云南潞西上芒岗红色粘土型金矿地质特征

饶文波 高振敏 杨竹森 罗泰义 李红阳

(中国科学院地球化学研究所矿床地球化学开放研究实验室,贵阳,550002)

顾俊生 胡广耀 李雁鹏

(核丁业云南地质调查队,昆明,650106)

李玉本 普传杰

(云南省黄金管理局,昆明,650051)

摘 要 潞西上芒岗红色粘土型金矿赋存于下二叠统岩溶面之上的第三、第四系红色粘土层中,矿体形态受 地形控制明显,呈似层状。品位较高,规模中等,适合于露天开采。矿体的红土化作用不彻底,去硅富铁铝能 力低,常见高岭石与伊利石共生。矿石中石英、褐铁矿、粘土矿物为主要载金矿物。成矿物质来自燕山中晚 期形成的中侏罗勐嘎组中段与二叠系的沙子坡组的断层接触破碎带内的卡林型金矿。在湿热条件下,金发 生活化、迁移、富集,在潜水面附近成矿。

关键词 红色粘土型金矿 地质特征 成因模式 云南上芒岗 第一作者简介 饶文波 男 1973 年出生 硕士研究生 从事矿床地球化学研究

红色粘土型金矿是指原生金矿(或矿源岩) 经讨(原地或迁移堆积)不彻底氧化作用和风化淋 滤作用形成的金矿床。其成矿条件包括:1)构造: 相对稳定的表生地质条件,固定的潜水面和地表 水、地下水补给系统:2)矿源岩:含金较高的岩石 和金矿体:3)气候:湿热气候条件,雨量充沛:4)地 貌:准平原,低山丘陵,山前丘陵,喀斯特地形:5) 矿化时间:第三、四纪发育成矿。

核工业云南地质调查队在具备上述成矿条件 的潞西上芒岗地区,于90年代初发现了红色粘土 型金矿,具有品位较高、埋藏浅、规模中等、开发效 益明显等特点。与80年代以来发现的西澳 Boddington 红土型金矿、巴西巴伊尔红土型金矿、湖 北蛇屋山红土型金矿有相似之处,但由于其含很 高的 SiO₂ 而又有较大差别。与涂光炽教授所提 出的红色粘土型金矿相吻合,它属于中国西南部 90年代以来新兴工业类型金矿床之一。本文以 野外勘察和室内分析的实际资料为依据,介绍了 该矿床的地质特征,并根据金的富集规律,建立成 矿模式,为矿山技术人员及其它有类似金矿研究

* 中科院重大项目(KZ-A1-404)和国家自然科学基金资助项

项目的同行提供参考。

地质概况 1

上芒岗金矿位于冈底斯念青唐古拉褶皱系福 贡一镇康褶皱带之次级构造单元芒市褶皱束与户 水一陇川褶皱束的结合地带,两褶皱束以龙陵一 瑞丽大断裂为界。北西侧为户水--陇川褶皱束, 发育元古宙高黎贡山群中深变质岩和燕山中晚期 酸性岩浆岩:南东侧为芒市褶皱束,以震旦-寒武 系公羊河群浅变质碎屑岩为基底,其上发育古生 代一中生代槽地间歇性碳酸盐岩和碎屑岩沉积地 层。在龙陵一瑞丽大断裂南东侧发育5条与之平 行的北东向次级断层,从北西向南东依次为纸厂 断裂、下芒岗断裂、上芒岗断裂、户勒断裂、营盘山 断裂(图1)。沿断裂有超基性、基性和煌斑岩脉 及二长斑岩株侵入。上芒岗金矿产于上芒岗断裂 北东端。该断裂长约 20km, 早期具有压扭性活 动,晚期呈张性正断层活动,形成宽100~300m 的破碎带,由碎裂岩、碎粒岩和断层泥以及后期形 成的构造角砾岩组成。沿断层有热液蚀变现象, 蚀变类型有硅化、迪开石-高岭石化、水云母化、 碳酸盐化、重晶石化,并伴随有黄铁矿化、辉锑矿 ^目(4987392-2018 China Academic Journal Electronic Publishing House. All Pights reserved. 形成低温热液卡

