

野马泉岩体的主量元素和微量元素分析结果列于表2。 主量元素结果与它们的矿物组成相对应。三类岩石中,花岗 闪长岩有明显低的 SiO₂(~60%)、全碱(Na₂O + K₂O: < 7.0%)和较高的 CaO (~6.0%)、MgO (>3.0%)、全铁 (Fe₂O₃^T: ~6.0%); 而碱长花岗岩正好与之相反, 具高 SiO₂

	Temagnar
	from 1
年结果	zircons
阅	the
đ	for
-MS U.	results
LA-ICP	dating
锆石	U-Ph
泉岩体的	A-ICP-MS
野马	I.
表 1	Table .

Table 1	LA-ICP-M	S U-Pb datin	g results	for the zirco	ns from Yem	aquan pluto	u										
	Ш,	11		Atomic ratios	s (common-Ph	corrected)				Apparent	ages (commo	n-Pb corre	cted, M ⁸	()			
No.	(×10 ⁻⁶)	(× 10 ⁻⁶)	Th/U	$^{207} Pb$ $^{206} Pb$	$\pm 1\sigma$	²⁰⁷ Pb ²³⁵ U	$\pm 1\sigma$	$\frac{206}{238}$ U	$\pm 1\sigma$	$^{208}\mathrm{Pb}_{232}\mathrm{Th}$	$\pm 1\sigma$	$\frac{207}{206} Pb$	$\pm 1\sigma$	$\frac{207}{235} \frac{\text{Pb}}{\text{U}}$	$\pm 1\sigma$	$\frac{206}{238}$ U	$\pm 1\sigma$
1.1	135	227	0.59	0.05388	0.00092	0.36139	0.00607	0.04864	0.00069	0.00607	0.00015	366	39	313	5	306	4
2.1	123	225	0.55	0.05657	0.00078	0.37186	0.00511	0.04768	0.00064	0.00841	0.00021	475	31	321	4	300	4
3.1	245	273	0.90	0.05226	0.00062	0.33982	0.00409	0.04716	0.00062	0.00957	0.00024	297	28	297	3	297	4
4.1	86	147	0.59	0.05212	0.00076	0.35343	0.0051	0.04918	0.00065	0.0106	0.00028	291	34	307	4	309	4
5.1	96	177	0.54	0.05243	0.00068	0.35103	0.00455	0.04856	0.00064	0.009	0.00021	304	30	305	3	306	4
5.2	87	161	0.54	0.05256	0.00075	0.35498	0.00505	0.04899	0.00065	0.00815	0.0002	310	33	308	4	308	4
6.1	161	241	0.67	0.05252	0.00064	0.33886	0.00416	0.0468	0.00061	0.0074	0.00019	308	28	296	3	295	4
7.1	137	262	0.52	0.0526	0.00076	0.3469	0.00496	0.04784	0.00066	0.00484	0.00013	312	34	302	4	301	4
8.1	190	174	1.09	0.0522	0.00073	0.33522	0.00467	0.04658	0.00062	0.00518	0.00012	294	33	294	4	293	4
9.1	509	447	1.14	0.05248	0.00053	0.35472	0.00367	0.04903	0.00062	0.01181	0.00031	306	24	308	3	309	4
10.1	192	309	0.62	0.05233	0.00058	0.35529	0.00399	0.04925	0.00063	0.01006	0.00025	300	26	309	б	310	4
11.1	121	204	0.59	0.05224	0.00072	0.33801	0.00461	0.04694	0.00061	0.01108	0.00034	296	32	296	б	296	4
12.1	144	179	0.80	0.05246	0.0007	0.35441	0.00472	0.04901	0.00064	0.00753	0.00018	306	31	308	4	308	4
13.1	212	246	0.86	0.05208	0.00064	0.35593	0.00438	0.04958	0.00064	0.01153	0.00034	289	29	309	6	312	4
14.1	148	166	0.89	0.05219	0.00075	0.3479	0.00498	0.04836	0.00064	0.0081	0.00022	294	34	303	4	304	4
15.1	68	125	0.54	0.05421	0.00124	0.35506	0.00784	0.0475	0.00072	0.00462	0.00016	380	53	309	9	299	4
16.1	125	234	0.53	0.05254	0.00067	0.3564	0.00457	0.04921	0.00064	0.00973	0.00033	309	30	310	3	310	4
17.1	207	326	0.63	0.05215	0.00084	0.35145	0.00554	0.04889	0.00065	0.01304	0.0007	292	38	306	4	308	4
1.1	116	181	0.64	0.05245	0.00082	0.34951	0.00537	0.04833	0.00062	0.01331	0.00043	305	36	304	4	304	4
2.1	35	67	0.52	0.05338	0.00124	0.34973	0.00787	0.04752	0.00066	0.01169	0.00044	345	54	305	9	299	4
3.1	78	121	0.64	0.05229	0.00152	0.34126	0.00955	0.04734	0.00070	0.01242	0.00077	298	68	298	٢	298	4
4.1	207	529	0.39	0.05246	0.00063	0.34760	0.00413	0.04806	0.00059	0.01326	0.00056	306	28	303	б	303	4
5.1	54	104	0.52	0.05228	0.00102	0.34187	0.00646	0.04742	0.00063	0.01270	0.00052	298	46	299	S	299	4
6.1	225	233	0.97	0.05257	0.00071	0.35393	0.00474	0.04883	0.00062	0.01280	0.00047	310	31	308	4	307	4
7.1	76	159	0.61	0.05215	0.00084	0.33452	0.00528	0.04653	0.00061	0.01066	0.00041	292	38	293	4	293	4
8.1	98	142	0.69	0.05373	0.00086	0.34725	0.00544	0.04688	0.00061	0.01119	0.00034	360	37	303	4	295	4
8.2	94	139	0.68	0.05275	0.00086	0.34063	0.00544	0.04684	0.00062	0.00967	0.00027	318	38	298	4	295	4
9.1	47	82	0.57	0.05225	0.00118	0.33990	0.00746	0.04719	0.00066	0.01066	0.00038	296	53	297	9	297	4
10.1	319	602	0.53	0.05241	0.00061	0.33772	0.00392	0.04674	0.00057	0.01299	0.00052	303	27	295	3	294	4
11.1	110	179	0.61	0.05198	0.00079	0. 33897	0.00507	0.04729	0.00061	0.01244	0.00046	285	36	296	4	298	4
12.1	313	565	0.55	0.05360	0.00055	0.34150	0.00359	0.04621	0.00058	0.01099	0.00038	354	24	298	3	291	4
13.1	74	108	0.69	0.05189	0.00116	0.34394	0.00745	0.04808	0. 00069	0.00856	0.00034	281	52	300	9	303	4
14.1	411	488	0.84	0.05286	0.00065	0.34564	0.00425	0.04742	0.00060	0.01158	0.00054	323	29	301	3	299	4
15.1	109	111	0.98	0.05267	0.00106	0.33720	0.00661	0.04643	0.00064	0.01185	0.00053	315	47	295	5	293	4

