文章编号:1000-4734(2004)02-0136-07

个旧塘子凹锡多金属矿床微量元素地球化学特征

贾润幸^{1,2},方维萱²,赫 英¹,高振敏²,李红阳²

(1. 西北大学 大陆动力学教育部重点实验室,西北大学 地质系,陕西 西安 710069;

2. 中国科学院 地球化学研究所 矿床地球化学开放研究实验室,贵州 贵阳 55002)

摘要:塘子凹矿床位于个旧老厂矿田的西北部,矿体按产出方式可分为接触带原生硫化矿和脉状氧化矿。本 文着重从微量元素地球化学和矿物地球化学角度探讨了本区脉状氧化矿的成因问题,认为该区脉状氧化矿与 接触带原生硫化矿具有同源性,而与围岩大理岩没有成因联系;在成矿后期,地表流体对脉状矿体中多种微量 元素特别是 V、As、Sb、Bi等有强烈的富集作用。

关键词:氧化矿;锡多金属矿床;微量元素;成因;云南个旧

中图分类号:P618.401 文献标识码:A

作者简介:贾润幸,男,1969年生,工程师,博士生,主要从事岩石、矿物、矿床学和地球化学方面的研究.

个旧超大型锡多金属矿是我国重要的锡矿产 地、它与世界上许多其它超大型锡矿产地一样都 与花岗岩类岩石存在着密切的联系^[1,2]。关于个 旧锡多金属矿的成因已进行了许多研究^[3~11],提 出了不同的观点:一种为岩浆热液直接成矿说^[3]; 另一种承认岩浆的成矿作用,但认为以喷流沉积 为主,岩浆热液只是起到改造作用^[4],或认为有原 始"矿源层"的存在^[5]。塘子凹矿床位于个旧矿区 老厂矿田的西北部,由于矿床中主要的层间、脉状 氧化矿体接近地表且氧化强烈,矿石多呈土状或 半土状,采样、分析测试和研究有很大难度。随着 新的测试手段(如 ICP-MS)的不断出现,应用多种 微量元素地球化学进行示踪已成为一种直接有效 的手段^[12].本文侧重从微量元素地球化学和矿物 地球化学角度^[13,14],对个旧塘子凹矿床中的脉状 氢化矿和接触带原生硫化矿的地球化学特征及其 相互关系进行研究,探讨隐伏矿体的地球化学找 矿标志。

1 区域地质概况

个旧锡多金属矿区位于滇东南地区南部,由 5个矿田组成,从北至南依次为马拉格、松树脚、

收稿日期:2004-12-10

基金项目:云南省省院省校合作项目(2000 YK - 05);国家重大基 础研究规划项目(2001 CB409805) 高松、老厂和卡房矿田。滇东南地区沉积岩广泛 发育,约占区内面积的80%以上。地层除白垩系 缺失外,前寒武系到第四系均有出露。上三叠统 以前的地层以海相沉积为主,上三叠统以后主要 为陆相沉积。

区域的深大断裂主要有南北向的小江断裂; 北西向的红河断裂、哀牢山断裂、屏建石断裂;北 东向的师宗 —弥勒断裂、南盘江断裂。

本区岩浆活动具有多期次、多阶段性,从元古 代到新生代的各主要构造活动时期,均有强度不 等、类型不同的岩浆活动。以华力西期的海底基 性火山喷发活动和印支、燕山期的基性(超基性 岩)、酸性岩浆活动最为强烈^[3,7]。

2 矿区地质特征

塘子凹矿床位于老厂矿田的西北部。矿区的 地层由老到新依次为三叠系个旧组中下段的碳酸 盐类沉积岩和第四系黄褐色粘土、砂质粘土。其 中三叠系个旧组碳酸盐岩是主要的控矿围岩。

矿区内构造发育,主要为褶皱和断裂。褶皱主 要为五子山复式背斜的次级背斜——黄茅山背斜 和湾子街背斜。断裂主要发育北西向、北东向、东 西向三组,三组断裂均与成矿关系密切。北西向断 裂主要有黄茅山断裂和秧草塘断裂,为张扭性断 裂;北东向断裂为坳头山断裂,为压扭性断裂;东西 向断裂主要为背阴山断裂,为张扭性断裂。 矿区内岩浆岩主要为燕山晚期隐伏花岗岩, 属老卡岩体的一部分,沿五子山复背斜核部侵入 于中三叠统碳酸盐岩中,形成平缓开阔,两侧下 倾,东缓西陡的老卡大岩株。本区花岗岩普遍经 后期自变质作用,发生淡色岩化,形成灰白色花岗 岩^[7]。