¹⁹⁹⁹年12月30日收稿,2000年4月3日改回。

林型原生金矿化。

2 矿床特征

上芒岗金矿呈北东向带状展布,严格受上芒 岗断层控制,分为果园、麦窝坝、广令坡和羊石山 矿段(图1)。该断层走向北东,倾向北西,倾角 50°~70°,其上盘为中侏罗统勐嘎组泥岩和粉砂 岩,夹灰岩和泥质灰岩薄层,下盘为下二叠统沙子 坡组白云岩和泥质白云岩。矿体均位于断裂附近 的沙子坡组之上,处于喀斯特地形洼地堆积的红 色粘土层中,呈层状、透镜状,厚度较稳定,矿化均 一,储量达中等规模。

图 1 上芒岗金矿床矿区地质略图(据核工业云南地质调查队资料) Fig. 1. Geological sketch map of the Shangmanggang gold ore district. 1-上新统; 2-白垩系; 3-中侏罗统龙海组; 4-柳湾组; 5-勐戛组; 6-上三叠 统南梳坝组; 7-下二叠统沙子坡组; 8-辉绿岩; 9-二长斑岩; 10-断裂; 11-硅 化带; 12-粘土化带; 13-岩溶坍塌角砾岩; I-纸厂断层; II-下芒岗断层; III-上芒岗断层; IV-户勒断层; V-营盘山断层。

2.1 红色粘土剖面特征

根据上芒岗金矿四个矿段的红色粘土剖面特征,可将其划分为6个带:

(1) 表土带:厚0~1m,由灰棕色高岭石质粘 土和腐殖土组成。

(2)坡积带:厚4~8m,由棕黄色、棕色粘土 质亚砂土组成,以发育灰白、白色高岭石质粘土组 成的枝管状体为特征,含10%的勐戛组泥岩和粉 砂岩质次棱角状砾石,以及40%的石英、斜长石、 迪开石脉和热液蚀变硅质岩构成的砂粒。 (3) 钙华一沼泽带:厚 0~4m。在麦窝坝矿 段由灰白、灰色粘土和透镜状钙华组成,含少量石 英、斜长石砂粒。在广令坡矿段由灰黑色炭质亚 粘土组成,含 20%的石英和 5%的泥岩、硅质岩、 迪开石脉构成的砂粒,并有大量植物碎屑和少量 硅藻、啮齿类骨骼碎片。

(4) 残积带: 厚 2~8m, 由紫红色砂质亚粘土 组成。顶部含 20%~30%的赤铁矿和褐铁矿, 呈 网脉状、结核状, 或呈黄铁矿假像, 并有 10%的石 英砂。向下赤铁矿逐渐消失, 褐铁矿减少, 而石英 砂增加到 30%, 并含 10%~20%的石英砂岩、泥 岩、硅化和粘土化的砂岩、泥岩及迪开石脉构成的

7 次棱角状细砾。

(5) 腐泥岩带:在断裂附近岩溶洼 地里厚度约8m,局部漏斗中可达12m, 主要由杂色含砾的粘土质亚砂土组成。 砂粒约占40%,以棱角状石英为主,其 次为热液蚀变硅质岩,并有少量泥岩和 迪开石团块。此外还有10%的球状、水 滴状、姜块状石膏集合体,直径0.1~ 1mm,被褐铁矿染成褐红色。亚砂土中 残留的结构构造显示,风化前为勐戛组 泥岩和粉砂岩构成的角砾岩,并有含黄 铁矿、辉锑矿的热液蚀变硅质岩团块。 在缺失上述风化角砾岩的部位,该带主 要由沙子坡组风化形成的松散状白云 石质砂土组成,厚度小于1m。

(6) 基岩带:由沿断裂分布的热液
(6) 基岩带:由沿断裂分布的热液
(6) 基岩带:由沿断裂分布的热液
(6) 基岩带:和沙子坡组地层构成。
(6) 上三叠
在硅化、粘土化蚀变岩中金含量为0.39
※11-硅
※10⁻⁶~9.35×10⁻⁶,蚀变成因硅质岩
中金含量为9.8×10⁻⁶,而在黄铁矿富
集部位高达32.47×10⁻⁶,但在沉积地

