

刘家军1.2, 冯彩霞3.4, 刘建明5, 郑明华6, 李朝阳3

(1.中国地质大学 "岩石圈构造、深部过程及探测技术"教育部重点实验室,北京 100083; 2.中国地质大学 地球科学与 资源学院,北京 100083; 3.中国科学院 地球化学研究所 矿床地球化学重点实验室,贵州 贵阳 550002;
 4.中国科学院 研究生院,北京 100039; 5.中国科学院 地质与地球物理研究所 矿产资源研究重点实验室,北京 100029;
 6. 成都理工大学 地球科学学院,四川 成都 610059)

摘 要:西秦岭南亚带层控金-硒矿床的赋矿地层为太阳顶群,为一套主要由炭质硅岩和炭质板岩组 成的硅岩建造。对于太阳顶群的时代,至今仍众说纷纭,莫衷一是,大多数人认为属晚寒武世一奥陶 纪,也有认为属晚震旦一早寒武世。作者通过对古杯类化石的鉴定以及 Rb-Sr、Sm-Nd 同位素等时线 年龄测定后认为,赋矿的太阳顶群时代应属早寒武世,而非晚寒武世一奥陶纪,更不可能为晚震旦世。 对金-硒矿床中 2 个成矿阶段石英样品进行⁴⁰ Ar/³⁸ Ar 快中子活化测定后获得马鞍型谐线特征。其中 坪年龄(71.45±0.55)~(80.05±0.65) Ma、最小视年龄(70.24±1.93)~(78.59±2.85) Ma 和等时 线年龄(69.45±0.38)~(81.61±0.55) Ma 均十分接近,说明所测 2 件石英样品的⁴⁰ Ar/³⁸ Ar 年龄真 实可靠,表明太阳顶群中层控金-硒矿床的成矿时间主要发生于燕山运动晚期。 关键词;层控金-硒矿床;地层时代;成矿时代;西秦岭

中图分类号:P61 文献标识码:A 文章编号:1005-2321(2004)02-0435-09

西秦岭南亚带太阳顶群中的层控金-硒矿床,由 拉尔玛(俄都)、邛莫矿床和牙相矿点组成。它是我 国境内发现的一种富含分散元素硒,并具有独特地 质特征的金-硒矿床^[1-4]。有关该矿床的赋矿地层 ——太阳顶群的时代,由于缺乏标准化石和可靠的 同位素年龄数据,致使其时代归属众说不一。随着 赋矿地层中一些具有特征年代意义的古生物化石的 发现,赋矿地层的重新归属成为可能。对于该矿床 的成矿时代,笔者^[5]及陈好寿等^[6]根据岩石、矿石异 常铅模式和钾-氩同位素等方法进行了讨论,所得到 的结果变化很大(242~47 Ma),缺乏精细同位素定 年数据。为进一步解决西秦岭南亚带太阳顶群硅岩 建造中层控金-硒矿床的赋矿地层时代与成矿时代 问题,作者利用 Rb-Sr、Sm-Nd、⁴⁰ Ar/³⁹ Ar 同位素数

收稿日期:2003-11-19:修订日期:2003-11-24

据和古生物化石进行讨论。

1 地层划分与对比

西秦岭南亚带太阳顶群是从原广义的白龙江群 逐步解体、演化而来的[1]。早在1944年,关士聪、叶 连俊首次将秦岭泥盆系"古道岭"灰岩以下的整个变 质岩系(包括现今的太阳顶群硅岩建造)命名为"白 龙江系"。1959年全国地层会议将其更名为"白龙 江群"(广义的白龙江群)。至 20 世纪 70 年代时,由 于区域铀矿地质勘查工作的逐步深入开展以及1: 20万区域测量(碌曲幅、卓尼幅)工作的进行,四川 地质矿产局、甘肃地质矿产局加强了该区域地层的 研究,结果将广义的白龙江群中产有尖笔石(Akidograptus)等志留系以下的浅变质地层统称为前志 留系白依沟群。1990年,毛裕年等[7]通过对研究区 白依沟剖面进行详细研究后,将广义的"白龙江群" 分解为3部分:(1)下部白依沟群,为一套以火山碎 屑岩为主夹陆源碎屑岩的浅变质岩系,其时代归属首 次厘定为早震旦世[7]。该套地层乃西秦岭地区迄今