矿体按其产出方式可分为接触带原生硫化矿 和脉状氧化矿(原矿石为块状硫化物)。

接触带原生硫化矿多与砂卡岩有关,砂卡岩 根据矿物组合及其含量的不同可划分为5类,在 空间上从碳酸盐岩到花岗岩的排列顺序依次为:

砂卡岩化大理岩; 硅灰石钙铁榴石砂卡岩; 符山石硅灰石砂卡岩; 透辉石硅灰石钙铝榴石 砂卡岩; 透辉石砂卡岩。矿化主要集中在后三 类岩石中,而前两类岩石中矿化一般较弱。砂卡 岩中脉石矿物主要有钙铁榴石、钙铝榴石、硅灰 石、透辉石、符山石,电气石、绿泥石、绿帘石、方解 石、白云石、锂云母、金云母、萤石、硬石膏等。与 矽卡岩有关的金属矿物以磁黄铁矿为主、次为黄 铜矿、黄铁矿、锡石、铁闪锌矿、白钨矿等。

脉状氧化矿多位于接触带原生硫化矿的上

部,矿体由于近地表氧化强烈,矿石多呈土状或半 土状。从氧化矿石中残留的金属硫化矿物组合来 看,与接触带原生硫化矿基本相同,唯铅锌硫化物 相对增多,且多转变为以铁为主的次生氧化物;脉 石矿物除少量碳酸盐矿物外,很少见到其它脉石 矿物,以铁质、泥质、少量钙质胶结物为主。

3 矿床地球化学特征

为了研究塘子凹锡多金属矿体的原生晕异常 特征及分带性,分别选择不同中段(1950m、1850 m、1830m及1815m)对8剖面及相邻穿脉为主进 行坑道工程地球化学采样,样品地质特征见表1, 采样点间距在矿体及蚀变体内为2.5~3m,在地 层内为50m。样重一般500g(,室内切制电子探 针片及光、薄片后,样品均采用等离子质谱分析方 法(ICP-MS),样品分析结果见表2,并分别对其作 稀土配分曲线和蛛网图,图1采用球粒陨石^[15]为 标准,图2采用原始地幔^[16]为标准,可以看出,脉 状氧化矿石和接触带原生锡铜矿石、矽卡岩的配 分模式较为相似,而与围岩大理岩的配分模式差 异较大。

样号	位置	标 高/m	地质特征	岩(矿)石自然类型
MA47	塘子凹 1950m 8 剖 NE30°	1950	地层	大理岩发育 X 劈理
MA48	塘子凹 1950m 8 剖 NE30°	1950	地层	大理岩发育X劈理
MA49	塘子凹 1950m 8 剖 NE30°	1950	地层	大理岩发育 X 劈理
MA32	塘子凹 1850m 4 支-7 穿 SW240°	1850	脉状矿体	氧化矿
MA33	塘子凹 1850m 4 支-7 穿 SW240°	1850	脉状矿体	氧化矿
MA30-4	塘子凹 1830 中段 SW240°	1830	花岗岩接触带	硫化矿石
MA25	塘子凹 1815m 6 穿 SW240°	1815	花岗岩接触带	含矿矽卡岩
MA26	塘子凹 1815m 6 穿 SW240°	1815	花岗岩接触带含	矿矽卡岩

表 1 个旧塘子凹矿床岩(矿)石样品地质特征 Table 1. The geological features of rock (ore) samples from the Tangziwa deposit, Gejiu, Yunnan

图 1 塘子凹矿区不同类型岩(矿)石稀土配分曲线 Fig. 1. REE distribution patterns of different rocks (ores) in the Tangziwa deposit, Gejiu, Yunnan.

图 2 塘子凹矿区岩(矿)石中微量元素原始地幔标准化分布图

Fig. 2. Distribution diagram of primitive mantle-normalized trace elements in rocks (ores) in the Tangziwa deposit, Gejiu, Yunnan.

