长江(湖北段)沉积物中微量元素的 分布特征及镉的形态^{*}

闭向阳^{12**} 马振东³ 任利民³ 龚 敏³ 金志升¹

(1)中国科学院贵阳地球化学研究所,环境地球化学国家重点实验室,贵阳,550002;

2 中国科学院北京研究生院,北京,100039 3 中国地质大学,地球化学研究所,武汉, 430074)

摘 要 对长江(湖北段)不同时期沉积物中的微量元素(Cd Zn Pb, Cu As Hg Cr Ni Mn)进行了研究.结果表明,从早期(一万年至两千年前)到现代(2002年),长江沉积物中多数微量元素的含量有明显的增加,尤其是 Cd Pb和 Hg 由早期的 0.25 mg· kg⁻¹, 20.1 mg· kg⁻¹和 0.046 mg kg⁻¹分别增加至现代的 0.71mg· kg⁻¹, 42.1 mg· kg⁻¹和 0.098 mg· kg⁻¹.用连续提取法对沉积物中 Cd赋存形态的测定结果显示,从早期到现代,碳酸盐结合态 Cd所占比例有明显的增长,由早期的 14.5%增加至现代的 28.7%,松结和紧结有机结合态 Cd也有不同程度的增加;铁锰氧化物结合态 Cd的比例显著降低,由早期的 31.3% 变为现代的 14.9%;残渣态 Cd的百分率也有一定程度的降低. 关键词 微量元素,镉 形态,沉积物,长江.

长江流域的生态环境长期以来一直是人们关注的重点.对长江沉积物中元素的含量己有较多的研究^[上4],本文通过对长江(宜昌至武汉段)不同时期沉积物中 Cd Hg Cu Pb Zn Cr Ni As和 Mn九种微量元素的分布特征、时空变化以及镉的赋存形态进行研究,以期为了解和保护长江流域的 生态环境提供基础的地球化学资料.

1 样品的采集和分析

于 2002年 10月在长江(湖北段) 共采集了 13份表层沉积物样品(0-20 m);在位于汉口水务局的江边采集了一个长江沉积物剖面(深度 0-3.0 m)样品 3份;在汉口位于长江一级阶地的一钻孔 中采集长江早期沉积物样品 13份(深度 6.0-30.0 m).

样品采集后,在室内自然风干,除去砾石等杂物,研磨过筛(>200目),供元素全量和 Cd形态 分析. 样品经 HNO₃,HF和 HC D₄ 消解后,全量 Cd用石墨炉原子吸收光谱法测定,Hg As用原子 荧光光谱法,Cu Pb Zn Cr Ni和 Mn用原子吸收光谱法测定.

Cd的形态分析参考 Tessier^[5]、韩凤祥等^[9]逐级连续提取的方法将沉积物中的 Cd划分为交换态 (包括水溶态)、碳酸盐结合态、松结有机结合态、铁锰氧化物结合态、紧结有机结合态(包括硫化 物)和残渣态. 称取 2.5g样品置于 250m 的聚乙烯烧杯中,按如下步骤操作:

交换态 (ExCd): 用 25mllmol Γ 的 MgC (pH=7) 提取, 在室温 (25°C) 振荡 2h

碳酸盐结合态 (CAB-Cd): 用 25ml1mol l^{-1} 的醋酸钠 (pH = 5)提取, 室温振荡 5h.

松结有机结合态 (LOM-Cd): 用 50m10.1mol·l⁻¹的焦磷酸钠 (pH=10) 提取, 振荡 3h, 离心 分离. 取 10ml清液加入 10ml1.41g·m⁻¹的 HNO₃和 2ml1.66g·m⁻¹的 HCD_{*} 置于电热板上加热至 白烟冒尽, 再加入 1ml1.1的 HCl定容至 10ml

铁锰氧化物结合态 (FeMnCd): 用 50m10.25mol· Γ 的盐酸羟胺提取, 室温振荡 6h

紧结有机结合态 (TOM-Cd): 先加入 3m10.02mol □¹的 HNO₃和 5m130%的 H₂O₂ (pH=2), 在 83 ±3[°]℃下恒温 1.5h, 再补加 3m130%的 H₂O₂, 继续恒温 1h, 待冷却后加入 5m13.2mol·l⁻¹的醋酸 铵-硝酸混合液,于室温静置 10h

残渣态 (RES-Cd): 残渣态 Cd为全 Cd含量与其它形态 Cd含量总和之差. 在上述每个步骤后,

2004年7月10日收稿.

^{*}国家自然科学基金(40473049)和中国地质调查局(200214200024)资助项目. * *通讯联系人.