基金项目:国家自然科学基金资助项目(40273026,49773197);国家自然科学重点基金资助项目(40234051);南京大学内生金属矿 床成矿机制研究国家重点实验室资助项目

作者简介:刘家军(1963-),男,教授,博士生导师,矿床地球化 学专业。E-mail: liujiajun@cugb.edu.cn

所发现的最古老的变质地层。(2)中部太阳顶群,层 倾没端(图1)。矿床赋存于寒武系太阳顶群由炭质 位稳定,厚度巨大,最厚处可达近1 km;其为一套主 要由硅岩和板岩组成,局部出现粉砂岩和碳酸盐岩, 并以富含有机质和菌藻微生物为特征的硅岩建造。 该群由下向上进一步划分为牙相组、希格组和拉尔玛 组3个组。该地层以超覆或局部微角度不整合于下 伏白依沟群之上,其形成时代至今仍众说纷纭,莫衷 一是,既有认为属晚寒武世一奥陶纪^[7],又有归属为 中一晚寒武世^①,还有认为属晚震旦一早寒武世^[8]。 有鉴于此,一些学者直接将其归划为寒武--奥陶 纪^[9,10]。多年来,笔者一直将其归属为寒武纪^[11~13]。 (3) 上部狭义的白龙江群,被限定在产有早志留世笔 石动物群化石以上的层位[7];其为一套以硅质和泥质 碳酸盐岩为主的沉积岩系。西秦岭南亚带"硅灰泥岩 型"铀矿床即产于该层位中^{14]},与下伏太阳顶群呈整 合接触关系,时代定为志留纪。

与太阳顶群对应的地层在整个秦岭均有分 布[15],如在南秦岭为洞河群。洞河群由一套硅岩、 板岩及泥灰岩组成。在洞河群底部已单独划出鲁家 坪组,硅岩与板岩为其主要岩石组成,并夹有大量的 层状黄铁矿、重晶石、毒重石、钡解石等。

就太阳顶群的总体情况来看,硅岩与板岩互层构 成若干旋回,其最大厚度近1km。但由于后期断裂破 坏,太阳顶群在空间上厚度变化较大:在牙相一降扎一 带出露较完整,向西至邛莫、拉尔玛(俄都)一带逐渐缺 失,向东至热垅桥、白依沟一带仅出露牙相组地层。

硅岩和炭质板岩组成的硅岩建造中,受地层,岩性, 构造控制十分明显,对其所表现出来的层控性质为 众所公认[1]。

硅岩中。矿体一般沿顺层破碎带分布,形态为似层 状和透镜状,其产状与围岩产状一致。矿石矿物和 元素组合十分复杂,现已鉴定出的矿物多达80余 种。其中包括 Cu, Pb, Zn, As, Mo, Ni, Sb 等的硫化 物、硒化物、含铀矿物以及一大批氧化矿物。常见的 矿物有自然金-硒、硒汞矿、硒铅矿、黄铁矿、白铁矿、 辉锑矿、石英、重晶石和地开石等。矿石中矿物种类 特点[3,4]。

根据含矿岩石的差异,可将矿石划分为3种类 型:(1) 硅岩型金-硒矿石;(2) 板岩型金-硒矿石; (3) 英安斑岩型金-硒矿石。其中硅岩型矿石是矿 床的主要矿石类型,约占矿石总量的75%~80%。 英安斑岩型矿石多见于邛莫矿区。

矿床中围岩蚀变有硅化、辉锑矿化、黄铁矿化、 重晶石化、地开石化和褪色化等。其中以硅化为主, 大部分金-硒矿体就位于最强烈的硅化蚀变范围之 内。褪色蚀变常伴随着硅化作用。它的显著特征是 岩石颜色由灰黑色、深灰色变成灰色、灰白色,其中 有机碳被带出,使其含量降低。其他围岩蚀变分布 较局限。无论何种蚀变,均发育于顺层破碎带内。 一般说来,围岩蚀变较强烈的地带,矿石组分较复 杂,矿化较好;而围岩蚀变较弱的地带,矿化较差。