续表 1 Continue	d Table 1																
	E	=		Atomic ratio	is (common-Pl	b corrected)				Apparent	ages (commo	n-Pb corr	ected, Ma				
Spot No.	In (×10 ⁻⁶)	U (× 10 ⁻⁶)	Th/U	$\frac{207}{206} Pb$	$\pm 1\sigma$	$\frac{207}{235}\frac{\mathrm{Ph}}{\mathrm{U}}$	±1σ	$\frac{206}{238} \frac{\text{Pb}}{\text{U}}$	$\pm 1\sigma$	$rac{208}{232} rac{ ext{Pb}}{ ext{Th}}$	$\pm 1\sigma$	$\frac{207}{206} \frac{\mathrm{Pb}}{\mathrm{Pb}}$	$\pm 1\sigma$	$\frac{207}{235}$ U	±lσ	$\frac{206}{238} \frac{\text{Pb}}{\text{U}}$	$\pm 1\sigma$
16.1	89	203	0.44	0.05230	0.00085	0.33778	0.00539	0.04685	0.00061	0.01368	0.00073	299	38	295	4	295	4
1.1	321	464	0.69	0.05185	0.00072	0.34068	0.00510	0.04765	0.00059	0.00803	0.00019	279	33	298	4	300	4
1.2	207	362	0.57	0.05295	0.00066	0.34493	0.00473	0.04726	0.00057	0.00924	0.00015	327	29	301	4	298	4
2.1	225	278	0.81	0.05258	0.00071	0.34707	0.00507	0.04787	0.00059	0.00879	0.00019	311	31	303	4	301	4
2.2	186	210	0.89	0.05416	0.00080	0.35288	0.00554	0.04726	0.00058	0, 00991	0.00017	378	34	307	4	298	4
3.1	166	288	0.58	0.05435	0.00103	0.35592	0.00699	0.04748	0.00066	0.00620	0.00021	386	4	309	5	299	4
3.2	295	282	1.05	0.05385	0.00072	0.35308	0.00507	0.04757	0.00058	0.00912	0.00014	365	31	307	4	300	4
4.1	265	345	0.77	0.05180	0.00096	0.34113	0.00663	0.04776	0.00066	0.00552	0.00019	277	43	298	5	301	4
4.2	272	258	1.05	0.05350	0.00069	0.35015	0.00494	0.04748	0.00058	0.00912	0.00014	350	30	305	4	299	4
5.1	262	431	0.61	0.05390	0.00101	0.35744	0.00677	0.04811	0.00061	0.01174	0.00066	367	43	310	5	303	4
5.2	232	324	0.72	0.05398	0.00068	0.35657	0.00493	0.04792	0.00058	0.00898	0.00014	370	29	310	4	302	4
6.1	201	305	0.66	0.05225	0.00076	0.34495	0.00534	0.04789	0.00059	0.01068	0.00038	296	34	301	4	302	4
6.2	193	299	0.65	0.05277	0.00069	0.34626	0.00493	0.04760	0.00058	0.00936	0.00015	319	30	302	4	300	4
7.1	317	470	0.67	0.05379	0.00108	0.35247	0.00723	0.04753	0.00064	0.01180	0.00060	362	46	307	5	299	4
7.2	233	283	0.82	0.05375	0.00071	0.35218	0.00503	0.04754	0.00058	0.00937	0.00015	361	30	306	4	299	4
8.1	288	434	0.66	0.05392	0.00079	0.35365	0.00553	0.04757	0.00059	0.01153	0.00041	368	34	307	4	300	4
9.1	329	534	0.62	0.05273	0.00085	0.34983	0.00587	0.04813	0.00060	0.01212	0.00056	317	37	305	4	303	4
10.1	431	610	0.71	0.05269	0.00075	0.34769	0.00532	0.04787	0.00060	0.01186	0.00049	315	33	303	4	301	4
11.1	305	391	0.78	0.05302	0.00078	0.34868	0.00553	0.04770	0.00061	0.01087	0.00042	330	34	304	4	300	4
12.1	357	390	0.92	0.05285	0.00064	0.34772	0.00463	0.04773	0.00057	0.00961	0.00014	322	28	303	3	301	4
13.1	213	326	0.65	0.05222	0.00070	0.34126	0.00491	0.04741	0.00058	0.00929	0.00015	295	31	298	4	299	4
1.1	25	24	1.04	0.05206	0.00228	0.33301	0.01420	0.04638	0.00072	0.00890	0.00045	288	103	292	11	292	4
2.1	541	324	1.67	0.05206	0.00080	0.31983	0.00495	0.04456	0.00050	0.00989	0.00036	288	36	282	4	281	3
3.1	428	438	0.98	0.05566	0.00085	0. 33955	0.00523	0.04425	0.00051	0.00859	0.00036	439	35	297	4	279	3
4.1	259	204	1.27	0.05062	0.00083	0.33887	0.00558	0.04854	0.00057	0.00992	0.00036	224	39	296	4	306	4
5.1	516	305	1.69	0.05230	0.00093	0.34482	0.00617	0.04781	0.00058	0.00971	0.00046	299	42	301	S	301	4
6.1	341	237	1.44	0.05145	0.00085	0.34197	0.00569	0.04821	0.00057	0.00983	0.00040	261	39	299	4	304	4
7.1	606	446	2.04	0.05105	0.00081	0.32988	0.00534	0.04686	0.00055	0.00943	0.00045	243	37	289	4	295	3
8.1	440	280	1.57	0.05225	0.00089	0.34172	0.00587	0.04743	0.00057	0. 00967	0.00047	296	40	298	4	299	4
9.1	213	201	1.06	0.05119	0.00089	0.33306	0.00581	0.04719	0.00056	0.00823	0, 00030	249	41	292	4	297	3
10.1	159	155	1.03	0.05283	0.00107	0.35665	0.00717	0.04897	0.00061	0.00958	0.00041	322	47	310	5	308	4
11.1	107	143	0.75	0.05315	0.00109	0.35939	0.00733	0.04905	0.00061	0.01034	0.00046	335	48	312	5	309	4
12.1	392	309	1.27	0.05273	0.00083	0.36363	0.00579	0.05002	0.00059	0.01221	0.00057	317	37	315	4	315	4
13.1	408	419	0.97	0.05163	0.00083	0.34209	0.00554	0.04806	0.00057	0.01045	0.00056	269	38	299	4	303	4
14.1	180	173	1.04	0.05402	0.00142	0.35051	0.00903	0.04706	0.00064	0.00845	0.00065	372	61	305	L	296	4

表 2 野马泉岩体的主量元素(wt%)和微量元素(×10⁻⁶)组成

Table 2 Major element (wt%) and trace element ($\times10^{-6})$ compositions for the rocks from Yemaquan pluton