^{?1994-2018} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

均以 4000 r m in⁻¹的转速离心 20m in 上清液 Cd含量用等离子体发射光谱法测定,残渣水洗后供提 取下一项结合态.

所有样品测定的精密度和准确度分别由国家标准参考样和重复样控制.

2 长江不同时期沉积物中微量元素的分布特征

在汉口长江一级阶地的钻孔中采集了 13件不同深度 (6-30m)的沉积物样品,其中,位于 25m 深的螺壳[™]C同位素年龄为 7670 ±60年,根据沉积速率,推算出该钻孔 6-30m 的深度可大致代表两 千年至一万年前这一时间段.表 1列出了样品中微量元素的含量.由表 1可知,在这一时间段内,长 江细粒沉积物 (粉砂)中元素含量的变化较小,同大陆地壳元素丰度和长江水系河流沉积物元素背 景值相比较,可以看出它们具有较好的一致性.粗粒沉积物 (砂)不同时期各元素含量也较为一致, 但相比细粒沉积物,元素含量明显降低,这可能与其主要成分为石英而粘土矿物含量少有关.

样品	样品深度 fn	沉积物类型	Cd	Zn	Pb	Cu	As	Нg	C r	N i	M n
ZK 1	6	粉砂	0.26	96	23.6	35.6	7.7	0.058	96.7	43.1	611
ZK 2	7	粉砂	0.29	93	19.5	36.0	5.0	0.073	94.9	42.3	778
ZK 3	9	粉砂	0.24	79	20.1	28.7	3.5	0.043	80.2	35.5	628
ZK4	10	粉砂	0.26	85	18 9	33.9	3.7	0.041	88.9	38.2	623
ZK 5	12	砂	0.09	49	11.8	12.7	1.5	0.018	69.9	23.2	475
ZK 6	13	粉砂	0.25	92	20.6	36.4	9.4	0.039	99.5	45.1	819
ZK7	16	粉砂	0.31	89	19.7	33.7	7.9	0.044	84.6	41.4	758
ZK 8	17	粉砂	0.19	76	16.0	26.8	5.0	0.027	83.4	36.0	536
ZK 9	20	砂	0.07	37	11.0	12.2	3.1	0.018	30.6	17.5	256
ZK 10	21	砂	0.10	45	17.5	13.3	3.2	0.026	45.8	19.7	387
ZK 11	23	砂	0.09	48	14.6	10.5	2.3	0.022	41.8	21.4	406
ZK 12	25	粉砂	0.30	92	22.4	35.9	6.3	0.039	91.4	41.0	839
ZK 13	30	砂	0.08	44	11.2	15.2	2.6	0.021	41.3	18.8	437
平均(粉砂)			0.26	94	20.1	33.4	6.1	0.046	90.0	40.3	699
平均(砂)			0.09	45	13.2	12.8	2.5	0.021	45.9	20.1	392
大陆地壳元素丰度□기			0.1	69	15	35	3.4	0.02	88	45	800
长江水系沉积物背景值 ^[8]			0.15	73.6	21.4	21.5	7.6	0.034	52.3	26.4	589

表 1 长江早期沉积物中元素含量 (mg kg⁻¹) Table 1 Elements content in early sed in ents of Yang tze river

长江表层沉积物(用其代表现代沉积物)中(粉砂)各元素的含量见表 2 由表 2可知,宜昌至 武汉段长江表层沉积物中元素的含量与长江干流 21个城市(攀枝花至上海)江段近岸水域沉积物中 元素的平均含量相比^[3],除 Cd含量稍高外,其它元素均显示出很好的一致性.在空间分布上,从宜 昌至新厂,绝大多数元素含量(Hg除外)均有逐渐升高的趋势,这一方面可能是由于从上游至下游, 沉积物粒度有逐渐变细的趋势^[3],而细粒沉积物由于比表面积大和粘土矿物含量高,因此,对元素吸 附能力也就较强^[9]10];另一方面,则可能是受到了沿岸人为污染的叠加^[3]4].

与早期沉积物(粉砂)相比,现代沉积物(表层)中微量元素已有不同程度的累积,尤其是 Cd Pb和 Hg 含量增加了2倍以上(图1).表明长江现代沉积物已受到了一定程度的人为污染.