2

金-硒矿床位于西秦岭南亚带白依背斜西部的

根据脉体穿插关系、矿石组构以及矿物共生组

图1 西秦岭太阳顶群中层控金-硒矿床区域地质略图 (据四川地质矿产局川西北地质大队区调分队,1990,略有修编) Fig. I Geological sketch map of the stratabound Au-Se deposits in Taiyangding Group, the western Qinling Mountains K_2 一上白垩统; S_1 γ 一下志留统羊肠沟组; S_1 x一下志留统下地组; O_{2+3} s一中、上奥陶统苏里木塘组; C_1 t^{γ} 一太阳顶群牙相组; $\in_1 t^*$ 一太阳顶群希格组; $\in_1 t^t$ 一太阳顶群拉尔玛组; $Z_1 by$ 一下震旦统白依沟群;1一逆断层;2一逆掩断层;3一地层界线

① 杨恒书.中华人民共和国区域地质调查报告(1:50 000).四川省地质矿产局川西北地质大队,1990.58,

合,拉尔玛、邛莫金-硒矿床的形成主要经历了两个 成矿阶段,即(1)黄铁矿-白铁矿-黄铜矿-斑铜矿-自 然金-石英成矿早阶段和(2)辉锑矿-硒化物-自然金 -石英-重晶石成矿主阶段。

3 样品的采集及分析方法

3.1 样品的采集及处理

在邛莫、拉尔玛、牙相矿区及外围采新鲜样品 70余块,经磨制薄片在显微镜下观察后,挑选5件 未受后期蚀变影响的硅岩样品磨制成200目,用于 Rb-Sr、Sm-Nd 同位素全岩分析。从邛莫矿区OP1 坑道的金-硒矿体中采集2件含矿石英脉样品用于 Ar-Ar 同位素分析。首先将石英样品逐级破碎、过 筛、挑选,直至粒级40~60目,纯度达到98%以上。 然后用5%的稀硝酸对样品进行浸泡1.5~2h,以 剔除其中少量的硫化物。最后将浸泡处理后的样品 用清水、蒸馏水反复冲洗多遍后滤干,并在80℃条 件下烘干。

3.2 分析方法

全岩的 Rb-Sr、Sm-Nd 同位素分析样品的化学 分离和质谱测定系在南京大学现代中心实验室 VG354 质谱仪上完成的。实验中对锶同位素标样 NBS987(推荐值为 0. 710 34(26))测定的 $N(^{87}$ Sr)/ $N(^{86}$ Sr) = 0. 710 358 (8) (2 σ),标准化值采用 $N(^{86}$ Sr) = 0. 710 358 (8) (2 σ),标准化值采用 $N(^{86}$ Sr)/ $N(^{88}$ Sr) = 0. 119 4, Sr 的全流程本底值为 $(1\sim 2)\times 10^{-9}$ 。对美国的 La Jolla 标准样测定值为 $N(^{143}$ Nd)/ $N(^{144}$ Nd) = 0. 511 860(8) (2 σ),标准化值 采用 $N(^{146}$ Nd)/ $N(^{144}$ Nd) = 0. 721 9, Nd 的全流程 本底值为(5~7) $\times 10^{-11}$ 。 $N(^{87}$ Rb)/ $N(^{86}$ Sr) 和 $N(^{147}$ Sm)/ $N(^{144}$ Nd)的分析误差(2 σ)分别为 1%和 0. 2%。Rb-Sr 和 Sm-Nd 等时线年龄计算采用 Ludwig^[16]和 York^[17]的 ISOPLOT 程序(Version 2. 90) 计算,衰变常数 λ (Rb)=1. 42 $\times 10^{-11}$ a⁻¹, λ (Sm)= 6. 54 $\times 10^{-12}$ a⁻¹。