岩性分带	碱长石	花岗岩			二长花岗岩			花岗	闪长岩
样品号	XH08-01	XH08-02	XH08-03	XH08-04	XH08-07	XH08-08-1	XH08-09-1	XH08-10	XH08-11
岩石名称	碱长 花岗岩		二长 花岗岩	二长 花岗岩		 二长 花岗岩	二长 花岗岩	石英 闪长岩	
SiO ₂	75. 59	75.80	74.10	69.01	57.46	60.99	65.98	52.14	60.18
TiO ₂	0.17	0.17	0.17	0.38	1.02	0. 93	0.71	0.50	0.73
$Al_2 O_3$	12.72	12.77	13.17	14.32	17.71	16.82	15.58	17.21	16.87
$Fe_2 O_2^T$	1.77	1. 53	1.57	2.61	6.40	5.89	4.80	5.99	5.42
MnO	0.03	0.03	0.03	0.05	0.12	0.11	0.08	0.11	0.10
MgO	0.13	0.16	0.22	0.96	2.82	1.96	1 44	7.49	3.22
CaO	0.62	0.62	0.95	2.45	6. 25	4.80	3. 48	10.18	5.94
Na ₂ O	4.63	4, 55	4.78	4 52	4,60	5.23	4 66	2.67	4.03
K ₂ O	4, 58	4, 60	3.77	3.16	1.67	2.12	3. 09	0.89	2.09
$P_2 O_5$	0.05	0.04	0.06	0.22	0.24	0.23	0.19	0.06	0.15
烧失量	0.33	0.17	0.63	0.96	0.89	0.98	0.76	1.93	1.28
总量	100.62	100.44	99 45	98.63	99.18	100.06	100.77	99 17	100.01
A/CNK	0.93	0.94	0.96	0.94	0.85	0.86	0.90	0.72	0.86
A/NK	1 01	1.02	1 10	1 32	1 89	1 54	1 41	3 21	1 90
Sc	7.60	5 41	5 87	11.6	21.6	18.7	12 4	27.6	17.6
V	6.92	5 53	8 11	46.8	132	95.8	61.6	124	108
Ċr	9.02	8 14	7.68	12.0	19.4	19.5	19.3	75.2	37.4
Co	1.81	1 90	2 17	230	20.9	14.8	9 90	29.3	16.0
Ni	5 38	5 22	4 84	6.73	15 1	13.0	11 30	67.3	15.2
Cu	6.78	5.26	6.03	7 10	28.3	20.7	14 0	30.2	13.2
Zn	38 4	43 7	41 7	48 9	26. <i>3</i> 96.7	103	75.7	56.4	69.7
Ca	17.3	18 1	17.8	10.1	24 1	24.6	20.9	16.2	19 4
Bb	126	125	101	89.7	42 1	53 2	76.3	26.8	54 8
Sr	44 7	38.4	141	306	549	416	369	485	478
V	26.7	25.8	22 0	25.6	33.8	36.9	26.2	12 3	22 0
T Zr	158	175	157	167	235	312	20.2	77 5	172
Nb	8 63	8 79	10.0	9.79	11 0	13.0	8 76	2 92	5.96
Sn	5 13	4 31	2 89	2.36	2 10	2 22	2 49	0.81	1.60
Ce	5.15 4.16	3 99	3 10	2.50	1 64	1.87	2.49	2 35	2 14
Ba	440	323	737	710	513	476	871	233	389
Hf	5 75	5 89	5 72	4 82	6 68	8 67	6.15	2.09	4 71
Та	0.94	0.96	1 46	1.02	0.94	0.88	0.66	0.31	0.47
Ph	14 6	16.5	15 2	13 3	9.04	10.5	11 0	3 69	8.66
Th	13.0	13 1	13.7	10.1	3 36	4 81	8.06	2 55	4 52
U	2.68	1.44	1.68	2.04	1.21	1.61	1.36	0.68	0.94
La	31.5	25.0	32.7	29 1	23.5	22.4	31.0	7.62	12.4
Ce	62.9	50.6	63.7	53.3	53.4	56.6	61.5	15.9	27.4
Pr	6.88	5. 81	7.08	6.38	6, 96	7.57	7.19	2.09	3.73
Nd	24.9	21.6	24.9	23.3	30.6	33.8	27.4	9.13	16.3
Sm	4.73	4.44	4.81	4.88	6, 99	7.84	5.46	2.26	3.77
Eu	0.30	0.25	0.61	0.91	1, 71	1. 59	1.27	0.84	1, 17
Gd	4.39	3.89	4.03	4.30	6.73	7.33	4.92	2.31	3.81
Tb	0.79	0.76	0.71	0.73	1.17	1.34	0.88	0.40	0.71
Dv	4.65	4.55	3.98	4.23	6.67	7.45	4.94	2.41	4.11
Ho	1.05	1.04	0.91	0.94	1.49	1.62	1.11	0.54	0.96
Er	3.13	2.97	2.58	2.58	3.95	4.35	3.08	1.37	2. 58
Tm	0.48	0.46	0.39	0.38	0.55	0. 59	0.41	0.20	0.37
Yb	3.30	3.17	2.85	2.71	3.74	3.91	2.85	1.36	2.45
Lu	0.49	0.47	0.43	0.40	0.55	0.54	0.41	0.19	0.39
Σ REE	149.5	125.0	149.7	134.1	148.0	156.9	152.4	46.63	80.14
(La/Yb) _{CN}	6.85	5.66	8.23	7.70	4.51	4.11	7.80	4.02	3.63
Eu/Eu*	0.20	0.19	0.43	0.61	0.76	0.64	0.75	1.13	0.94
10 ⁴ Ga/Al	2.57	2.68	2.55	2.52	2.57	2.76	2.53	1.78	2.17

注: Fe₂O₃^T 是以 Fe₂O₃ 表示的全铁含量, A/CNK = Al₂O₃ /(CaO + Na₂O + K₂O) (分子数比), A/NK = Al₂O₃ /(Na₂O + K₂O) (分子数比), 下标 CN 表示用球粒陨石标准化, Eu/Eu^{*} = Eu_{CN} /(Sm_{CN} × Gd_{CN})^{0.5}

图 3 野马泉岩体的锆石 U-Pb 年龄谐和图

Fig. 3 U-Pb concordia plots for the zircons from Yemaquan pluton

(>75%)、富碱(Na₂O + K₂O: >9.0%)和显著低CaO (<1.0%)、MgO(<0.2%)、Fe₂O₃^T(<2.0%)的特征;二长 花岗岩的上述氧化物含量则介于花岗闪长岩与碱长花岗岩 之间。尽管在主量元素的含量上有一定的差异,但三类岩石 的铝饱和指数(A/CNK)均小于1.1(在0.72~0.97的小范 围内变化),而且在A/NK-A/CNK 图上(图4),一致地落入 准铝质范围。只是样品XH08-10因发育具环带构造的斜长 石和暗色矿物普通角闪石,而有明显偏高的CaO (10.18%)、MgO(7.49%)和偏低的全碱(3.56%),导致它 的A/NK比值很高而在A/NK-A/CNK 图中与其他样品偏离 (图4)。此外,主量元素CaO、Al₂O₃、Na₂O、K₂O分别与SiO₂ 有较好的线性关系(图5)。

微量元素结果显示,花岗闪长岩带两件样品总体上有较低的微量元素含量,其稀土元素总量(Σ REE)为46.63×10⁻⁶~80.14×10⁻⁶,明显低于其他两类岩石的125.0×10⁻⁶~156.9×10⁻⁶(表2),在球粒陨石标准化的稀土元素配分模式(图6a)和原始地幔归一化的不相容元素蛛网图(图6b)上,这两件样品的曲线均位于最下端。此外,自花岗闪长岩-二长花岗岩-碱长花岗岩,三个岩性带样品的Eu异常从基本无异常、到中等负异常(Eu/Eu^{*}=0.43~0.76)、再到强烈负异常(Eu/Eu^{*}=~0.20)变化(表2、图6a),所有样品均有

Fig. 4 A/NK vs. A/CNK diagram

轻重稀土元素的分馏,其(La/Yb)_{CN}为3.63~8.23(表2),总 体表现为向右倾斜的曲线(图6a)。在蛛网图上,所研究样 品的曲线总体表现出相互平行的趋势,有较高的Rb、Th、U、K 等大离子亲石元素含量,明显的Ta、Nb、P、Ti负异常。不同 的是,Sr在花岗闪长岩中表现为弱的正异常,而在二长花岗