2.2 化学组成

对上芒岗金矿广令坡矿段红色粘土剖面各带的样品进行了全土和粘土粒级部分的化学成分分析(表 2),结果表明,相对于勐嘎组细碎屑岩,红色粘土中的 SiO2 明显降低,AbO3、Fe2O3、CaO、MnO 明显增高,MgO、Na2O、K2O 略有增高;相对于沙子坡组白云岩,CaO 大量流失,其它成分显著增高,反映了红色粘土主要是在勐嘎组细碎屑岩

吧开另弊的资源情况在四百胎的的阶骼性iectronic Publi的基础上经纪土化作用发育面成的,同时有沙子inet

坡组的白云岩溶失的 CaO、MgO 加入。但是,这种红土化作用不彻底,表现在红色粘土中的 SiO₂ 含量仍很高。粘粒部分的化学成分相对于红色粘 土 SiO₂ 显著降低,这与红色粘土中有大量石英颗 粒残余有关; MgO、K₂O 明显增多,表明其在红土 化作用过程中,主要以粘土矿物的形式存在; Fe2O3 仅略有增加,反映铁以细分散的褐铁矿形 式存在。值得注意的是,粘粒部分的 MnO 比红 色粘土中明显降低,表明锰以氧化物薄膜形式覆 盖在石英颗粒表面,这与观察结果一致。粘粒部 分的SiO₂/AbO₃分子比介于2.16至2.85之间。按 照 Martin 和 Doyne (1927)根据粘粒的 SiO₂/AbO₃ 对红土分类的情况^[1]:SiO₂/AbO₃比小于 1.33 的 称为真红土;SiO₂/Al₂O₃比介于 1.33 和 2 之间的 叫红土性红土;SiO₂/AbO₃比大于 2 的为非红土性 热带风化土。上芒岗红色粘土型金矿矿石归为非 红土性热带风化土,即为红色粘土型风化土。

	Table 1. Au contents in four ore segments, shangmanggang gold deposit											
分带特征	广令坡矿段 (样号)	Au 含量	麦窝坝矿段 (样号)	Au 含量	羊石山矿段 (样号)	Au 含量	果园矿段 (样号)	Au 含量				
表层土壤坡积带	S116	0.65	M11H	7.60	Y 22T	0.26						
	S115	0.45										
钙华带	S114	0.45	M11G	0.52	Y 22U	3.48						
			M11F	12.11								
残积带	S113	50.00	M11E	16.71	Y22M	2.99	G21 R	2.08				
			M11D	11.04			G21M	1.49				
	S112	1.17	M11C	14.84	Y 22D	12.58	G21L	0.78				
			M11B	21.73								
	S111	1.43	M 11A	3.96			G21LI	0.26				

表 1 上芒岗金矿 4 个矿段各分带中 Au 含量(\times 10⁻⁶)^{*}

* 由中国科学院贵阳地球化学研究所分析测试中心分析, 1998。

表 2 上芒岗广令坡矿段红色粘土及粘粒部分的化学成分与原岩化学成分(%)比较

Table 2. Chemical compositions of red-clay and clay particles in comparison with those of bedrocks