Table 2. Trace element compositions of rocks (ores) in the Tangziwa deposit, Gejiu, Yunnan(10⁻⁶)

++					1850 中段1830 中段			1815 中段				
作	MA47	MA48	MA49	均值	MA32	MA33	均值	MA30-4	MA25	MA26	均值	K
Li	6.4	13.9	5	8.5	132	110	121	609	393	439	416	0.2
В	7937	7619	7666	7741	3863	3855	3859	16633	7468	7163	7315	0.2
V	5.8	12.1	5.3	7.7	306	237	272	44.1	60.4	47.8	54.1	6.2
Cr	-	6.7	< 7)	2.2	25.8	40.2	33	27.8	32.7	40.6	36.7	1.2
Co	3.5	5.3	4.5	4.4	60.5	33.2	46.9	8.3	11.5	9	10.3	5.7
Ni	9.4	14	10	11.2	42.8	59	50.9	8.8	28.5	21.7	25.1	5.8
Cu	4.7	17.7	10.6	11	5716	3494	4605	2532	2488	10097	6292	1.8
Zn	7.4	242	28.6	92.6	2966	6460	4713	253	121	328	224	18.7
Ga	0.02	0.7	0.3	0.3	17.6	25.5	21.6	125	65.1	90.3	77.7	0.2
Ge	0.5	0.7	0.3	0.5	3.2	3.7	3.5	17.2	9.3	12.1	10.7	0.2
As	4.5	24.8	7.4	12.2	1438	2070	1754	228	25.5	37.1	31.3	7.7
Se	1.7	3.5	9.1	4.8	2.4	8.2	5.3	2.6	10	11.4	10.7	2.1
Rb	2.8	3.9	3	3.2	88.7	121.2	105	2204	1602	2031	1816	0.05
Sr	2930	1644	1733	2102	101	93	97.2	56.4	73.2	21.7	47.4	1.7
Y	0.6	1.5	1	1	31.6	24	27.8	4.6	25.7	34.5	30.1	6.1
Zr	3.2	12.1	3.6	6.3	88.8	119	104	36.9	64.6	52.6	58.6	2.8
Nb	0.4	1.5	0.4	0.8	12.3	16.2	14.2	28.7	8.8	10.9	9.8	0.5
Mo	0.3	0.4	0.5	0.4	14.8	20.5	17.6	2.1	1.3	1	1.2	8.5
Ag	-	1.5	0.6	0.7	36.5	25	30.7	3.3	2.7	17	9.8	9.3
Cd	0.07	0.3	0.1	0.2	26.1	40.7	33.4	18.5	8	15.8	11.9	1.8
In	0.006	0.01	0.02	0.01	45.1	13.4	29.3	3.2	4.8	21.5	13.2	9.1
Sn	2.9	1	0.6	1.5	482	496	489	326	265	224	245	1.5
Sb	5.6	0.7	0.3	2.2	611	189	400	2.9	3.3	3.1	3.2	136
Cs	0.3	1.2	0.3	0.6	12	17.1	14.6	343	279	443	361	0.04
Ba	17.2	8.5	3.7	9.8	436	240	338	61.8	91.2	70.1	80.7	5.5
La	0.6	1.2	1.7	1.2	11.2	25.4	18.3	78.8	105	59	82.1	0.2
Ce	1.3	2.6	3.1	2.4	22.6	54.7	38.6	142	184	107	145	0.2
Pr	0.2	0.3	0.3	0.3	3	6.1	4.6	14.8	20.6	12.1	16.4	0.3
Nd	0.6	1.4	1.2	1.1	11.8	23.8	17.8	43	62.9	43.2	53	0.4
Sm	0.2	0.3	0.3	0.2	3.3	5	4.2	5.5	9.9	9.3	9.6	0.8
Eu	0.05	0.07	0.09	0.07	0.6	1	0.8	0.2	0.5	0.4	0.5	3.9
Gd	0.1	0.2	0.2	0.2	3.2	4.1	3.7	2.1	5.6	5.6	5.6	1.8
Tb	0.01	0.04	0.02	0.02	0.6	0.8	0.7	0.2	0.8	0.8	0.8	3.5
Dv	0.1	0.2	0.1	0.2	37	4 1	3 0	0.8	4.4	5.6	5	18

表 2 个旧塘子凹矿床岩(矿)石微量元素组成特征(×10⁻⁶)

· + + +	-
7 	
- AT 20	· /.