石英 N(⁴⁰ Ar)/N(³⁰ Ar)分析样品和标准样的 制备、快中子照射、阶段加热 Ar 的提取与纯化以及

质谱分析,均采用桑海清等[18]所报道的流程。首先 将单矿物样品放入抽了真空的石英样品瓶中,并在 瓶外包有1mm厚的镉皮,以防热中子的干扰;然后 将包装好的样品在中国原子能科学研究院的 49-2 反应堆 B8 孔道中心位置进行快中子照射。照射期 间样品瓶用水冷却,同时样品瓶以2圈/分速度旋 转,以防横向中子通量的变化,保证均匀照射。最后 将照射的样晶瓶取出(出口时的水温低于 42 ℃,以 防40Ar扩散丢失),并用质谱仪测量释放气体的氩 同位素。两个样品照射时间是 62 h,快中子瞬时通 量为 5×10^{12} cm⁻² • s⁻¹,中子积分通量为 1.08× 10¹⁸ cm⁻²。用于中子通量监测的标准样为我国标样 ZBH-25 黑云母、ZBI 角闪石和法国 B600 黑云母, 它们的年龄值分别为(132.9±1.2)Ma,(132.8± 1.4) Ma 和(322.0±4.1) Ma。测试仪器为英国 RGA-10 气体源质谱计(VSS 公司)。全系统静态本 底为 $n({}^{40}\text{Ar}) = 1, 6 \times 10^{-14} \text{ mol}, n({}^{36}\text{Ar}) = 1, 2 \times$ 10⁻¹⁶ mol。对 Ar 同位素的测量误差在 0.5%~1% 以内。

古生物化石的鉴定,由成都理工大学古生物教 研室林丽教授通过观察和对比研究而完成。

4 结果与讨论

4.1 同位素年龄

(1) Rb-Sr 等时线年龄。太阳顶群硅岩建造中 5 件硅岩样品的 Rb-Sr 同位素测试数据见表 1。硅 岩的 $N(^{87}$ Rb)/ $N(^{86}$ Sr) 值变化范围为 0.000 9~ 0.453 8, $N(^{87}$ Sr)/ $N(^{86}$ Sr) 值变化于 0.709 529~ 0.713 006。在 Rb-Sr 等时线图解(图 2)上,5 件样 品数据点具有良好的线性正相关关系(r =0.999 8)。利用最小二乘法求得的直线斜率 b =0.007 682 ± 0.000 124, Rb-Sr 等时线年龄 t =(539.1 ± 8.7) Ma (2_{σ}), MSWD (mean squared weighted deviation)=0.382, $N(^{87}$ Sr)/ $N(^{86}$ Sr)初始 比值为 0.709 521±0.000 043。

	Table 1	The Rb-Sr isotopic	compositions of the	e chert in Taiyang	ding Group in the A	u-Se deposits
序号	样号	岩性	w(Rb)/10 ⁻⁶	w(Sr)/10 ⁻⁶	N(⁸⁷ Rb)/N(⁸⁶ Sr)	$N(^{87}{ m Sr})/N(^{86}{ m Sr})(\pm 1_{\sigma})$
1	y90002	多孔状硅岩	1. 986	12.58	0.453 8	0.713 006(2)
2	bi-1 5	沥青质硅岩	50, 84	354.2	0,402 6	0.712 614(16)
3	yi-2b	角砾状硅岩	1.43	12.13	0,350 9	0,712 233(18)
4	mii-7	层纹状硅岩	3.996	34.75	0.324 5	0,711 998(19)
5	y90001	硅质结核	0.986 3	3 319	0,000 9	0.709 529(25)

表1 太阳顶群硅岩的 Rb-Sr 同位素组成

(2) Sm-Nd 等时线年龄。太阳顶群硅岩建造中 5 件硅岩样品的 Sm-Nd 同位素测试数据见表 2。硅 岩的 N(¹⁴⁷ Sm)/N(¹⁴⁴ Nd)值变化范围为 0.079 6~ 0.217 8, N(¹⁴³ Nd)/N(¹⁴⁴ Nd)值范围为 0.511 892~ 0.512 382。在 Sm-Nd 等时线图解(图 3)上, 5 件样 品数据点具有良好的线性正相关关系(r=0.999 8)。 用最小二乘法求得直线斜率 b=0.003 558 ± 0.000 104,等时线年龄 $t=(543\pm16)Ma(2\sigma),MSWD$ =0.281,初始比值 (N_0 (¹⁴³ Nd)/ N_0 (¹⁴⁴ Nd))为 0.511 607±0.000 017, ϵ (Nd, t) = -6.46。

图 3 太阳顶群硅岩 Sm-Nd 等时线 Fig. 3 The Sm-Nd isochron of the chert in Taiyangding Group in the Au-Se deposits

