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Abstract: Trace elements and rare earth elements (REE) of the sulfide minerals were determined by
inductively-coupled plasma mass spectrometry. The results indicate that V, Cu, Sn, Ga, Cd, In, and Se
are concentrated in sphalerite, Sb, As, Ge, and Tl are concentrated in galena, and almost all trace
elements in pyrite are low. The Ga and Cd contents in the light-yellow sphalerites are higher than that
in the brown and the black sphalerites. The contents of Ge, Tl, In, and Se in brown sphalerites are
higher than that in light-yellow sphalerites and black sphalerites. It shows that REE concentrations are
higher in pyrite than in sphalerite, and galena. In sphalerites, the REE concentration decreases from
light-yellow sphalerites, brown sphalerites, to black sphalerites. The ratios of Ga/In are more than 10,
and Co/Ni are less than 1 in the studied sphalerites and pyrites, respectively, indicating that the genesis
of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with
hydrothermal genesis. The relationship between LnGa and Lnln in sphalerite, and between LnBi and
LnSb in galena, indicates that the Tianqiao Pb—Zn ore deposit might belong to sedimentary-reformed
genesis. Based on the chondrite-normalized REE patterns, JEu is a negative anomaly (0.13-0.88), and
0Ce does not show obvious anomaly (0.88—1.31); all the samples have low total REE concentrations (<3
ppm) and a wide range of light rare earth element/high rare earth element ratios (1.12-12.35). These
results indicate that the ore-forming fluids occur under a reducing environment. Comparison REE
compositions and parameters of sphalerites, galenas, pyrites, ores, altered dolostone rocks, strata
carbonates, and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming
fluids might come from polycomponent systems, that is, different chronostratigraphic units could make
an important contribution to the ore-forming fluids. Combined with the tectonic setting and previous
isotopic geochemistry evidence, we conclude that the ore-deposit genesis is hydrothermal, sedimentary
reformed, with multisources characteristics of ore-forming fluids.
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1 Introduction

The Sichuan-Yunnan-Guizhou Pb—Zn metallogenic area
(SYG MA) is one of the source bases of Pb, Zn, Ag, and Ge
in China. At present, more than 400 Pb—Zn (—Ag) ore
deposits and ore spots have been found in this area (Liu and
Lin, 1999). Northwest of the Guizhou Pb—Zn metallogenic
region (NG MR) is an important part of the SYG MA, with
more than 100 ore (spots) deposits (Jin, 2008). The
Tianqiao Pb-Zn ore deposit of Guizhou province,
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representative of the medium-sized deposits in this area
(Fig. 1), is located in the southeast of the SYG MA and in
the center of the NG MR. This deposit is characterized by
large-scale Pb+Zn reserves (more than 0.2 million tons),
high Pb+Zn grades (Pb+Zn contents mostly higher than 20
wt%, parts of ores exceed 30 wt%), and an abundant of
associated, useful elements (such as Cd, Ga, and In).

The ore geology (Tang, 1984; Wang, 1994; Mao, 2001;
Jin, 2008), ore-controlling structures (Zheng, 1992; Jin,
2008), ore-forming ages (Guan and Li, 1999; Huang et al.,
2004; Li, 2004; Jin, 2008), and ore-deposit genesis (Zheng,
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Fig. 1. Arial geologic sketch map of the northwest Guizhou Pb—Zn metallogenic region (after Liu, 2002).
1, Type-boundary section; 2, faults; 3, medium-sized deposits (including Tiangiao); 4, small-sized deposits; 5, place name; 6, province boundary; 7, strata of

Carboniferous, Permian, and Triassic.

1994; Liu and Lin,1999; Zhou et al., 2001; Huang et al.,
2004; Gu, 2006; Jin et al., 2007; Jin, 2008; Zhou et al.,
2009) have been previously studied. Tang (1984) and Chen
(1986) considered that ore-forming metals/fluids are
derived from carbonate hosts, and Zheng (1994) assumed
that they are derived from the underlying strata and
basement rocks (Zheng, 1994; Mao et al., 1998; Qian,
2001). Liu and Lin (1999) associated their source
characters with multisources, that is, the ore host rocks,
underlying strata and basement rocks, as well as the
Emeishan basalt magmatic activity formed the ore-forming
metals/fluids, and the magmatic activity also provided a
heat source (Liu and Lin, 1999; Han et al., 2001; Liu et al.,
2003; Huang et al., 2004). However, Gu (2006) believed
that the Emeishan basalt has no relationship with deposits
in this area, except the spatial distribution overlap. Because
of the controversy associated with the source of ore-
forming metals/fluids of this deposit, the genesis of the
deposit is still under debated (Zheng, 1994; Liu and Lin,
1999; Zhou et al., 2001; Huang et al., 2004; Gu, 2006; Jin et
al., 2007; Jin, 2008; Zhou et al., 2009).