in the Guanglingpo segment of Shangmanggang

	样号	SiO_2	Al_2O_3	TiO ₂	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	CaO	MnO	MgO	Na_2O	K ₂ O	FeO	CO_2	SiO ₂ / Al ₂ O ₃	资料来源
红色粘土	S116	65.47	15.37	0.75	7.55	0.38	0.20	0.60	0.14	2.64	0.60			
	S115	63.23	14.53	0.69	7.97	0.42	0.43	0.61	0.18	2.23	2.40			中国科学院贵阳
	S114	59.95	15.93	0.74	6.77	0.41	0.17	0.69	0.20	2.23	0.98			地球化学研究所
	S113	33.45	23.73	0.80	19.09	0.41	0.058	0.73	0.10	5.48	0.95			分析测试中心,
	S112	63.69	16.08	0.69	8.38	0.41	0.17	0.59	0.13	2.41	0.71			1999
	S111	63.66	15.47	0.84	9.17	0.42	0.078	0.48	0.20	1.83	0.53			
粘粒部分	S116	41.21	26.82	0.76	9.42	0.38	0.072	1.19	0.30	5.45			2.61	
	S115	43.48	27.62	0.60	8.13	0.38	0.039	1.12	0.34	5.22			2.68	
	S114	42.36	26.09	0.74	8.57	0.55	0.043	1.11	0.47	4.24			2.76	
	S112	43.34	25.83	0.87	11.72	0.48	0.061	0.96	0.22	4.79			2.85	
	S111	44.78	26.89	1.19	7.99	0.40	0.023	1.02	0.17	4.95			2.83	
沙子坡组	1	1.62	0.58	0.07	0.67	31.80	0.04	20.9	0.02	0.01	0.24	43.05		
	2	1.73	0.79	0.07	0.35	32.60	0.03	20.91	0.04	0.09	0.21	42.01		核工业云南地质
	3	6.50	1.59	0.07	1.76	27.10	0.04	18.30	0.06	0.42	0.44	40.01		调查队,1993
	4	12.99	3.89	0.19	4.57	24.60	0.13	16.70	0.04	0.21	0.18	31.49		
勐嘎组	1	69.92	18.24	0.78	2.36	0.15	0.02	0.73	0.23	3.78	0.15			
	2	83.34	7.36	0.25	4.03	0.08	0.00	0.13	0.06	0.41	0.06			
	3	80.01	10.38	0.46	2.81	0.16	0.02	0.32	0.14	1.98	0.23			

注: 沙子坡组: 1 碎裂中晶白云岩, 2 碎屑泥质白云岩, 3 角砾化细晶白云岩, 4 硅化粉晶白云岩; 勐嘎组: 1 水云母粘土 岩, 2 泥硅质岩 3 细碎屑岩。

2.3 矿物组成

对上芒岗金矿广令坡矿段红色粘土样品进行 常规粒度分离,其大于 200 目(0.076mm)部分的 矿物组成以石英为主,并有少量长石和褐铁矿结 核。小于 200 目部分经 X 射线粉晶衍射鉴定(表 3),以伊利石、高岭石和石英为主,并有少量斜长 石,针铁矿,、钛铁矿和微量绿泥石、板钛矿、钾长 石、蒙脱石、三水铝石,但主要矿物在不同粒级和 粘土剖面不同部位的分布略有不同。粘粒部分以 伊利石和高岭石为主,且伊利石多于高岭石,而在 76~2⁴m 部分,以石英为主,且粘土矿物中除 S113样外,高岭石多于伊利石。这些特征表明, 粘土矿物主要存在于细粒部分,特别是粘土部分, 其中高岭石的结晶粒度略大于伊利石。

¹¹?1994-2018 China Academic 50dmar Electronic Publishing House. All rights reserved. http://www.cnki.net

表3 上芒岗广令坡矿段各分带中粘粒部分和粉粒部分的矿物及含量(%)*

Table 3. Minerals and their contents of day particles and silt particles in the

Guanglingpo	s egment,	Shangmanggang

粒度分级	样号	Ι	K	Q	В	М	Ab	Go	Or	Hy	C h	An
粘粒部分(< 2 ⁴ m)	S116	42.8	20.17	6.94			13.32	6.95		2.69	2.93	4.20
	S115	36.78	22.52	11.06			13.09	8.13			4.23	4.19
	S114	36.79	25.31	12.24			11.97	5.46			3.51	4.67
	S113	63.03	16.99		3.32		9.04	7.61				
	S112	37.95	33.90	17.22			7.75	4.02			2.17	3.98
	S111	31.25	35.33	7.49	4.75	4.79	10.15	6.21				
粉粒部分(76~2 ^µ m)	S116	11.10	16.62	70.03								2.25
	S115	13.48	23.18	62.67								1.26
	S114	8.29	13.64	76.69								1.39
	S113	50.32	16.67	6.65			12.19		15.97			4.85
	S112	11.61	22.74	65.56								
	S111	7.25	21.13	70.56								1.06

* 由中国科学院贵阳地球化学研究所 XRD 粉晶衍射实验室龚国宏测试

注: I 伊利石; K 高岭石; Q 石英; B 板钛矿; M 蒙脱石; Ab 斜长石; Go 针铁矿; Or 钾长石; Hy 三水铝石; Ch 绿泥石; An 锐钛矿。