在汉口水务局长江边采集的沉积物剖面 (深约 3m), 其堆积于长江 1930年的老码头之上,因此, 该剖面可近似代表 1930年以来的长江沉积物. 由表 2可知, 1930年以来长江沉积物中微量元素的含 量与现代沉积物基本一致, Cd Pb, Hg等元素也表现出了相对较高的含量. 表 2 长江现代沉积物中元素含量 $(mg kg^{-1})$

Table 2 Elements content in present sed in ents of Y angtze river

样品	采样位置 及深度 か	沉积物 类型 [*]	Cd	Zn	Pb	Cu	As	Нg	C r	N i	M n
YC1	宜昌 (0-0.2	2) 粉砂(1)	0.64	132	38.2	51.5	8.6	0. 113	88.6	35.6	684
J Z1 – 4	荆州 (0-0.2	2) 粉砂(4)	0.76	146	45.8	64.1	9.6	0.091	87.4	42.1	744
HX1	郝穴 (0-0.2	2) 粉砂(1)	0.72	144	44, 9	67.4	10.2	0. 100	91.5	46.1	825
XC 1 – 2	新厂 (0-0.2	2) 粉砂 (2)	0.76	150	45.1	75.1	13.0	0.086	96.4	50.8	978
WH 1 – 6	5 武汉 (0-0.2	2) 粉砂(6)	0.66	134	38.9	53.0	10.1	0. 104	90.0	42.7	768
	平 均	0.71	140	42.1	60.2	10.3	0.098	90.2	43.4	788	
WH p1	汉 0-0.	2 粉砂	0.63	121	37.0	50.7	9.5	0.089	86.9	40.1	880
WHp2	水 1.8-2	.0 粉砂	0.94	160	53.8	67.6	12.1	0. 154	100 1	48.5	859
WH p3	穷 局 2.8—3	.0 粉砂	0.51	135	39.3	67.1	13.1	0.092	95.8	48.7	862
长江 21个沿江城市平均值 ^[3]			0.45	158	39.8	54.4	9.8	_	83.8	43.5	742

*括号内为样品数.

图 1 长江现代与早期沉积物元素含量比值

Fig 1 Comparison of element contents between present and early sediments of the Yangtze river

3 沉积物中 Cd的形态分布特征

用逐级连续提取法对不同时期长江沉积物中 Cd的形态进行分析,结果列于表 3 由表 3可知, 深层 (25m)样品代表的早期沉积物中 Cd主要以交换态 (30.3%) 和铁锰氧化物结合态 (31.3%) 的形式存在,Cd的形态分布规律为:铁锰氧化物结合态 >交换态 >残渣态 >碳酸盐结合态 >松结有 机结合态 >紧结有机结合态.而现代 (表层)沉积物中的 Cd则以交换态 (26.8%) 和碳酸盐结合态 (28.7%)为主,这与长江口悬浮固体中 Cd的形态分布一致^[11]:Cd的形态分布规律为:碳酸盐结合 态 >交换态 >铁锰氧化物结合态 >残渣态 >紧结有机结合态 >松结有机结合态.

表 3 沉积物中各形态 Cd的含量 (mg·kg⁻¹)及其占总 Cd的百分率 (%)

Table 3	Contents of various	form s of cadmium	in the sedments	and their percentages	of the total cadmium

样号	深度 -	交换态		碳酸盐结合态		松结有机结合态		铁锰氧化物结合态		紧结有机结合态		残渣态	
		含量	百分比	含量	百分比	含量	百分比	含量	百分比	含量	百分比	含量	百分比
ZK 12	25m	0.092	30. 3	0.044	14.5	0.018	5.9	0.095	31.3	0.010	3.3	0.045	14.8
WH p2	2m	0 270	28.8	0.200	21.3	0.120	12.8	0. 190	20.3	0.082	8.7	0.076	8.1
JZ 1		0.190	27.8	0 210	30. 7	0.010	1.5	0.110	16.1	0.066	9. 7	0.098	14.3
XC2	表层	0.170	22.9	0 210	28.2	0.053	7.1	0.130	17.5	0.081	10.9	0.100	13.4
WH 1	0— 0. 2m	0 270	31.3	0.280	32.4	0.087	10.1	0.093	10.8	0.055	6.4	0.079	9.1
WH 2		0.130	25.3	0.120	23.4	0.059	11.5	0.077	15.0	0.055	10.7	0.073	14.2
表层样品平均		0.190	26.8	0.21	28.7	0.052	7.6	0.102	14.9	0.064	9.4	0.088	12.8

21由从早期到现代,长江沉积物中不同形态 Cd所占的比例呈现出一定的变化规律(图 2). 其中交

换态在各时期的沉积物中变化不大,含量比例波动在 25%左右;而碳酸盐结合态 Cd有明显的增长, 由早期的 14.5%增至现代的 28.7%;松结有机结合态和紧结有机结合态所占的比例也有不同程度的 增加;铁锰氧化物结合态的比例则显著降低,由早期的 31.3%变为现代的 14.9%;残渣态比例也有 一定程度的降低.