由于组成硅岩成分的 SiOa 具有较稳定的化学 特征,水溶性极差,难与其它元素进行化学反应而发 生离子交换,也无吸附其它离子的特性,硅岩中所含 杂质多属同源的自生矿物,很少受母源继承性的干 扰,同时硅岩受成岩变化的影响也较小,因此测出硅 岩的 Rb-Sr、Sm-Nd 含量以及 Sr、Nd 同位素的初始 值具有可行性和可信性^[19,20]。另外,全岩 Rb-Sr、 Sm-Nd 法体系的封闭温度可高达 650 ℃或更 高^[21,22],在这两种同位素体系封闭后,浅变质过程 中不会造成同位素计时体系的过大扰动,它们具有 较强的抗扰能力^[23]。因此本文所获得的全岩 Rb-Sr、Sm-Nd 等时线年龄,代表了本区沉积成岩作用 事件的发生时间,即为早寒武世。

4.2 化石年龄

在太阳顶群地层中发现了一些古生物化石。经 在显微镜下鉴定并确认的化石种类有藻类、放射虫、 古杯类以及微体小壳等。尤其是菌藻类化石在岩石 中比较常见,如球粒状硅岩中含有大量的色球蓝细 菌科中古色球藻属(Praechococcus)、类粘球藻属 (Gloeocapsoides)和微囊藻属(Microcytis)以及粗枝 藻科的一些常见种属(如 Gyroporella, Mizziz, Eogoniolina, Clavaporella, Macroporella 等)化 石^[24]。其中以笔者在俄都太阳顶群底部发现的古 杯类化石最具时代意义。尽管古杯类化石因被黄铁 矿交代难以辨认其微细结构,但其单体明显呈杯状, 且内、外壁及中央腔构造特征明显(图 4)。古杯类 动物化石主要繁盛于早寒武世,绝灭于中寒武 世^[25]。

另外,在矿区西部太阳顶群上部的粉砂质板岩中,叶发荣等^[8]发现并鉴定出具有早寒武世色彩的小壳动物: Cylindrochites daiznuengziensis Liu; Hyolithllus qingheensis Liu。这些化石相当于云南 昆明梅树村阶产的 Hyolithes sp. 和 Auabarites-Circotheca 组合^[8]。

表 2 太阳顶群不同类型硅岩的 Sm-Nd 同位素组成

Table 2	The Sm-No	l isotopic	compositions of	Etl	he c	hert in	ιT	`aiyangd	ling	Group	ı in t	he .	Au-Se	depo	site
---------	-----------	------------	-----------------	-----	------	---------	----	----------	------	-------	--------	------	-------	------	------

序号	样 号	岩 性	$w(Sm)/10^{-6}$	w(Nd)/10 ⁻⁶	$N(^{147}{ m Sm})/N(^{144}{ m Nd})$	$N(^{143}\text{Nd})/N(^{144}\text{Nd})(\pm 1\sigma)$
1	y90002	多孔状硅岩	0, 319 3	1. 307	0.147 8	0.512 130(9)
2	bi-15	沥青质硅岩	6. 828	51.94	0.0796	0.511 892(12)
3	yi-2b	角砾状硅岩	0.5676	3, 165	0,108 5	0,511 991(16)
4	mii-7	层纹状硅岩	1,005	3. 589	0.1694	0.512 214(14)
5	y90001	硅质结核	27,09	75. 26	0. 217 8	0.512 382(9)

图 4 太阳顶群底部硅岩中的古杯类化石(光块) Fig. 4 Archaeocyathus of chert from the lower Taiyangding Group in western Qinling Mountains

由于太阳顶群所处的层位明显低于该区域西部 品给出的40 Ar/39 Ar 年龄谱均呈两侧高、中间低的形 奥陶纪,更不可能为晚震旦世。

4.3 成矿时代

图 5。从中可以看出, 邛莫金-硒矿床中 2 个石英样 义[18]。

迭部县拉路村产有早奥陶世 Didymograptus 笔石 状,属于"马鞍型"年龄谱,表明测试样品含有过剩 动物群的层位,其底界又与震旦系白依沟群呈角度 氩[26~28]。马鞍形年龄谱说明测试样品中过剩的 不整合接触。结合太阳顶群中所产的化石特征及 "OAr主要有两个相:一是低温相,主要含在流体包裹 Rb-Sr、Sm-Nd 全岩等时线年龄数据,我们认为赋矿 体之中(因流体包裹体含 K、Cl),通常在 400~700 地层时代应属早寒武世,而不大可能是晚寒武世──℃之间析出,所占比例一般较小;二是高温相,主要 赋存在石英晶体之中,通常在1000℃以后析出,这 部分过剩⁴⁰Ar 所占的比例较大。所以低温和高温 ⁴⁰Ar/³³Ar 年龄测定数据和处理结果见表 3 和 部分气体给出的视年龄, 一般不具有地质年代学意