图 5 CaO、Al₂O₃、Na₂O 和 K₂O 与 SiO₂ 的协变图

图例同图4

Fig. 5 CaO, Al₂O₃, Na₂O and K₂O vs. SiO₂ covariant diagrams

图 6 球粒陨石标准化的稀土元素配分模式(a)和原始 地幔归一化的不相容元素蛛网图(b)(球粒陨石和原始 地幔标准值引自 Sun and McDonough, 1989) 图例同图 4

Fig. 6 Chondrite normalized REE patterns (a) and primitive mantle normalized spider diagrams of incompatible elemements (b) (chondrite data and primitive mantle data from Sun and McDonough, 1989)

岩中则为中等负异常,在碱长花岗岩中显示强烈负异常。

4.3 锆石 Hf 同位素组成

锆石的 Hf 同位素分析结果列于表 3。结果显示,所研究 锆石的¹⁷⁶Lu/¹⁷⁷ Hf 比值均比较小(0.000381~0.003826),每 件样品的平均值都小于 0.002。根据单颗锆石 Hf 同位素测 定结果,按照野马泉岩体的侵位年龄(t = 300Ma,具体讨论见 下节),计算每颗锆石分析点的 $\varepsilon_{\rm Hf}(t)$ 值和两阶段模式年龄 $t_{\rm DM2}(表 3)$,然后由 Isoplot/Ex Version 3.23(Ludwig, 2003) 得 到每件样品全部锆石分析点的 $\varepsilon_{\rm Hf}(t)$ 权重平均值,即每件样 品的 $\varepsilon_{\rm Hf}(t)$ 值(图 7)。图中结果表明,不仅每件样品内部数 据点的 $\varepsilon_{\rm Hf}(t)$ 值变化不大,且不同岩性带共 5 件样品的 $\varepsilon_{\rm Hf}(t)$ 值均为较高的正值并在 + 11.8 到 + 12.7 的小范围内 变化。具体结果是:碱长花岗岩样品 XH08-01 为 11.8 ± 0.3 (2σ ,下同)(图 7a),二长花岗岩 2 件样品 XH08-03 和 XH08-09-1 分别是 12.5 ± 0.3 和 12.4 ± 0.3(图 7b, c),花岗 闪长岩样品 XH08-11 为 11.9 ± 0.4(图 7d),样品 XH08-10 为 12.7 ± 0.3(图 7e)。

5 讨论与结论

前已述及,野马泉岩体的锆石是典型的岩浆锆石,因此 它们的同位素年龄值即可代表岩石的形成时间。锆石 U-Pb 定年结果表明,尽管岩性不同,但三个岩性带代表性样品的 年龄值在误差范围内很一致,都为~300Ma(表1、图3),结合 最近韩宝福等(2006)报道的对碱长花岗岩定年的结果,我们 认为300Ma代表了野马泉岩体的成岩年龄,即岩体的侵位时

表 3 野马泉岩体的锆石 Hf 同位素分析结果

Table 3 Hf isotope analysis for the zircons from the Yemaquan pluton

Spot No.	$^{176}{\rm Yb}/^{177}{\rm Hf}$	¹⁷⁶ Lu / ¹⁷⁷ Hf	$\pm 1\sigma$	¹⁷⁶ Hf / ¹⁷⁷ Hf	$\pm 1\sigma$	$I_{ m Hf}$	$\boldsymbol{\varepsilon}_{\mathrm{Hf}}(t)$	$\pm 1\sigma$	$f_{\rm Lu/Hf}$	$t_{\rm DM2}$ (Ma)	$\pm 1\sigma$
样品 XH	108-1										
1.1	0.062498	0.001708	0.000016	0.282908	0.000014	0. 282898	11.1	0.5	-0.95	609	32
2.1	0.036905	0.000954	0.000016	0.282917	0.000013	0. 282912	11.5	0.5	-0.97	579	29
3.1	0.061222	0.002161	0.000130	0. 282905	0.000021	0. 282893	10.9	0.7	-0.93	622	48
4.1	0.071913	0.001869	0.000040	0. 282941	0.000019	0. 282931	12.2	0.7	-0.94	537	43
5.1	0.109024	0.002769	0.000350	0.282940	0.000014	0. 282924	12.0	0.5	-0.92	550	32
6.1	0.060911	0.001550	0.000034	0. 282950	0.000014	0. 282941	12.6	0.5	-0.95	512	32
7.1	0.037229	0.000979	0.000008	0.282891	0.000016	0. 282886	10.6	0.6	-0.97	639	36
8.1	0. 023034	0.000744	0.000100	0.282912	0.000013	0. 282908	11.4	0.5	-0.98	588	29
9.1	0.076714	0.001942	0.000054	0.282912	0.000013	0. 282901	11.2	0.5	-0.94	603	29
10.1	0.090555	0.002249	0.000100	0.282917	0.000017	0. 282904	11.3	0.6	-0.93	596	39
11.1	0.060298	0.001526	0.000015	0. 282951	0.000018	0. 282942	12.6	0.6	-0.95	509	41
12.1	0. 156353	0.003194	0.000190	0. 282933	0.000027	0. 282915	11.7	1.0	-0.90	572	61
13.1	0.057938	0.001545	0.000031	0.282919	0.000018	0. 282910	11.5	0.6	-0.95	582	41
14.1	0.061854	0.001495	0.000054	0.282951	0.000016	0. 282943	12.6	0.6	-0.95	509	36
15.1	0.061016	0.001537	0.000042	0.282922	0.000020	0. 282913	11.6	0.7	-0.95	575	45
16.1	0.050143	0.001184	0.000032	0. 282958	0.000022	0. 282951	12.9	0.8	-0.96	489	50
17.1	0.046522	0.001175	0.000035	0. 282958	0.000013	0. 282951	12.9	0.5	-0.96	489	30
18.1	0. 154916	0.003826	0.000510	0. 282927	0.000018	0. 282906	11.3	0.6	-0.88	593	41
19.1	0.041557	0.001083	0.000027	0. 282933	0.000013	0. 282927	12.1	0.5	-0.97	545	29
样品 XH	108-3										
1.1	0.043895	0.001152	0.000014	0.282967	0.000014	0. 282961	13.3	0.5	-0.97	468	32
2.1	0.042313	0.001135	0.000006	0.282936	0.000017	0. 282930	12.2	0.6	-0.97	539	39
3.1	0.040952	0.001035	0.000013	0. 282957	0.000012	0. 282951	12.9	0.4	-0.97	490	27
4.1	0.051082	0.001280	0.000061	0.282942	0.000013	0.282935	12.4	0.5	-0.96	527	30
5.1	0.061025	0.001510	0.000010	0. 282983	0.000023	0. 282975	13.8	0.8	-0.95	437	52
6.1	0.048080	0.001311	0.000030	0. 282975	0.000018	0. 282968	13.5	0.6	-0.96	452	41
7.1	0.029225	0.000776	0.000007	0. 282927	0.000015	0. 282923	11.9	0.5	-0.98	554	34
8.1	0.057096	0.001468	0.000080	0. 282938	0.000013	0. 282930	12.2	0.5	-0.96	538	30
9.1	0.035733	0.000947	0.000005	0.282920	0.000012	0.282915	11.6	0.4	-0.97	572	27
10.1	0.048883	0.001280	0.000042	0.282961	0.000014	0. 282954	13.0	0.5	-0.96	484	32
11.1	0.037865	0.000995	0.000016	0. 282946	0.000013	0.282940	12.6	0.5	-0.97	514	30
11.2	0.035780	0.000916	0.000008	0. 282928	0.000013	0. 282923	11.9	0.5	-0.97	554	29
12.1	0.054816	0.001438	0.000023	0. 282927	0.000017	0. 282919	11.8	0.6	-0.96	563	39
13.1	0.050088	0.001311	0.000024	0. 282948	0.000013	0.282941	12.6	0.5	-0.96	514	30
14.1	0.065796	0.001776	0.000057	0. 282955	0.000016	0. 282945	12.7	0.6	-0.95	504	36
15.1	0.032250	0.000854	0.000034	0.282960	0.000014	0.282955	13.1	0.5	-0.97	480	32
16.1	0.055610	0.001474	0.000018	0. 282950	0.000011	0. 282942	12.6	0.4	-0.96	511	25
17.1	0.096087	0.002328	0.000150	0.282920	0.000015	0.282907	11.4	0.5	-0.93	590	34
18.1	0.033973	0.000876	0.000046	0. 282941	0.000012	0. 282936	12.4	0.4	-0.97	524	27
19.1	0.036046	0.000959	0.000010	0.282964	0.000019	0.282959	13.2	0.7	-0.97	473	43
样品 XH	108-09-1										
1.1	0.046320	0.001152	0.000016	0.282918	0.000010	0.282912	11.5	0.4	-0.97	580	23
2.1	0.041683	0.001033	0.000007	0. 282940	0.000010	0. 282934	12.3	0.4	-0.97	528	23
3.1	0.078327	0.001891	0.000055	0. 282953	0.000015	0. 282942	12.6	0.5	- 0, 94	510	34
4.1	0.078001	0.001855	0.000087	0. 282969	0.000012	0. 282959	13.2	0.4	-0.94	473	27
5.1	0.056869	0.001387	0.000072	0. 282928	0.000015	0. 282920	11.8	0.5	- 0. 96	560	34
6.1	0. 036610	0.000915	0. 000008	0. 282932	0.000016	0. 282927	12 1	0.6	-0.97	545	36
7.1	0. 060930	0.001460	0.000072	0. 282960	0.000016	0. 282952	13.0	0.6	-0.96	488	36
8 1	0 104394	0.002442	0.000046	0.282915	0.000015	0. 282901	11.2	0.5	-0.93	603	34
9, 1	0. 041531	0.001026	0. 000008	0. 282935	0.000016	0. 282929	12.2	0.6	-0.97	539	36
10.1	0. 049594	0.001277	0.000015	0. 282966	0.000015	0. 282959	13.2	0.5	-0.96	472	34
10.1	0.01/0/4	0.001277	0.000015	0. 202700	5. 550015	0.202/0/	1.5. 2	0.5	0.70	174	54