长江沉积物中 Cd赋存形态的这一变化趋势在一定程度上暗示了长江流域生态环境的变迁:早期 长江中上游森林覆盖率高,水土保持良好,同时,由于植被的保护,基岩(碳酸盐岩)风化的强度 也较弱,因此,长江早期的沉积物大多是未经长期化学风化和成壤作用的岩屑、砂粒,这样 Cd的铁 锰氧化物结合态和残渣态比例相对较大,而碳酸盐结合态和有机结合态的比例就相应较少.到了现 代,大量的砍伐致使森林覆盖率锐减,坡耕地面积迅速扩大,水土流失急剧增加,大量富含腐殖质的 土壤被冲刷进入河流,同时,由于植被破坏,基岩(碳酸盐岩)被暴露出来而遭受强烈的风化作用, 因此,在河流沉积物中有机结合态和碳酸盐结合态 Cd的比例都有所增加.

1 交换态, 2 碳酸盐结合态, 3 松结有机结合态, 4 铁锰氧化物结合态, 5 紧结有机结合态, 6 残渣态

Fig 2 Various fom s of cadmium distribution in Yang tze River sediment of different ena

参考文献

- [1] Jingsheng Chen, Feiyue Wang, Xinghui Xia et al, Major Element Chemistry of The Changjiang (Yangtze River) [J]. Chemical Geology 2002, 187: 231-255
- [2] Zhang Jing Heavy Metal Compositions of Suspended Sediments in The Chang jiang (Yang tze River) Estuary: Significance of Riverine Transport to The O cean [J]. Continental Shelf Research 1999. 19: 1521-1543
- [3] 朱圣清 臧小平,长江主要城市江段重金属污染状况及特征[J].人民长江,2001 32 (7) ·23-25
- [4] 徐小清 邓冠强,惠嘉玉等,长江三峡库区江段沉积物的重金属污染特征 [J].水生生物学报, 1999, **23** (1) · 1-10
- [5] Tessier A. Campbell PG G. Bisson M. Sequential Extraction Procedure for The Speciation of Particulate Trace Metals [J]. Analytical Chamistry, 1979 51 (7) : 844-851
- [6] 韩凤祥 胡霭堂,秦怀英,不同土壤环境中镉的形态分配及活性研究 [J].环境化学,1990 9(1):49-53
- [7] 张朝生,章申,张立成等,长江水系河流沉积物重金属元素含量的计算方法研究 [J].环境科学学报,1995,15 (3) : 257-264
- [8] WedepohlK H, Merian E, Metals and Their Compounds in The Environment Occurrence Analysis and Biological Relevance [M].
 Weinheim (Federal Republic of Germany): VCH, 1991 3-103
- [9] Whitney P. R. Relationship of Manganese iron O xides and Associated Heavy Metals to Grain Size in Stream Sediments [J]. Journal of Geochanical Explore 1975, 4:251-263
- [10] Martincic D, Kwokal Z, Branica M, Distribution of Zin c Lead Cadmium and Copper Between Different Size Fractions of Sediments I. The Linski Kanal (North Adriatic Sea) [J]. The Science of The Total Environment 1990 95: 201–215
- [11] 戴维明. 长江口悬浮固体中重金属元素的形态研究 [J]. 上海环境科学, 1994 13 (11) *7-9

D ISTR IBUTION OF TRACE ELEMENTS AND CADMIUM FORMS IN SEDMENTS FROM THE MIDDLE REACHES OF YANGTZE RIVER, HUBE I PROVINCE

BIX in g-yang¹² MA Zhen-dong³ REN Lim in³ GONG M in³ JN Zhi sheng¹ (1 State Key Laboratory of Environment Geochem istry Institute of Geochem istry Chinese A cadem y of Sciences Guiyang 550002 2 Graduate School of Chinese A cadem y of Sciences Beijing 100039;

3 In stitute of eochem istry China University of Geosciences W uhan 430074)

ABSTRACT

N ine trace elements in sediments of different horizons from Y ang tze river along the reaches of Yichang to W uhan were analyzed. M any elements had great increase in content from early time (2000 to 10000 year ago) to present especially for Cd. Pb and Hg which content was by early 0.25 mg· kg⁻¹, 20.1 mg· kg⁻¹ and 0.046 mg· kg⁻¹ increased to present 0.71mg· kg⁻¹, 42.1 mg· kg⁻¹ and 0.098 mg· kg⁻¹ respectively. Forms of cadmium in sediment were studied using sequential chemical extraction procedures the result showed that from early to present Carbonate bonded state Cd had obvious grow th in percentage which increased from 14.5% to 28.7%. Organic bonded state Cd also increased in various degrees FeM n oxide bonded state Cd had reducing of a certain degree too

Keywords trace elements cadmium, forms sediments Yangtze river