2.4 金在不同粒级中的分配

上芒岗金矿广令坡矿段的红色粘土不同粒级 部分的金含量分析结果(表 4)表明,金在 20 目 (0.9mm)以上部分含量最多,其次为粘粒和粉粒 部分。考虑到 20 目以上部分以石英为主,并有少 量褐铁矿结核,且石英表面覆盖铁锰氧化物薄膜, 因此,该部分的高金含量可能与铁锰氧化物对金 的吸附有关。粘粒和粉粒部分经透射电镜观察, 发现有 50 nm ~125nm 的金颗粒,与伊利石和针 铁矿共生有关,因此,该部分金含量较高与伊利石 和针铁矿对纳米颗粒金的吸附有关。计算金在不 同粒级部分的分配率(图 2)显示,金主要在 20 目 中的含量高,与石英、褐铁矿有关。

表4 广令坡矿段各分带不同粒级中金品位(\times 10⁻⁶)和金分配率(%)^{*}

Table 4.	Au distribution and	grade of several	particles in the	Guanglingpo segment	Shangmanggang
		8			

	S116		S115		S114		S113		S112		S111	
	品位	分配率	品位	分配率	品位	分配率	品位	分配率	品位	分配率	品位	分配率
$> 20 \equiv (> 900^{\mu} m)$	1.88	25.50	1.46	19.25	1.46	21.02	51.9	83.59	3.38	40.06	2.55	22.92
$20 \sim 100$ 目(150 ~ 900 ^µ m)	1.18	15.81	1.20	21.60	1.18	19.86	35.1	7.49	1.34	11.42	2.17	16.25
$100 \sim 200 \mbox{\ensuremath{\square}} (150 \sim 76^{\mu} m)$	1.48	9.08	1.02	9.62	1.19	8.33	16.1	2.07	0.85	0.58	1.30	5.12
粉粒部分(76~2 ⁴ m)	0.83	14.00	0.83	18.11	0.70	28.04	8.88	2.21	0.86	25.36	1.14	27.04
<u>粘粒部分(<2µm)</u>	1.24	35.61	1.15	31.42	1.08	22.75	14.8	4.64	1.94	22.58	2.53	28.67
	1. 24	55.01	1.15	51.42	1.08	22.13	14. 0	4.04	1.94	22.30	2.33	20.07

* 由中国科学院贵阳地球化学研究所分析测试中心分析。

图 2 不同粒级在各层位中金的分配率(%)变化

Fig. 2. Variation curve of Au distribution in different grain-size fractions.

3 金的迁移富集规律

成矿实验表明^[2], 金和其它金属一样, 在自 然条件下是可配合的,并在水溶液中迁移搬运。 由于溶液介质 pH 值和温度的影响,金的活化具 有选择性^[3,4]:在酸性条件下,以Au(SO₄)⁻,Au-Cl⁻ 形式存在:在弱酸性或碱性条件下,形成可溶 性的 Au $(S_2O_3)^{3-}_{2-}$ 。由于上芒岗金矿原生矿化与 碳酸盐岩地层密切相关,目矿化岩中有大量的碳 酸盐细脉,因此,原生矿化岩中的硫化物发生氧化 时形成的酸性溶液被碳酸盐所中和,使地下水不 可能呈强酸性。红色粘土样品的去离子水浸泡液 (浸泡时间24小时)的pH值介于6至8之间,呈 弱酸弱碱性,有利地支持了上述推断。因此,这些 条件决定了上芒岗金矿在形成过程中,金主要以 硫代硫酸盐配合物的形式迁移富集。在早期物理 风化作用和晚期化学风化作用下,金从原岩中释 放出来,在氧化带中发生活化:

$$2Au + 4S_2O_3^{2-} + H_2O + 0.5O_2(g) =$$

 $2Au(S_2O_3)_2^{3-} + 2OH^{-}$

形成 $2Au(S_2O_3)^{2^-}$ 的配阴离子团,并在碱性条件 下稳定。其后,受到天水的下渗水的影响,配合物 发生迁移,当在潜水面附近遇到地下水动力作用 产生的 Fe^{2+} ,便发生了次级富集:

$$Au(S_2O_3)_2^{3-} + Fe^{2+} + 4H_2O =$$

$$Au + FeOOH + 5H^+ + 2SO_4^{2-} + 2HS^-$$

在这一过程中,金的地球化学行为可用以下演化 顺序表示^[5]:原生金矿(包裹金、吸附金)→分解 氧化作用→红色粘土(配合金)→淋滤作用→红色 粘土(游离金)→沉积作用→铁质粘土。金主要以 吸附金形式存在于粘土表面和褐铁矿裂隙中。