Continued Table 3

Spot No.	$^{176}{\rm Yb}/^{177}{\rm Hf}$	¹⁷⁶ Lu / ¹⁷⁷ Hf	$\pm 1\sigma$	¹⁷⁶ Hf / ¹⁷⁷ Hf	$\pm 1\sigma$	$I_{ m Hf}$	$\boldsymbol{\varepsilon}_{\mathrm{Hf}}(t)$	$\pm 1\sigma$	$f_{\rm Lu/Hf}$	$t_{\rm DM2}$ (Ma)	$\pm 1\sigma$
11.1	0.051307	0.001363	0.000011	0. 282921	0.000013	0. 282913	11.6	0.5	-0.96	575	29
12.1	0.043144	0.001114	0.000024	0.282960	0.000014	0. 282954	13.0	0.5	-0.97	484	32
13.1	0.066109	0.001615	0.000031	0. 282931	0.000011	0. 282922	11.9	0.4	-0.95	556	25
14.1	0. 031921	0.000813	0.000009	0. 282963	0.000012	0. 282958	13.2	0.4	-0.98	473	27
15.1	0.057550	0.001474	0.000025	0. 282955	0.000015	0. 282947	12.8	0.5	-0.96	500	34
16.1	0.067998	0.001714	0.000064	0. 282931	0.000017	0. 282921	11.9	0.6	-0.95	557	39
17.1	0.045790	0.001161	0.000016	0. 282948	0.000012	0. 282941	12.6	0.4	-0.97	512	27
18.1	0.046299	0.001158	0.000023	0. 282939	0.000012	0. 282933	12.3	0.4	-0.97	532	27
19.1	0.037413	0.000979	0.000005	0. 282958	0.000012	0. 282953	13.0	0.4	-0.97	487	27
20.1	0.040380	0.001031	0.000010	0. 282937	0.000009	0. 282931	12.2	0.3	-0.97	535	20
样品 XH	08-11										
1.1	0.019544	0.000484	0.000003	0. 282966	0.000012	0. 282963	13.4	0.4	-0.99	462	27
2.1	0.058050	0.001342	0.000013	0. 282937	0.000011	0. 282929	12.2	0.4	-0.96	539	25
3.1	0.115382	0.002640	0.000140	0. 282921	0.000019	0.282906	11.3	0.7	-0.92	592	43
4.1	0.086018	0.002058	0.000076	0. 282920	0.000013	0. 282908	11.4	0.5	-0.94	587	29
5.1	0.061466	0.001416	0.000040	0. 282919	0.000013	0. 282911	11.5	0.5	-0.96	581	29
6.1	0.099736	0.002439	0.000180	0. 282919	0.000009	0. 282905	11.3	0.3	-0.93	594	21
7.1	0.106063	0.002296	0.000190	0. 282923	0.000015	0. 282910	11.5	0.5	-0.93	583	34
8.1	0.094105	0.002430	0.000070	0. 282909	0.000009	0. 282895	11.0	0.3	-0.93	616	20
9.1	0.084031	0.001937	0.000150	0. 282913	0.000011	0. 282902	11.2	0.4	-0.94	601	25
10.1	0.082820	0.001864	0.000020	0. 282931	0.000010	0. 282921	11.8	0.4	-0.94	559	23
11.1	0. 105586	0.002380	0.000023	0. 282951	0.000015	0. 282938	12.5	0.5	-0.93	520	34
12.1	0.106612	0.002419	0.000068	0. 282976	0.000011	0. 282962	13.3	0.4	-0.93	464	25
13.1	0.111880	0.002563	0.000092	0. 282962	0.000013	0. 282948	12.8	0.5	-0.92	498	30
14. 1	0.052271	0. 001191	0.000014	0. 282925	0.000010	0. 282918	11.8	0.4	-0.96	564	23
15.1	0.087911	0.002008	0.000042	0. 282961	0.000012	0. 282950	12.9	0.4	-0.94	493	27
16.1	0.079375	0.001878	0.000100	0. 282915	0.000009	0. 282904	11.3	0.3	-0.94	596	20
17.1	0.096136	0.002296	0.000074	0. 282925	0.000020	0. 282912	11.6	0.7	-0.93	578	45
18.1	0.051533	0.001173	0.000010	0. 282955	0.000012	0. 282948	12.8	0.4	-0.96	496	27
样品 XH	08-10										
1.1	0.047583	0.001085	0.000020	0. 282959	0.000015	0. 282953	13.0	0.5	-0.97	486	34
2.1	0.015101	0.000393	0.000020	0. 282928	0.000014	0. 282926	12.0	0.5	- 0. 99	547	32
3.1	0.028630	0.000717	0.000013	0. 282932	0.000016	0. 282928	12.1	0.6	-0.98	542	36
4.1	0.036522	0.000793	0.000022	0. 282969	0.000018	0. 282965	13.4	0.6	-0.98	459	41
5.1	0.028604	0.000651	0.000012	0. 282962	0.000021	0. 282958	13.2	0.7	-0.98	473	48
6.1	0.039787	0.000956	0.000014	0. 282945	0.000013	0.282940	12.5	0.5	-0.97	516	30
7.1	0.041055	0.001053	0.000026	0. 282938	0.000016	0. 282932	12.3	0.6	-0.97	533	36
8.1	0.033421	0.000756	0.000006	0. 282969	0.000025	0. 282965	13.4	0.9	-0.98	459	57
9.1	0.012992	0.000381	0.000016	0. 282945	0.000028	0. 282943	12.6	1.0	- 0. 99	509	64
10.1	0.024118	0.000568	0.000012	0. 282927	0.000020	0. 282924	12.0	0.7	-0.98	552	45
11.1	0.028926	0.000694	0.000015	0. 282968	0.000021	0. 282964	13.4	0.7	-0.98	460	48
12.1	0.028647	0.000820	0.000077	0. 282975	0.000022	0. 282970	13.6	0.8	-0.98	446	50
13.1	0. 023979	0.000614	0.000015	0. 282971	0.000016	0. 282968	13.5	0.6	-0.98	452	36
14.1	0.037181	0.000841	0.000077	0. 282909	0.000019	0.282904	11.3	0.7	-0.97	596	43
15.1	0.032906	0.000686	0.000043	0. 282947	0.000021	0. 282943	12.6	0.7	-0.98	508	48

