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Fig. 1 The EEM fluorescence spectra of EPS before ( a) and after ( b) adding As ( III)
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Fig.2 Change of fluorescence intensity of the peaks of EPS titrated with As ( Ill) (a) and fitting plots using the

Stern-Volmer equation ( b)
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Tab.1 The parameters for Stern-Volmer and the modified Stern-Volmer models for the interaction between EPS and As ( IIl)
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Complexation of As ( [l[) with Extracellular Polymeric Substance from
Biofilm in the Salt-discharging Channel in Kuytun Xinjiang

LIN Qing-hua' > ZHANG Dao-yong'’
(1. State Key Laboratory of Environmental Geochemistry Chinese Academy of Sciences Guiyang 550002 Guizhou China;
2. University of Chinese Academy of Sciences Beijing 100049 China;
3. College of Environment Zhejiang University of Technology Hangzhou 310014 Zhejiang China)

Abstract:  There is a heavy arsenic pollution in the salt-discharging channel due to the geological background in
Kuytun Xinjiang. The complexation between extracellular polymeric substance of the algal biofilm and As ( Ill) in—
fluences the transportation and diffusion of arsenic and further affects the biological toxicity and the ecological risk
of arsenic. At present the effects of the widespread biofilm on the transport and fate of arsenic in channel are com—
pletely unknown. In this study the interaction of extracellular polymeric substance of the algal biofilm and As ( III)
was investigated by fluorescence quenching test and isothermal titration calorimetry. The results of fluorescence
quenching test showed that the fluorescent components of extracellular polymeric substance were composed of three
fluorescence peaks: Peak A belonged to aromatic protein II Peak B belonged to soluble microbial by-productike
and Peak C belonged to humic acid-ike. Peak A and B were collectively referred to proteindike substance and
peak B was further intended to be tryptophanike substance. There was a strong complexation between the protein—
like substance and As ( Il) while the interaction between As ( IlI) and the humicdike substance was ignorable.
Both static quenching and dynamic collision were involved in fluorescence quenching of extracellular polymeric sub—
stance by As ( Il) . The binding constant IgK, for interaction of As ( [II) with the aromatic proteinike substance
and tryptophan-ike substance were 3. 82 and 2. 22 respectively indicating the binding affinity of As ( IIl) to the
former is one order of magnitude greater than the latter. Multiple sites were involved in competition for binding As
( ) in the aromatic proteinike substance and only one class of binding sites were taken part in tryptophan-ike
substance for their complexation with As ( l[) . The data obtained from isothermal titration calorimetry test were fit—
ted by independent model and the thermal dynamic parameters AH AG and AS of complexation reaction were ac—
quired. Negative enthalpy change AH and negative Gibbs free energy AG proved that the complexation between ex—
tracellular polymeric substance and the As ( Ill) is a spontaneous exothermic reaction. The degree of disorder in the
complexing reaction increases and the reaction is driven by entropy. The protein-ike substance in the biofilm in
salt-discharging channel may have significant effects on environmental fate and risk of arsenic while the role of hu—
mic acidike substance in extracellular polymeric substance is ignorable.

Key words: salt-discharging channel; arsenic pollution; biofilm; EPS; fluorescence quenching; isothermal titra—

tion calorimetry; Kuytun; Xinjiang