+¥ □ -		1950 中	段		1850 中段		1830 中段 -	1815 中段		V		
177 DD	MA47	MA48	MA49	均值	MA32	MA33	均值	MA30-4	MA25	MA26	均值	<u>л</u>
Ho	0.02	0.04	0.03	0.03	0.9	0.9	0.9	0.2	0.8	1	0.9	5.2
Er	0.05	0.2	0.08	0.09	2.7	2.8	2.8	0.6	2.9	3.5	3.2	4.9
Tm	0.01	0.03	0.02	0.02	0.4	0.4	0.4	0.1	0.4	0.6	0.5	4.5
Yb	0.07	0.2	0.09	0.1	3.1	2.9	3	0.8	3.4	4.5	3.9	3.7
Lu	0.007	0.03	0.02	0.02	0.5	0.4	0.5	0.1	0.5	0.6	0.5	4.2
Hf	0.2	0.4	0.06	0.2	2.8	4.4	3.6	1	1.8	1.8	1.8	3.6
Ta	0.04	0.09	0.05	0.06	1	1.4	1.2	3.1	0.6	0.5	0.6	0.4
W	0.7	13.6	1.5	5.3	598	567	583	64.4	230	43.6	137	9.1
П	0.03	0.06	0.05	0.05	6.2	4.2	5.2	10.7	8.8	13.1	11	0.5
Pb	-	2.1	7	3	1797	4598	3197	2.1	12.1	6.9	9.5	1562
Bi	0.1	0.6	0.1	0.3	399	119	259	10.8	37.5	6.3	21.9	24
Th	0.1	0.3	0.2	0.2	4.3	11.6	7.9	3.2	4.2	2.7	3.5	2.5
U	0.4	1	0.8	0.7	38.9	18.9	28.9	1.7	6	5.8	5.9	16.6
TiO ₂ (%)	0.023	0.096	0.025	0.048	0.349	0.563	0.456	0.376	0.395	0.389	0.392	1.2
MnO(%)	0.005	0.008	0.01	0.008	2.24	2.47	2.36	0.248	0.143	0.169	0.156	9.5
LREE	3	5.8	6.6	5.2	52.6	116	84.3	284	383	231	307	0.3
HREE	0.4	0.9	0.6	0.6	15.1	16.3	15.7	4.8	18.8	22.2	20.5	3.3
REE	4	8.2	8.3	6.8	99.4	156	128	293	427	288	358	0.4
Ce/ Y	7.43	6.32	10.7	8.14	3.48	7.11	5.29	58.7	20.4	10.4	15.4	
Ce	1.03	1.05	1.01	1.03	0.93	1.05	0.99	1	0.95	0.96	0.96	
Eu	1.31	0.79	1.13	1.07	0.58	0.67	0.63	0.19	0.22	0.18	0.2	
(La/ Sm) $_{\rm N}$	2.44	2.63	4.23	3.1	2.13	3.19	2.66	9.05	6.65	3.99	5.32	
$(Gd/Yb)_N$	1.12	1.03	2.21 <	1.45	0.84	1.17	1	2.08	1.33	1.01	1.17	

注: K指氧化矿均值/原生矿;"-"表示低于检测值;中国科学院地球化学研究所漆亮测试.

3.1 大离子亲石元素特征

大离子亲石元素(LLE)一般是指离子电价和 半径比值小于 2.0 的低场强元素(LFS),主要包括 Cs、Rb、K、Ba、Sr 等不相容元素^[17],本文主要对 Cs、Rb、Ba、Sr 的地球化学特征进行讨论。

从不同样品的大离子亲石元素配分模式来 看,蚀变大理岩中主要以富集 Sr 为特点,Sr 的平 均含量高达 2 102 ×10⁻⁶。研究表明^[18]碳酸盐中 的 Sr 主要以类质同象替换结构中的 Ca²⁺,地层中 Sr 含量较高主要与碳酸盐(CaCO₃)有关。