注: 计算 $\varepsilon_{\rm Hf}(t)$ 和 $t_{\rm DM2}$ 时,年龄值统一用 t = 300 Ma,球粒陨石的¹⁷⁶ Lu/¹⁷⁷ Hf 和¹⁷⁶ Hf/¹⁷⁷ Hf 比值分别为 0. 0332 和 0. 282772 (Blichert-Toft and Albarede, 1997),亏损地幔的¹⁷⁶ Lu/¹⁷⁷ Hf 和¹⁷⁶ Hf/¹⁷⁷ Hf 比值分别为 0. 0384 和 0. 28325 (Griffin *et al.*, 2000),大陆地壳的¹⁷⁶ Lu/¹⁷⁷ Hf 比值分别为 0. 0384 和 0. 28325 (Griffin *et al.*, 2000),大陆地壳的¹⁷⁶ Lu/¹⁷⁷ Hf 比值分别为 0. 0384 和 0. 28325 (Griffin *et al.*, 2000),大陆地壳的¹⁷⁶ Lu/¹⁷⁷ Hf 比值分别为 0. 0384 和 0. 28325 (Griffin *et al.*, 2000),大陆地壳的¹⁷⁶ Lu/¹⁷⁷ Hf 比值分别为 0. 0384 和 0. 28325 (Griffin *et al.*, 2000),大陆地壳的¹⁷⁶ Lu/¹⁷⁷ Hf 比值分别为 0. 0384 和 0. 28325 (Griffin *et al.*, 2000),大陆地壳的¹⁷⁶ Lu/¹⁷⁷ Hf 比值分别为 0. 0384 和 0. 28325 (Griffin *et al.*, 2001); $t_{\rm DM2} = \frac{1}{\lambda} \ln t_{\rm DM2} =$

$$\left[1 + \frac{(10 \text{ Hi}/17 \text{ Hi})_{\text{s}} - (10 \text{ Hi}/17 \text{ Hi})_{\text{DM}} - (10 \text{ Li}/17 \text{ Hi})_{\text{s}} - (10 \text{ Li}/17 \text{ Hi})_{\text{CC}} \right] \times (e^{\alpha} - 1)}{(176 \text{ Li}/177 \text{ Hf})_{\text{CC}} - (176 \text{ Li}/177 \text{ Hf})_{\text{DM}}}\right]$$

Fig. 7 $\varepsilon_{\rm Hf}(t)$ values for the zircons from the Yemaquan pluton

图 8 Rb-Y + Nb 构造判别图(底图据 Pearce, 1996) ORG-祥脊花岗岩; WPG-板内花岗岩; VAG-火山弧花岗岩; syn-COLG-同碰撞花岗岩; post-COLG-后碰撞花岗岩. 实心菱形是作者 未发表的二台北岩体的主岩和包体数据; 阴影区是卡拉麦里富碱 花岗岩带的数据范围,引自苏玉平等,2006 和 Su *et al.*, 2007; 其余 图例同图 4

Fig. 8 Rb vs. Y + Nb tectonic discriminating diagram (after Pearce, 1996)

间是晚石炭世。研究表明,晚石炭世开始,整个新疆北部地 区已经进入了构造拉张的后碰撞演化阶段(王京彬和徐新, 2006;朱永峰等,2005,2006),而后碰撞花岗岩的形成在时间 上一定晚于碰撞事件,也晚于蛇绿岩的构造侵位(韩宝福, 2007)。野马泉岩体的成岩年龄明显晚于东准噶尔地区蛇绿 岩的形成时代,符合后碰撞花岗岩产出的构造阶段。因此, 野马泉花岗岩体与二台北花岗岩体、卡拉麦里富碱花岗岩带 一样,也是东准噶尔地区后碰撞阶段的花岗质岩浆作用产 物。在 Pearce (1996)提出的花岗岩构造背景判别图上(图 8),我们可以进一步看到,野马泉岩体与二台北岩体、卡拉麦 里富碱花岗岩一样,都属于后碰撞花岗岩的范围内。

野马泉岩体的元素地球化学特征表明,岩石一致地属于 准铝质(图4),在稀土元素配分模式(图6a)和不相容元素蛛 网图上(图6b),除 Sr、Eu 因岩性的不同有明显变化外,曲线 总体具相互平行的趋势,据此推断所研究的样品可能是由同 一母岩浆形成的。而锆石 Hf 同位素分析结果则为此推论提 供了重要的佐证。由于锆石有较强的稳定性及较高的 Hf 含 量和很低的 Lu/Hf 比值,使得其 Hf 同位素初始值直接代表 了花岗岩源岩的 Hf 同位素组成(Griffin et al., 2002),而本 文报道的野马泉岩体不同岩性样品的 Hf 同位素组成在误差 范围内一致,在 ε_{Hf}(t)值-年龄图上5件样品点基本落在同一 位置(图9)。因此,我们认为野马泉岩体各类型岩石是由具 相同 Hf 同位素组成的岩浆形成的,即不同岩性有相同的岩 浆起源。目前,对新疆火成岩的 Hf 同位素研究尚不多,根据 西南天山晚古生代火山岩(Zhu et al., 2009)和卡拉麦里蛇

图 9 野马泉岩体的 $\varepsilon_{\text{Hf}}(t)$ 值-年龄图

亏损地幔线性演化线按照 Griffin et al., 2000 的端元组成计算; 西南天山晚古生代火山岩数据引自 Zhu et al., 2009; SJ24 是作 者尚未发表的卡拉麦里蛇绿岩套中斜长花岗岩数据;野马泉岩 体的图例同图 4