-her th	then that we	NL (40 A)	NT (36 A)	NT (37 A)	NT (38 A)	(10 A)	·····	NT(40.4. \) (3) (20.1	Am 4 4 4 4 1 m -
加恐	加於温	$W_{\rm m}(^{\prime\prime}M)$	N _m (** Ar)	$N_{\rm m}(^{\prime\prime} {\rm Ar})$	N _m (^{ao} Ar)	$n(^{\circ\circ}\operatorname{Ar}_{\mathbf{k}})$	w ⁽³⁹ An _k)/%	$N(^{\infty}Ar)/N(^{\otimes}Ar_k)$	祝年龄/Ma
阶段		$/N_{\rm m}(^{39}{\rm Ar})$	$/N_{\rm m}(^{39}{\rm Ar})$	$/N_{\rm m}(^{39}{\rm Ar})$	$/N_{\rm m}(^{39}{\rm Ar})$	$/(10^{-12} \text{mol})$		$(\pm 1\sigma)$	(±1ø)
		样品	OP1-3,样品	质量 M=0.2	288 8 g,照射	参数∫=0.00	19 642,λ=5. 5	$43 \times 10^{-10} a^{-1}$	
1	400	35, 441	0.094 1	3.943 3	0.835 29	0.786 6	11	8.110±0.060	135.84±8.11
2	480	20.144	0.055	2,230 9	0.355 07	1, 598	22.4	4.117±0.025	70.24 \pm 1.93
3	560	22, 358	0.062 2	2.4734	0.405 66	1, 227	17.2	4,238±0,029	72.26 ± 2.23
4	650	31, 159	0,0927	3, 252 9	0.527 53	0,7986	11.2	4.141±0.038	70,64±2.77
5	780	37, 923	0, 115 38	3.666 9	0,634 61	0.6016	8.44	4,288±0.045	73.10±3.40
6	900	49, 895	0.156 25	4.5519	0.77083	0.444	6.23	4.320±0.056	73, 63±4, 13
7	1 020	56.666	0.175 75	4.3939	0.745 45	0.381 6	5.35	5,340±0,054	90.58±4.90
8	1 150	45.111	0.128 88	3.0456	0.724 44	0.520 9	7, 31	7.466±0.052	125,42±6.54
9	1 300	57.88	0.163 04	3.022 6	0.777 17	0.425 9	5, 98	10.19±0.056	169, 16±9, 32
10	1 500	77, 103	0.220 68	2.8766	0, 779 31	0.3357	4.71	12.45±0.056	204.54 \pm 11.20
		样品	品 tc7-2,样品	质量 M=0.2	894g,照射	参数 J=0,00	9 642, x =5, 5	$43 \times 10^{-10} a^{-1}$	
1	400	44,92	0, 120 63	4,073 9	0, 631 74	0, 728 7	10, 9	9.789±0.045	162, 72±7, 36
2	480	19.109	0.049 3	2.214 2	0.394 52	1.691	25.3	4,778±0,028	81.26±2.44
3	560	31, 447	0.0921	3,402 8	0.639 47	0.8795	13. 2	4.641±0.046	78.98±3.70
4	650	29, 772	0.086 3	3.0724	0.486 36	1.018	15.2	4.617±0.035	78, 59±2, 85
5	780	53, 333	0,166 66	5.737 7	0, 933-33	0.485 2	7.28	4.802±0.068	81.67 ± 5.52
6	900	64.024	0.201 21	6.3914	1.085 3	0.3788	5,68	5, 395,±0, 079	91, 49±7, 15
7	1 030	59.943	0, 181 81	6.5679	1, 210 2	0.4064	6.1	7,052 \pm 0.088	118.69 \pm 10.26
8	1 150	59,836	0.174 86	6,1025	1.153	0,4227	6.34	8.957±0.084	149.45 \pm 12.20
9	1 300	70.322	0.206 45	6,636 1	1.322 5	0,3579	5, 37	10, 21 ±0, 096	169.45 \pm 15.77
10	1 500	83, 599	0.239 99	6.583	1, 376	0. 288 6	4.33	13.63±0.1006	222, 85±21, 26