The trace element compositions of the sulfide minerals

and their ratios (such as the ratios of the Ga/In, Zn/Cd, and
Co/Ni) were used to distinguish Pb—Zn ore-deposit types
effectively (Hawley and Nichol, 1961; Price, 1972; Liu et
al., 1984; Tu et al., 1984; Zhang, 1987; Brill, 1989; Palero-
Fernandez and Martin-Izard, 2005), and the geochemical
behavior of the rare earth elements (REE) showed
consistency, making them widely used in tracing ore-
forming metals/fluids (Barrett et al., 1990; Bau, 1991; Mills
and Elderfield, 1995; Wang et al., 2004; Wilkinson et al.,
2005; Huang et al., 2007; Li et al.,, 2007; Huang et al.,
2010). Based on the trace elements and REE compositions
of the sulfide minerals from the Tiangiao Pb-Zn deposit, the
genesis of the deposit is discussed in the present study.

2 Geologic Setting

The Tiangiao Pb—Zn ore deposit is located in the central
northwest of Guizhou province and mid-east of the SYG
MA, on the southwest margin of the Yangtze Craton (Fig.
1). It is approximately 60 km away from Hezhang County.
Geologically, it is situated in the Maomaochang—
Shashilang ramp system of the Shuicheng Fault subsidence
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(Mao, 2001; Jin, 2008) (Fig. 2). The
industrial ore bodies occurred in the
dolomitic limestone and dolomite of the
Lower Carboniferous Datang Formation
(Cid) and Baizuo (Cib),
respectively, ~which belongs to the
northwest-trending, nose-like plunging of
the northwest-trending Tianqgiao anticline,
and is controlled by the F3; fault.

The exposed strata in the ore field from
new to old are mainly the Lower Permian
Qixia—Maokou Formation and Liangshan
Formation (P;/), Upper Carboniferous
Maping  Formation and  Huanglong
Formation (C,h), Lower Carboniferous C;b
and Cid, Upper Devonian Rongxian
Formation (Dsr), and Middle Devonian
Dushan Formation. In addition, the Lower
Permian P,/ is not carbonate; the rest are all
carbonate rocks, of which the lime—dolomite
and dolomite of C,h, C;b, Cid, and Dsr are
the main ore-bearing rocks.

The main ore bodies of the Tiangiao Pb—
Zn ore deposit are produced in the interlayer
crushed zone of the F3; fault, which show a
stratoid shape, platy ore body, and lenticular
form. The boundaries between ore bodies
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(Figs. 2, 3). Thirty-two ore bodies have been

found and divided into two sections. The
south section is Yingpanshang, which is 400
m in length and 300 m in width, and includes
15 ore bodies. The hosted strata are the Dsr,
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Fig. 2. Geologic sketch map of the Tianqgiao ore deposit (after Jin, 2008).

1, Qixia—Maokou Formation; 2, Liangshang Formation; 3, Maping Formation; 4, Huanglong
Formation; 5, Baizuo Formation; 6, Datang Formation; 7, Rongxian Formation; 8, Dushan
Formation; 9, diabase; 10, abnormal fault; 11, ores.

Cib, and Cd. The larger ore body, which is
200 m in length, 100 m in width, and 1.3-1.8 m in
thickness, was produced in the limestone and dolomite of
C,b. The average grade of Pb is 1.23 wt%, and Zn is 5.69
wt%. The Shazidi section, in which the ore-belt length is
800 m and the width is 500 m, is located in the north. There
are 17 ore bodies, shaped like the en echelon lenses and
sack-like output. The hosted rocks are the dolomite of C;d
and limestone of C,h, of which III-6 and III-7 are the two
largest ore bodies. The III-6 ore body is 250 m in length,
120 m in width, and 1.4-19 m in thickness; the average
grade of Pb is 5.51 wt% and Zn is 15 wt%. The III-7 ore
body is 320 m in length, 220 m in width, and 1.7-5.15 m in
thickness; the average grades of Pb and Zn are 3.6 wt% and
6.52 wt%, respectively. The total reserve amount of the 11
and III ore bodies is more than 0.2 Mt.