Fig. 9 $\varepsilon_{\rm Hf}(t)$ values vs. age diagram for Yemaquan pluton

绿岩套斜长花岗岩有限的资料看,天山和准噶尔地区的亏损 地幔 Hf 同位素组成与 Griffin et al. (2000) 提出的亏损地幔 演化线很接近(图9),这意味着晚古生代新疆北部地区存在的是一个正常的亏损地幔。野马泉岩体三种岩石的 $\varepsilon_{\rm Hf}(t)$ 为较高的正值(~12.3),但与其成岩时亏损地幔的 $\varepsilon_{\rm Hf}(t)$ 值(15.9)还是有一定差异(图9)。这一差异暗示着形成野马泉岩体的源区物质以具亏损地幔 Hf 同位素组成的源岩为主,并混入了少量陆源物质。后者导致了野马泉花岗岩体的 $\varepsilon_{\rm Hf}(t)$ 值降低而与亏损地幔有一定的偏离。

野马泉岩体各类岩石在具有相同源区性质的同时,又表 现出明显的岩石学和一定的地球化学特征上的差异与变化 规律。从花岗闪长岩-二长花岗岩-碱长花岗岩:①岩石的结 构由粗变细,矿物自形程度逐渐降低;②岩石的石英和碱性 长石含量逐渐升高,斜长石特别是 An 组分高的斜长石含量 逐渐减少,铁镁矿物(尤其是普通角闪石)含量明显下降,到 碱长花岗岩暗色矿物只有少量的黑云母;③与矿物组成对 应,岩石的主量元素组成由偏基性向酸性递变,随着 SiO₂ 含 量的升高,CaO、Al₂O₃ 逐渐降低而全碱含量逐渐升高,CaO、 Al₂O₃、K₂O、Na₂O等与 SiO₂ 呈现明显的线性关系(图 5)。此 外,微量元素 Rb 与 SiO₂ 之间有很好的正相关关系(图 10a)。 这些规律性的变化,显示了二长花岗岩、碱长花岗岩与花岗 闪长岩之间的同源岩浆分异演化趋势。而岩石的 Sr、Eu 含

图 10 Rb、Sr (a) 和 Eu/Eu^{*} (b) 对 SiO₂ 及 10⁴Ga/Al 对 Na₂O (c) 和 CaO (d) 的协变图 图例同图 4

Fig. 10 Plots of Rb, Sr-SiO₂(a), Eu/Eu^{*}-SiO₂(b) and 10^4 Ga/Al-Na₂O (c) and 10^4 Ga/Al-CaO (d)

量同时随 SiO₂ 含量的升高而线性降低(图 10a, b),暗示了 野马泉岩体经历了斜长石的分离结晶作用。前人的实验结 果表明,斜长石的(Ga/Al)比值与平衡熔体的对应比值之比 [(Ga/Al)_{Plagioclase} /(Ga/Al)_{melt}]为 0.5(Malvin and Drake, 1987),因此岩浆发生斜长石的分离结晶作用时,残余熔体的 (Ga/Al)比值将随着斜长石的不断结晶而逐渐升高。野马泉 岩体的(Ga/Al)比值与 Na₂O、CaO 之间有较好的正、反比关 系(图 10c, d),与上述实验结果所揭示的岩浆发生斜长石分 离结晶作用的(Ga/Al)比值变化规律相符合。高(Ga/Al)比 值是 A 型花岗岩的重要特征,就这个特征而言偏基性的花岗 岩浆通过斜长石的结晶分异,有可能演化出 A 型花岗岩浆。

综合以上结果和讨论,我们得出结论:

(1)野马泉岩体是主要由花岗闪长岩、二长花岗岩和碱 长花岗岩组成的复式花岗岩体,其U-Pb年龄为300Ma(晚石 炭世),属于东准噶尔地区晚古生代后碰撞阶段的岩浆作用 产物。

(2)野马泉岩体不同岩石有很近似的 Hf 同位素组成和 相似的元素地球化学特征,同时具规律性的元素变化关系, 总体表现出同源岩浆分异演化趋势。因此,野马泉复式花岗 岩体很可能是由同源岩浆通过一定的岩浆演化形成的。

致谢 衷心感谢武兵和贺振宇在激光锆石 U-Pb 年龄测定 上提供的热情帮助,胡晓燕、胡静和黄艳在主、微量元素组成 分析上的支持,及审稿人和朱永峰教授的宝贵修改意见。

References

- Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report ²⁰⁴ Pb. Chem. Geol., 192: 59 – 79
- Blichert-Toft J and Albarede F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett., 148: 243 – 258
- Chen B and Jahn BM. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23: 691 – 703
- Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64: 133 – 147
- Griffin WL, Wang X, Jackson SE, Pearson NJ, O' Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexe. Lithos, 61: 237 – 269
- Griffin WL, Powell WJ, Pearson NJ and O'Reilly SY. 2008. GLITTER: Data reduction software for laser ablation ICP-MS. In: Sylvester P (ed.). Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series, 40: 204 – 207
- Han BF, He GQ and Wang SG. 1999. Post-collisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin. Science in China (Series D), 29(1): 16 – 21 (in Chinese)
- Han BF, Ji JQ, Song B, Chen LH and Zhang L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22 (5): 1077 – 1086 (in Chinese with

English abstract)

- Han BF. 2007. Diverse post-collisional granitoids and their tectonic setting discrimination. Earth Science Frontiers, 14(3): 64 72 (in Chinese with English abstract)
- Li JY. 1988. Researching on Paleozoic plate tectonics of Karamaili area, East Junggar, Xinjiang. Ph. D. Dissertation. Beijing: Institute of Geology, Chinese Academy of Geological Sciences, 1 – 256 (in Chinese with English summary)
- Li JY. 2004. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China. Geological Review, 50 (3): 304 – 322 (in Chinese with English abstract)
- Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZQ. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148 - 168 (in Chinese with English abstract)
- Li YC, Yang FQ, Zhao CS, Zhang Y, Yan SH, Dai JZ and Xu LG. 2007. SHRIMP U-Pb zircon dating of the Beilekuduk pluton in Xinjiang and its geological implications. Acta Petrologica Sinica, 23 (10): 2483 – 2492 (in Chinese with English abstract)
- Li ZH, Han BF and Song B. 2004. SHRIMP zircon U-Pb dating of the Ertaibei granodiorite and its enclaves from eastern Junggar, Xinjiang, and geological implications. Acta Petrologica Sinica, 20 (5):1263-1270 (in Chinese with English abstract)
- Lin JF, Yu HX, Yu XQ, Di YJ and Tian JT. 2007. Zircon SHRIMP U– Pb dating and geological implication of the Sabei alkali-rich granite from eastern Junggar of Xinjiang, NW China. Acta Petrologica Sinica, 23(8): 1876 – 1884 (in Chinese with English abstract)
- Liu JY, Yuan KR, Wu GQ, Xin JG and Liu S. 1996. A Study on Alkali-Rich Granitoids and Related Mineralization in Eastern Junggar, Xinjiang, China. Changsha: Central South University of Technology Press, (in Chinese with English abstract)
- Ludwig KR. 2003. User's manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 4
- Malvin DJ and Drake MJ. 1987. Experimental determination of crystal/ melt partitioning of Ga and Ge in the system forsterite-anorthitediopside. Geochimica Cosmochimica Acta, 51: 2117 - 2128
- Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19: 120 125
- Qi L, Hu J and Grégoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51: 507 – 513
- Scherer E, Munker C and Mezger K. 2001. Calibration of the lutetiumhafnium clock. Science, 293: 683 – 687
- Su YP, Tang HF, Liu CQ, Hou GS and Liang LL. 2006. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 25(3): 175 – 184 (in Chinese with English abstract)
- Su YP, Tang HF, Sylvester PJ, Liu CQ, Qu WJ, Hou GS and Cong F. 2007. Petrogenesis of Karamaili alkaline A-type granites from East Junggar, Xinjiang (NW China) and their relationship with tin mineralization. Geochemical Journal, 41: 341 – 357
- Sun SS and McDonoush WF. 1989. Chemical and isotopic systematics of oceanic basahs: Implications for mantle composition and processes. In: Saundes AD and Norry MJ (eds). Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ. 42: 313 – 345
- Tang HF, Su YP, Liu CQ, Hou GS and Wang YB. 2007a. Zircon U-Pb age of the plagiogranite in Kalamaili belt, northern Xinjiang and its tectonic implications. Geotectonica Metallogenia, 31(1): 110 – 117 (in Chinese with English abstract)
- Tang HF, Qu WJ, Su YP, Hou GS, Du AD and Cong F. 2007b. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei pluton in Xinjiang: Constraint from isotopic ages. Acta Petrologica Sinica, 23 (8): 1989 – 1997 (in Chinese with English abstract)
- Tang HF, Zhao ZQ, Huang RS, Han YJ and Su YP. 2008. Primary Hf isotopic study on zircons from the A-type granites in eastern Junggar of Xinjiang, Northwest China. Acta Mineralogica Sinica, 28(4):