氧化矿、硫化矿和砂卡岩都具有富集 Cs、Rb 而亏损 Sr、Ba 等大离子亲石元素 (LLE) 的特点。 氧化矿石中 Cs 和 Rb 的平均含量分别为 14.6 × 10^{-6} 和 105 × 10^{-6} , Sr 和 Ba 的平均含量分别为 97.2 × 10^{-6} 和 338 × 10^{-6} ;硫化矿石中 Cs、Rb 含量 分别为 343 × 10^{-6} 和 2 204 × 10^{-6} , Sr、Ba 含量分别 为 56.4 × 10^{-6} , 61.8 × 10^{-6} , 强富集 Cs - Rb 等大 离子亲石元素 (LLE); 砂卡岩和矿石基本相同,强 富集 Cs、Rb 而亏损 Sr、Ba 等大离子亲石元素 (LLE), Cs、Rb 平均含量分别为 361 × 10^{-6} 和 1 816 × 10^{-6} ; Sr 和 Ba 平均含量分别为 47.4 × 10⁻⁶和 80.7 ×10⁻⁶。

Rb、Cs 的富集通常与样品中的锂云母有 关^[19]。此外不同的样品中的 B 含量都较高,这主 要与样品中都含有黑电气石有关(蚀变大理岩中 的黑电气石粒度相对较小,一般为 0.05 mm ~ 0.15 mm)。硫化矿中 B 含量最高,为 16633 × 10^{-6} ;蚀变大理岩中 B 平均含量为 7 741 × 10^{-6} ; 矽卡岩中 B 平均含量为 7 315 × 10^{-6} ;脉状氧化矿 受后期氧化的影响,B 平均含量有所降低,为 3859 × 10^{-6} 。

3.2 稀土元素特征

围岩大理岩中稀土总量为 4.0 ×10⁻⁶ ~ 8.3 ×10⁻⁶,具富集轻稀土分布模式(Ce/Y = 6.32 ~ 10.7)。轻稀土比重稀土分馏程度要高一些, $(La/Sm)_N$ (Cd/Yb)_N = (2.44 ~ 4.23) (1.03 ~ 2.21)。铕和铈异常不明显,Ce = 1.01 ~ 1.05,Eu = 0.785 ~ 1.31。

氧化矿石中稀土总量为 99.4 ×10⁻⁶ ~ 156 × 10⁻⁶,具富集轻稀土分布模式(Ce/Y=3.48 ~ 7.11);轻稀土比重稀土分馏程度要高一些,(La/Sm)_N(Cd/Yb)_N = (2.13~3.19)(0.84~1.17);

铈异常不明显(Ce = 0.93~1.05),铕具中等负 异常(Eu = 0.58~0.67)。

接触带原生硫化矿石中稀土总量为 293 × 10^{-6} ,具明显富集轻稀土分布模式(Ce/Y = 58.7)。轻稀土比重稀土分馏程度要高一些,(La/Sm)_N (Cd/Yb)_N = 9.05 2.08。铈异常不明显 (Ce = 1.00),铕具明显的负异常(Eu = 0.19)。

接触带砂卡岩中稀土总量为 288 ×10⁻⁶~427 ×10⁻⁶,具富集轻稀土分布模式(Ce/Y=10.4 ~20.4)。轻稀土比重稀土分馏程度要明显一些, (La/Sm)_N(Cd/Yb)_N = (3.99~6.65)(1.01~ 1.33)。铈异常不明显(Ce = 0.95~0.96),铕具 明显的负异常(Eu = 0.18~0.22)。

3.3 亲硫元素特征

140

蚀变大理岩中的亲硫元素总体含量较低,Zn 的含量略高,介于 7.36 ×10⁻⁶ ~ 242 ×10⁻⁶之间, 平均含量为 92.6 ×10⁻⁶,其次 Cu 、Ni 平均含量 分别为 11.0 ×10⁻⁶和 12.2 ×10⁻⁶。

氧化矿石中 Sn 的含量相对最高 (平均含量 489 ×10⁻⁶),该类样品中的亲硫元素中 Cu、Pb、Zn 含量也最高,平均含量分别为 4 605 ×10⁻⁶、3197 ×10⁻⁶、4 713 ×10⁻⁶,主要是以次生氧化矿物存在 的。Co、Ni、Ga、Mo、Ag、Cd、In 的平均含量也多介 于 17.6 ×10⁻⁶ ~ 50.9 ×10⁻⁶之间。