According to microscopic observations and electron-
probe microanalysis studies, ores are mainly self-shaped,

semiself-shaped, granular, corroded, metasomatic harbor-
like, knot-edge, replacement island arc, and metasomatic
vein-like in texture. The textures of the oxidized ores are
usually granular and string-like. The structures of ores are
massive, dip-dyed, and of breccia structure. The structures
of oxidized ores are usually earthy, hull-shaped, and grape-
like structures. The metal sulfide minerals species include
galena, sphalerite, pyrite, chalcopyrite, and a small amount
of marcasites. The oxidized minerals species include
cerusite, anglesite, siderite, calamine, hemimorphite and
hydrozincite. The gangue minerals are mainly calcite and
quartz in a small quantity. The wall-rock alterations are
mainly dolomitization, pyritization, Fe-Mn carbonation,
ferritization, calcitization, and silicification.

According to the ore textures and structures, the vein
interpenetration relations and the mineral paragenetic
associations (Fig. 4), the ore-forming processes of the
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Fig. 3. The fourth prospecting line profile map of the Tiangiao Pb—Zn deposit.

1, Quaternary; 2, Qixia-Maokou Formation; 3, Liangshang Formation; 4, Maping Formation; 5, Huanglong Formation; 6, Baizuo Formation; 7, Datang
Formation; 8, Rongxian Formation; 9, stratigraphic boundary; 10, rough estimate of stratigraphic boundary; 11, height mark; 12, drill hole and number; 13,
oxidized ore; 14, primary sulfide ore; 15, ores and numbers.

Tianqiao Pb-Zn ore deposit are divided into the
sedimentary epoch, hydrothermal epoch, and weathering
epoch, of which the hydrothermal epoch could be divided
into a further three ore-forming stages, that is, the pyrite—
black sphalerite (Bl Sp)—calcite stage, the pyrite—-brown
sphalerite (Br Sp; brown—yellow, yellow—brown, and red—
yellow, for short Br Sp)—galena—pyrite—calcite stage, and
the light-yellow sphalerite (Ly Sp)—galena—calcite stage.

3 Samples and Analytical Methods

All the samples were collected from the main ore bodies
and the different ore-forming stages. The samples were
crushed by ore dressing to 40-60 mesh sizes. The
individual minerals (sphalerites of different colors, galena,
and pyrite) were then handpicked. All different-colored
sphalerites were analyzed together with galena and pyrites.
The analyses of the trace elements and REE were carried

out at Beijing Nuclear Industry Geology Academy, Beijing,
China, using a high-resolution, inductively-coupled plasma
mass spectrometer (ICP-MS; Finnigan MAT Co.,
Germany). This instrument has good precision, with 2¢
better than 10%, almost all the data are better than 5%. The
analytical methods are as follows: (1) the samples were
digested in 1 mL HF (hydrofluoric acid) and 2 mL. HNO;
(nitric acid) in a Teflon cup at 190°C for 40 h; (2) the cup
was moved to the low-temperature, electric heating board;
1 mL HNO; was added and heated until the solution
evaporated completely; (3) 500 ng Rh (1 mL) internal
standard solution, 2 mL. HNOs, and 3 mL deionized water
were added to the Teflon cup accurately, and the cup was
heated at 140°C for 5 h; and (4) 0.4 mL solution was
transferred to a centrifuge tube, and 9.6 mL deionized water
was added for the ICP-MS measurement. All acids and
water were purified in an ultra-clean laboratory. The
standard solutions were Ba600, OU-6, AMH-1, and GBPG
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Fig. 4. Back-scattered electron images.
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(a) Banded galena, and calcite and pyrite in sphalerite; (b) galena, pyrite, sphalerite, and calcite paragenesis; (c) replacement remnant sphalerite and galena; (d)

automorphic pyrite and replacement remnant sphalerite.

-1. The testing errors of the standard solution were less than
5%. Detailed analytical methods are described in detail by
Qi et al (2000).

4 Results

4.1 Trace elements in sulfides

The trace elements are listed in Table 1, from which we
found that the trace element concentrations of Cu, Cd, Ga,
Sn, As, and Sb are comparatively higher, especially the
contents of Cd and Ga, which reached comprehensive
utilization. Most of the useful elements were concentrated
in sphalerite and galena, and the distribution characteristics
are described. The trace elements V, Ni, Cu, As, Mo, Sn,
Sb, Ga, Cd, In, and Se are concentrated in the sphalerites
(Table 1). The mean V content in 13 sphalerites was 2.05