4 成矿模式

根据矿床特征和金的富集规律,可得出该矿 床成矿模式(图3):

图 3 上芒岗红色粘土型金矿成因模式

Fig. 3. A genetic model of the Shangmanggang gold ore deposit. 图例说明: 1. 破碎带: 2. 碎裂白云岩: 3. 粉砂质泥岩: 4. 塌积物; 5. 地下岩溶; 6. 原生金矿体; 7. 红色粘土型金矿: 8. 断裂: 9. 不整合面。

 1)燕山晚期一喜山早期,在区域成矿总背 景条件下,于碳酸盐岩和细碎屑岩中发育的北东 向断裂和层间裂隙内首先形成卡林型金矿或原生 金矿化,为红色粘土型金矿的形成提供了成矿物 质(图 3a)。

 2)在适宜的气候条件下,沙子坡组的碳酸盐 岩系高度岩溶化,导致地面的普遍坍塌,原生矿或 含金岩石遭到破坏,坠入或逐渐转移到岩溶洼地 (图 3b)。

3)构造抬升,地表剥蚀,原生矿和基岩部分 出露地表,在第三纪末一第四纪初,矿源岩或含金 岩石的风化产物原地、半原地堆积于负地形内(图 3c)。

 4) 地壳再次抬升,原含矿红色粘土层经受风 化剥蚀改造,金再次向下迁移,进一步富集成矿 (图 3d)。

参考文献

- [1] 符必昌、黄英、方丽萍,红土化作用及红土的工程地质分类。云南地质,1997,16(2):197~206。
- [2] 王恩德等, 硫化物矿床氧化带金表生富集作用研究。沈阳黄金学院学报, 1995(4): 308~313。
- [3] 饶文波、高振敏、罗泰义,红色粘土型金矿的基本特征。矿物岩石地球化学通报,1999,18(2):119~123。
- [4] 王奎仁、周有勤、孙立广、仁炽刚,中国几个典型卡林型金矿床金的赋存状态研究。合肥:中国科学技术大学出版社, 1994。
- [5] 李松生, 再论蛇屋山红土型金矿的成因。矿床地质, 1998, 17(2): 114~123。

GEOLOGICAL CHARACTERISTICS OF THE SHANGMANGGANG RED-CLAY-TYPE GOLD DEPOSIT IN LUXI, YUNNAN

Rao Wenbo Gao Zhenmin Yang Zhusen Luo Taiyi Li Hongyang (Institute of Geochemistry, Chinese Academy of Sciences Guiyang 550002)

Gu Junsheng Hu Guangy ao Li Yan peng

(Yunnan Geological Survey of Nuclear Industry Bureau, Kunming 650106)

Li Liben Pu Chuanjie

(Gold Administration Bureau of Yunnan Province, Kunming 650051)

Abstract

The Shangmanggang red-clay-type gold deposit occurs in the Tertiary-Quaternary red-clay layers on the karst denudation of Lower Permian series. Its orebody is obviously controlled by topography. The gold grade is quite high. Lateritization of the orebody is not complete and its ability of leaching Si and concentrating Fe, Al is very low. Commonly kaolinite intergrows with illite in red-clay layers. Au is chiefly contained in quartz, limonite and clay minerals. Mineralizing materials came from the Carlin-type gold deposits that formed in the fault-contact fragmental zone between the Lower Permian Shazipo Formation and the Middle Jurassic Mengga Formation during Late Yanshanian. Owing to a humid and hot climate, Au was remobilized, migrated to the vicinity of the water table and enriched in the middle to lower parts of the profile by reprecipitation.

Key words: red-clay-type gold deposit; geological characteristics; genetic mode; Yunnan; Shangmanggang