硫化矿石中 Sn 的含量(326 ×10⁻⁶)较氧化矿 石要低一些,样品中的亲硫元素主要以富 Cu (2532 ×10⁻⁶)、Zn (253 ×10⁻⁶)为特征,硫化矿物 主要为黄铜矿和闪锌矿。其次 Ga、Ge 的含量分 别为 125 ×10⁻⁶和 17.2 ×10⁻⁶。

砂卡岩中 Sn 的平均含量为 245 ×10⁻⁶,样品 中的亲硫元素特征与硫化矿石相似,Cu、Zn 的平 均含量分别为 6 292 ×10⁻⁶和 224 ×10⁻⁶,其次 Ga 的平均含量为 77.7 ×10⁻⁶,Co、Ni、Ce、Cd、In 的平 均含量也介于 10.3 ×10⁻⁶~25.1 ×10⁻⁶。

3.4 氧化矿的地球化学特征

从稀土配分曲线上(图 1)可以看出,氧化矿 石中轻稀土比原生矿石中轻稀土含量明显要低, 而重稀土的含量又明显高于后者。从氧化矿石与 原生硫化矿中微量元素的比值(表 2 中 K 值)来 看,氧化矿石中除 Cu、Pb、Zn、Sn、Co、Ni、Ag 外,其 中的亲氧元素(V、W、Mn)和两性元素(As、Bi)的 含量明显增加,这是由于氧化矿石在氧化阶段中 产生了大量的氧化矿物(如钨铁矿、软锰矿等),原 先呈阳离子态存在的 As 元素此时也多以阴离子 态存在(如砷铅矿),而高 Bi 异常主要与泡铋矿的 生成有关。氧化矿石中 Ba 的增加,是因为硫化矿 在氧化初期产生了大量的(SO_4^2)离子,与碳酸盐 围岩中的 Ba²⁻结合形成了难溶的 BaSO₄(重晶石) 的结果。其余微量元素含量的增加,常与这些元 素以络合物的形式被别的金属氧化物吸附有关 (如褐铁矿吸附 U、Ni 等,软锰矿吸附 Mo、Co 等)^[20],或直接被氧化矿石中的粘土矿物所吸附。

塘子凹矿床中的 Bi 元素除在 1850 中段的氧 化矿中富集外,在 1815 中段也有富集。在砂卡岩 富锡铜矿石中含 Bi 为 116 ×10⁻⁶ ~ 712 ×10⁻⁶,平 均含 Bi = 321 ×10⁻⁶。此外,Se 含量范围在 2.41 ×10⁻⁶ ~ 105 ×10⁻⁶,Se > 10 ×10⁻⁶以上的地段主 要集中在 1 850 m标高以下,控制视厚度在 5 ~ 15 m,这种富锡铜矿石是回收 Bi、Se 金属的主要对象 之一。

3.5 隐伏矿体预测指标

从上面的讨论中可看出,本区矿体中的金属 元素在垂向上具有明显的分带性,从上到下依次 为 Sn-Cu-Zn-Pb 组合(1850 中段)—Cu-Sn-Zn 组合 (1830 中段)—Cu-Sn 组合(1815 中段)。从该处工 程地球化学剖面特征研究建立的地球化学找矿预 测标志为:Se(>5 ×10⁻⁶)-B(>500 ×10⁻⁶)-Sn(> 10 ×10⁻⁶)-As(>100 ×10⁻⁶)-Cu(>500 ×10⁻⁶)-Bi (>10 ×10⁻⁶)-Ag(>1 ×10⁻⁶)-Cn(>200 ×10⁻⁶)-W(>50 ×10⁻⁶)。

此外,氧化矿中 MnO(平均 2.36%)和U(平均 28.9×10⁻⁶)的含量分别是硫化矿石的 9.51 倍和 16.6 倍。Mm-U-Sn 异常和含铀褐铁矿-软锰矿 组合也可为重要的找矿指标,即由充填在构造裂隙、节理中的含铀褐锰矿直接引起。Mm-U-Sn 异常指示下部有可能存在隐伏矿体。