ppm, with a narrow range from 0.51 to 8.73 ppm. The mean
Ni content in sphalerites was 2.25 ppm, with minimum and
maximum contents of 0.67 and 3.62 ppm. The mean Cu
content in sphalerites was 292.6 ppm, with a range from
69.8 to 501 ppm. The mean As content in sphalerites was
31.8 ppm, with minimum and maximum contents of 9.69
and 76.5 ppm. The mean Mo content in sphalerites was
6.52 ppm, with a wide range from 0.18 to 80.9 ppm. The
mean Sn content in sphalerites was 89.1 ppm, with
minimum and maximum contents of 16.2 and 247 ppm.
The mean Sb content in sphalerites was 20.5 ppm, with a
range from 3.71 to 59.3 ppm. The mean Ga content in
sphalerites was 76.3 ppm, with minimum and maximum
contents of 6.3 and 203 ppm. The mean Cd content in
sphalerites was 771 ppm, with minimum and maximum
contents of 623 and 938 ppm. The mean In content in the
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Fig. 5. InGa vs. Inln of sphalerite (after Zhang, 1987). InBi

different Co/Ni values; the Co/Ni values associated with
volcanism, and hydrothermal
genesis ore deposits are >5-10, <1, and <5, respectively
(Price, 1972). The <0.5 Co/Ni value of pyrite in the
Tiangiao Pb—Zn ore deposit indicates that it could belong to
a sedimentary-reformed area, which is in accordance with
the above-mentioned results.

The ratios of Ga/In, Zn/Cd, and Co/Ni of the Tiangiao Pb
—Zn ore deposit are different from the ratios of the
Volcanogenic  Massive  Sulfide-type (VMS) and
Sedimentary Exhalative-type (SEDEX) Pb—Zn ore deposits
(Zhang, 1987; Huang et al., 2004; Palero-Fernandez and
Martin-Izard, 2005; Li et al., 2007), but are close to the
ratios of the Mississippi valley-type (MVT) Pb—Zn ore
deposits. Many researchers have considered the deposit
model to be MVT (Zhou et al., 2001; Jin, 2008). However,
the result conflicts with the geologic—tectonic setting and
geochemical evidence (Huang et al., 2004; Zhou et al.,
2009).

The Tianqiao Pb—Zn ore deposit was situated in the
central Yadu—Ziyun discordogenic fault zone (Fig. 1),
which was formed at the end of the Late Ordovician Duyun
Movement (Jin, 2008). It was an important magmatic
channel of Emeishan basalts (Liu, 2002; Jin et al., 2007).
The ore bodies were controlled by the F;; fault, which
shows a stratoid shape, platy ore body, and lenticular form
(Figs. 2, 3). The geologic and tectonic characteristics
indicate that the deposit was an epigenetic deposit (Jin,
2008; Zhou et al., 2009). The S, C, O, and Pb isotopic data
also show that the sulfurs in the ore-forming fluids should
be derived from the thermochemical sulfate reduction of
marine sulfates from the sedimentary stratum; CO, might
have come from marine carbonate dissolution, and Pb had
crust-derived features (Huang et al., 2004; Jin, 2008; Zhou
et al., 2010). Therefore, the deposit was sedimentary
genesis, and was reformed by hydrothermal solutions. The
ratios of Ga/In and Zn/Cd in sphalerites, the InGa—InIn
diagram of sphalerites, and the InBi-InSb diagram of

sedimentary-reformed

Fig. 6. InBi vs. InSb of galena (after Zhang, 1987).

galenas, together with the Co/Ni ratios of pyrites, indicate
that the genesis of the Tiangiao Pb—Zn ore deposit could be
a hydrothermal, sedimentary-reformed type.

5.2 Origin of ore-forming materials/fluids

REE are very useful in analyses of the origin of ore-
forming fluids and metals (Barrett et al., 1990; Bau, 1991;
Mills and Elderfield, 1995; Wilkinson et al., 2005). They
have similar chemical properties and behave coherently in
most geochemical processes (Wang et al., 1989). However,
according to coordination chemistry (Dai, 1987), REE**
and Ce** are hard acids, whereas Eu**is a soft acid (Chen
and Fu, 1991; Chen and Zhao, 1997; Ma and Liu, 1999).
Thus, it is easy for Eu®* to separate from the other REE*
ions during the geochemical process, resulting in negative
or positive Eu anomalies on chondrite-normalized REE
patterns for geologic samples (Li et al., 2007). In the
process of water—rock reaction, the solid products in a
reducing environment have a high JEu value (usually >1),
low XREE values, and high LREE/HREE ratios; in
contrast, the oxidizing conditions show low JEu values
(usually <1), high XREE values, and low LREE/HREE
ratios (Chen and Fu, 1991; Chen and Zhao, 1997; Ma and
Liu, 1999). The above-mentioned process is called the
redox model for REE geochemical evolution (Chen and Fu,
1991).