335 - 342 (in Chinese with English abstract)

- Wang JB and Xu X. 2006. Post-collisional tectonic evolution and metallogenesis in northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23 - 31 (in Chinese with English abstract)
- Xiao WJ, Han CM, Yuan C, Chen HL, Sun M, Lin SF, Li ZL, Mao QG, Zhang JE, Sun S and Li JL. 2006. Unique Carboniferous– Permian tectonic-metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062 – 1076 (in Chinese with English abstract)
- Xiao XC, Tang YQ, Feng YM, Zhu BQ, Li JY and Zhao M. 1992. Tectonic Evolution of the Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1 – 169 (in Chinese)
- Xu XS, Griffin WL, Ma X, O' Reilly SY, He ZY and Zhang CL. 2009. The Taihua Group on the southern margin of the North China craton: Further insights from U-Pb ages and Hf isotope compositions of zircons. Miner. Petrol., 97: 43 – 59
- Zhu YF, Zhang LF, Gu LB, Guo X and Zhou J. 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chinese Science Bulletin, 50(18): 2004 – 2014 (in Chinese)
- Zhu YF, Zhou J and Guo X. 2006. Petrology and Sr-Nd isotopic geochemistry of the Carboniferous volcanic rocks in the western Tianshan Mountains, NW China. Acta Petrologica Sinica, 22(5): 1341 – 1350 (in Chinese with English abstract)
- Zhu YF, Wang T and Xu X. 2007. Progress of geology study in Xinjiang and its adjacent regions. Acta Petrologica Sinica, 23(8): 1785 – 1794 (in Chinese with English abstract)
- Zhu YF, Guo X, Song B, Zhang LF and Gu LB. 2009. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China. Journal of the Geological Society, London, 166: 1085 – 1099

附中文参考文献

- 韩宝福,何国琦,王式洸. 1999. 后碰撞岩浆活动、底垫作用及准噶 尔盆地基底的性质. 中国科学(D辑), 29(1): 16-21
- 韩宝福,季建清,宋彪,陈立辉,张磊.2006.新疆准噶尔晚古生代 陆壳垂向生长(I) ——后碰撞深成岩浆活动的时限.岩石学报, 22(5):1077-1086
- 韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂 性. 地学前缘, 14(3): 64-72
- 李锦轶. 1988. 新疆东准噶尔卡拉麦里地区古生代板块构造研究. 博士学位论文.北京:中国地质科学院研究生部,1-256
- 李锦轶. 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304-322
- 李锦轶,何国琦,徐新,李华芹,孙桂华,杨天南,高立明,朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探

讨. 地质学报, 80(1): 148-168

- 李月臣,杨富全,赵财胜,张岩,闫升好,代军治,徐林刚. 2007. 新 疆贝勒库都克岩体的锆石 U-Pb 年龄及其地质意义. 岩石学报, 23(10): 2483-2492
- 李宗怀, 韩宝福, 宋彪. 2004. 新疆东准噶尔二台北花岗岩体和包体的 SHRIMP 锆石 U-Pb 年龄及其地质意义. 岩石学报, 20(5): 1263 1270
- 林锦富,喻亨祥,余心起,狄永军,田建涛. 2007. 新疆东准噶尔萨 北富碱花岗岩 SHRIMP 锆石 U-Pb 测年及其地质意义. 岩石学 报,23(8):1876-1884
- 刘家远,袁奎荣,吴郭泉,忻建刚,刘生. 1996. 新疆东准噶尔富碱 花岗岩及其成矿作用. 长沙:中南工业大学出版社
- 苏玉平,唐红峰,刘丛强,侯广顺,梁莉莉. 2006. 新疆东准噶尔苏 吉泉铝质 A 型花岗岩的确立及其初步研究. 岩石矿物学杂志, 25(3): 175-184
- 唐红峰,苏玉平,刘丛强,侯广顺,王彦斌. 2007a. 新疆北部卡拉麦 里斜长花岗岩的锆石 U-Pb 年龄及其构造意义. 大地构造与成 矿学,31(1):110-117
- 唐红峰,屈文俊,苏玉平,侯广顺,杜安道,丛峰. 2007b. 新疆萨惹 什克锡矿与萨北碱性 A 型花岗岩成因关系的年代学制约. 岩石 学报,23(8):1989-1997
- 唐红峰,赵志琦,黄荣生,韩宇捷,苏玉平. 2008. 新疆东准噶尔 A 型花岗岩的锆石 Hf 同位素初步研究.矿物学报,28(4):335-342
- 王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31
- 肖文交,韩春明,袁超,陈汉林,孙敏,林寿发,厉子龙,毛启贵,张 继恩,孙枢,李继亮.2006.新疆北部石炭纪-二叠纪独特的构 造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约.岩 石学报,22(5):1062-1076
- 肖序常,汤耀庆,冯益民,朱宝清,李锦轶,赵民. 1992. 新疆北部 及其邻区大地构造. 北京: 地质出版社,1-169
- 朱永峰,张立飞,古丽冰,郭璇,周晶. 2005. 西天山石炭纪火山岩 SHRIMP 年代学及其微量元素地球化学研究.科学通报,50 (18): 2004-2014
- 朱永峰,周晶,郭璇. 2006. 西天山石炭纪火山岩岩石学及 Sr-Nd 同 位素地球化学研究. 岩石学报, 22(5): 1341-1350
- 朱永峰,王涛,徐新. 2007. 新疆及邻区地质与矿产研究进展. 岩石 学报,23(8):1785-1794