4 讨 论

4.1 脉状氧化矿的物质来源

本区脉状氧化矿与接触带原生硫化矿相比, 两者金属硫化物矿物组合基本相同;脉石矿物中 两者都很少见到石英或硅质胶结物。从微量元素 和稀土元素特征来看,本区氧化矿与接触带原生 硫化矿也较为相似,都相对富集 Cs、Rb、而亏损 Sr (Ba)大离子亲石元素(LLE),并具有明显的 Eu 负异常或弱负异常。本区脉状氧化矿同围岩大理 岩相比,前者微量元素和稀土元素的含量(除 Sr、 B外)多是后者的十倍乃至上百倍。以上特征表 明本区脉状氧化矿与围岩大理岩没有成因联系, 而与接触带原生硫化矿具有同源性。

4.2 脉状氧化矿的形成机制

个旧矿床包裹体的研究资料显示,含锡花岗 岩中锆石和石英包裹体的均一温度分别为 925~ 1056 和 800~1160 ,包裹体液相的 pH = 5.98 ~ 6.55, Eh = 0.38~0.39; KCl + NaCl (总盐度) 高达 77 %^[5]。以上测试数据表明:个旧地区在燕山期 岩浆侵位过程中,由于封闭围岩的破裂造成高温、 高压下的含矿流体产生减压沸腾效应,含矿气-液 体是从下部向上部沿围岩构造带大规模运移的. 锡在含矿流体中主要是以 Sn 与 OH⁻、Cl⁻、F⁻等 配合物所形成锡的络合物形式迁移的^[21,22]。由 干含矿流体与围岩强烈的双向交代作用并产生了 大量的矽卡岩矿物^[20].含矿流体的物理—化学条 件发生改变,其中的金属成矿物质随之先后析出 沉淀。同时、强烈的双向交代作用使成矿流体中 的 SiO₂几乎消耗殆尽,表现为接触带原生矿石和 脉状氧化矿石中石英的含量普遍较少。

4.3 地表流体对脉状氧化矿体的影响

个旧锡多金属矿床位于温热、湿润的亚热带 气候环境,矿体围岩以碳酸盐岩为主,其节理、裂 隙十分发育;浅地表大量腐生质产生的 CO₃²⁻、 SO²⁻等阴离子而使地表流体呈弱酸性,这种富O² 的弱酸性地表流体沿碳酸盐岩节理、裂隙下渗,对 近地表矿体(脉状矿体)有着长期的淋滤、溶蚀作 用。矿石中金属硫化物不断被氧化,脉石中的矽 卡岩矿物也多发生粘土化。地表流体的溶蚀作用 除使脉状矿体中 Fe、Cu、Pb、Zn、W、Sn 等元素不断 富集外,Co、Ni、V、As、Sb、Ag、Bi 等元素的含量也 成倍增长,造成这一结果,除与金属元素的含量也 和地表流体长期的淋滤、溶蚀作用有关外,可能与 氧化矿中的粘土物质对地表流体中 V、Sb 等元素 的吸附有关。

5 结 论

(1)个旧塘子凹矿床脉状氧化矿体与接触带 原生硫化物矿体具有同源性,主要与本区燕山期 岩浆气-液交代作用有关,而与碳酸盐岩围岩没 有成因联系。

(2) 脉状氧化矿体受地表流体的淋滤、溶蚀作用,使矿体中 Cu、Pb、Zn、W、Sn、Co、Ni、V、As、Ag、Sb、Bi 等元素具有强烈的富集作用。

(3) Mrr-U-Sn 异常和含铀褐锰矿组合为重要的找矿指标。

致谢:在野外调研期间得到了云锡公司党玉涛教授级高级工程师、云南有色 308 队地勘院孙绍有院长以及云锡公司矿山技术人员的大力支持,在成文过程中得到了昆明理工大学秦德先博士生导师以及范柱国副教授、谈树成副教授、马德云博士等人的指导与帮助,在此一并致谢。

参考文献:

- [1] Schwartz M O, Rajah S S Askury A K, et al. The southeast Asian tin belt [J]. Earth-Science Review, 1995, 38: 85 ~ 293.
- Botelho N F, Moura M A. granite-ore deposit relationship in central brazil [J]. Journal of South American Earth Sciences, 1998, 11 (5): 427 ~ 438.
- [3] 庄永秋,王任重,扬树培,等.云南个旧锡铜多金属矿床[M].北京:地震出版社,1996.1~145.
- [4] 周建平,徐克勤,华仁民,等.滇东南锡多金属矿床成因商榷[J]. 云南地质,1997,16(4):309~349.
- [5] 李希绩,杨 庄,施 琳,等.中国锡矿床[A].《中国矿床》委员会.中国矿床(中册)[M].北京:地质出版社,1993.105~188.
- [6] 陶 琰,马德云,高振敏.个旧锡矿成矿热液活动的微量元素地球化学指示[J].地质地球化学,2002,30(2):34~39.
- [7] 马振飞,陈图宏.云南个旧塘子凹锡多金属矿床地质特征[J].矿物学报,2001,21(4):578~584.
- [8] 黄廷然. 个旧原生锡矿典型矿床概论[J]. 云南地质,1984,3(1):36~46.
- [9] 秦德先,田毓龙,朱大明,等.个旧锡矿33号矿群地质特征与其外围找矿方向[J].矿物学报,2001,21(4):591~595.
- [10] 张志信,肖景霞. 我国锡矿的成矿地质特征及成矿远景区划浅析[J]. 云南地质,1984,3(1):1~10.
- [11] 谈树成,高建国,晏建国,等.云南个旧矿区南部矿床原生晕垂直分带研究——以龙树脚矿段为例[J].矿物学报,2001,21(4): 591~595.

- [12] 杨学明,扬学勇,张培善.白云鄂博一矿床成因的氧、碳和锶同位素及微量元素地球化学证据[J].地球物理学报,1998,41(增刊): 216~227.
- [13] 方维萱.陕西凤县铅硐山大型铅锌矿床矿物地球化学研究[J].矿物学报,1999,19 (2): 198~205.
- [14] 方维萱,黄转莹,刘方杰.八卦庙超大型金矿床构造-矿物-地球化学[J]. 矿物学报,2000,20(2):121~127.
- [15] 王中刚, 于学元, 赵振华. 稀土元素地球化学[M]. 北京: 科学出版社, 1989. 349~353.
- [16] Sun S-S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[A]. Saunders A D, Norry M J. Magamatism in the Ocean Basins [C]. London: Geological Society Special Publication, 1989. 313 ~ 345.
- [17] Rollison H R. 岩石地球化学[M]. 合肥:中国科学技术大学出版社,2000. 40~242.
- [18] Banner A YL. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis[J]. Sedim, 1995, 42: 805 ~ 824.
- [19] 北京大学地质学系岩矿教研室.光性矿物学[M].北京:地质出版社,1978.244~245.
- [20] 南京大学地质系. 地球化学[M]. 北京:科学出版社, 1977. 309~315.
- [21] 陈俊等. 锡的地球化学[M]. 南京:南京大学出版社, 2000. 144~151.
- [22] Wang Cansheng, Xia Weihua. Granite-related mineralizing fluids and ore-forming metals: review[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 1994, 1 (3 - 4):35 ~ 44.

GEOCHEMICAL CHARACTERISTICS OF TRACE ELEMENTS FOR TANGZIWA TIN POLYMETAL DEPOSIT, GEJIU, YUNNAN

JIA Run-xing^{1,2}, FANG Wei-xuan², HE Ying¹, GAO Zhen-min², LI Hong-yang²

(1. Geology Department, Northwest University, Xi 'an 710069, China;

2. Open Lab of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China)

Abstract :The Tangziwa tin polymetal deposit is located on the northwestern region of the Laochang orefield, Gejiu, Yunnan. The orebodies can be divided into two types in terms of their shapes : skarn sulfide orebodies and vein oxide orebodies. Based on the characteristics of trace elements and mineral geochemistry for vein oxide orebodies, the authors think that the vein oxide orebodies were similar to the skarn orebodies related to the granites, and there has no genetic relation with the carbonate wallrocks. In the oxidizing stage for the vein orebodies, many trace elements, such as Cu, Pb, Zn, W, Sn, Co, Ni, V, Ag, Sb and Bi were concentrated by ground acidic fluids.

Key words: oxide orebody; tin polymetal deposit; trace elements; genesis; Gejiu, Yunnan