The sphalerites and pyrites of the Tianqiao Pb—Zn ore
deposit have low ZREE values (<3 ppm) and high LREE/
HREE ratios (1.12—12.45); the Eu shows negative anomaly,
and Ce shows weakly-positive anomaly (Table 2; Fig. 7a).
The REE of the same sample (TQ24, TQ19, and TQ60) of
different-colored sphalerites (Fig. 7b) and different
minerals (Fig. 7¢), and the REE of ore, pyrite, calcite, and
sphalerite (Fig. 7d) show the same result. This conclusion is
supported by the mineral association that is rich in sulfides,
formed by a fluid system with high activity of S™. The high
S activity is an indubitable indicator of a reducing
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Fig. 7. Chondrite- normalized rare earth element (REE) patterns (after Boynton, 1984).

(a) Chondrite-normalized REE patterns of different minerals; (b) Chondrite-normalized REE patterns of different-colored sphalerites; (c) Chondrite-normalized
REE patterns of pyrite and sphalerite in samples of TQ19, TQ24, and TQ60; (d) Chondrite-normalized REE patterns of different samples (HT-16 ore is an ore
sample; HT-22 altered rock is an altered wall-rock sample; HM-29 dolostone is a stratum dolostone sample; TQ-ORC Datang Formation (C,d) pyrite is a pyrite
sample from C,d stratum (data com from Mao, 2001). TQ-13 calcite is a calcite sample (unpublished data). All figures are drawing in logarithmic coordinates.

environment. According to the redox model for REE
geochemical evolution, the sulfides from the Tiangiao ore
deposit, which were formed in reducing conditions, should
have high Eu values instead of Eu depletion (Table 1). This
can be interpreted by considering the following two
possibilities: (1) the fluid system and its source might be
depleted in Eu; and (2) calcite, the gangue mineral
coexisting with sulfides, is enriched in Eu, resulting in Eu-
depleted sulfides to maintain the Eu mass balance. Calcite
is almost the only gangue mineral in the Tianqiao ore
deposit, and other gangue minerals are rare. The calcites
show negative Eu anomalies (Fig. 7). This rules out the
second possibility/hypothesis that the coexisting calcite
was enriched in Eu, while sulfides were depleted in Eu to
maintain the Eu mass balance.

Many researchers believed that the wall rocks were the
main sources, while other researchers believed that the ore-
forming fluids and metals were from the ore-bearing wall
rocks themselves (Chen, 1986), the stratum below, the
crystalline basement (Zheng, 1994; Qian, 2001), and the
Emeishan basalt (Huang et al., 2004). Huang et al., (2004)
and Jin (2008) proved that the chondrite-normalized REE
patterns, with Eu-depleted characters of different
chronostratigraphic units, were the same as the REE of
sulfide minerals. This finding is in accordance with the first

possibility/hypothesis, that is, the fluid systems and their
sources might be depleted in Eu. This means that the main
sources of the Tianqiao Pb—Zn ore deposit are the from
different chronostratigraphic units.

From the above-mentioned discussion, we can conclude
that the ore-forming fluids/metals could be from the
polycomponent systems, and this finding is in accordance
with that of Huang et al. (2004).

6 Conclusions

The trace elements of sulfide minerals from the Tianqiao
Pb-Zn ore deposit are important for mineralogy and
comprehensive utilization. It was concluded that in the
Tiangiao Pb-Zn ore field, the trace elements V, Cu, Sn, Ga,
Cd, In, and Se are concentrated in sphalerite; the Sb, As,
Ge, and Tl are concentrated in galena; and almost all of the
trace elements in pyrite are low. At the same time, the ratios
of Ga/In and Zn/Cd, the InGa-InIn diagram of sphalerites,
and the InBi—InSb diagram of galena, together with the Co/
Ni ratios of pyrite, indicate that the genesis of the Tiangiao
Pb—Zn ore deposit could be hydrothermal, sedimentary
reformed-type.

Sulfide minerals of the Tianqiao Pb-Zn ore deposit have
very low REE contents, high LREE/HREE ratios, and
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negative Eu anomalies. These sulfides were deposited in a
reducing environment from Eu-depleted fluid systems. The
REE geochemical characteristics of the sulfides are similar
to those of carbonate host rocks, which indicate that the ore
-forming fluids could be from the carbonate host rocks,
underlying strata, and basement rocks.
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