表 3 邛莫金-硒矿床中含金石英脉"Ar/3" Ar 年龄测定实验数据 Table 3 ⁴⁰ Ar/³⁹ Ar fast-neutron activation analysis data of quartz in the Qiongmo Au-Se deposits

图 6 邛莫金-研矿床石英样品⁴⁰ Ar/³⁹ Ar 快中子活化测年等时线 Fig. 6 An isochron age of Au-bearing quartz in the Qiongmo Au-Se deposit

由于⁴⁰ Ar/³⁸ Ar 马鞍形年龄谱可用于判断岩石 和矿物中的过剩氩,这种年龄谱中坪年龄或最小视 年龄值接近样品的结晶年龄,在一些样品中甚至可 以得到正确的年龄值^[28,29]。即年龄谱中的坪年龄 或最小视年龄一般代表了石英的形成时代。故金-硒矿床中含金-硒石英脉的年龄谱的最小视年龄为 (70.24±1.93)~(78.59±2.85) Ma 或坪年龄为 (71.45±0.55)~(80.05±0.65) Ma 可作为金--硒 成矿年龄的上限。

在两个样品的坪年龄中分别包括了 480~900 ℃ 4~5个加热阶段的数据点,³⁹ Ar 析出量所占总 量分别达到 65.47%、61.5%。由于⁴⁰ Ar/³⁹ Ar 定年 实验是在一个样品(而不是一组样品)上完成的,故 参加坪年龄计算的数据点满足样品同时、同源和化 学封闭的条件^[18,27,29,30],故可以进行等时线年龄的 计算。计算结果如图 6 所示。

可见坪年龄(71.45±0.55)~(80.05±0.65) Ma、最小视年龄(70.24±1.93)~(78.59±2.85) Ma和等时线年龄(69.45±0.38)~(81.61±0.55) Ma均十分接近,反映所测石英样品的年龄真实可 靠,坪年龄代表了石英的形成时代——相当于燕山 晚期。另一方面,两个样品的初始值 N_i(⁴⁰ Ar)/ N_i(³⁹ Ar)分别为(295.80±1.09)和(293.10± 1.39),与尼尔值(295.5±5)**一致,亦表明所测试样** 品中无显著的过剩氩或氩的丢失。即测试结果受过 剩⁴⁰Ar 的影响很小,坪年龄可信。

由 Ar-Ar 法得到的金-硒矿床形成时间,与根 据区域宏观现象推断的成矿时间大体一致。由于金 -硒矿化主要产于断裂破碎带的岩石中,且见热液矿 脉穿切印支期英安斑岩脉(K-Ar 年龄为 186~192 Ma)^[31],故金-硒矿化应发生在印支期英安斑岩脉 形成之后。在牙相金-硒矿点侏罗系破碎的粉砂岩 中也有较强的金矿化现象,表明金-硒的成矿还不早 于侏罗纪,即成矿时代不大可能发生于印支期或燕 山早期。

5 结论

(1)太阳顶群在研究区层位稳定,厚度巨大,最 厚处可达近 km。对其时代归属多依靠地质构造和 岩性的对比来认定,缺乏可靠的古生物化石和同位 素年龄数据,以致时代归属相当紊乱。笔者通过对 太阳顶群中古杯类化石鉴定和硅岩的 Rb-Sr、Sm-Nd 同位素等时线年龄的分析后,认定其时代并非 传统认为的晚寒武世—奥陶纪,也不可能属晚震旦 世。这一认识,对西秦岭南亚带基础地质研究和金-硒矿床的找矿工作无疑具有重要意义。

(2)根据石英"Ar/38Ar 同位素分析所得到的坪

年龄(71.45±0.55)~(80.05±0.65) Ma、最小视 年龄(70.24±1.93)~(78.59±2.85) Ma 和等时线 年龄(69.45±0.38)~(81.61±0.55) Ma 均十分接 近,反映了所测石英样品的年龄真实可信。该年龄 值也与实际观察到的一些地质宏观现象相吻合,说 明西秦岭南亚带层控金-硒矿床形成于燕山晚期。

本文的研究工作得到了成都理工大学地球科学学院林 丽教授、四川地质矿产局川西北地质大队杨恒书、彭达玲全 高级工程师以及核工业部北京地质研究院周德安研究员的 大力支持,在此深表谢忱。

References[参考文献]:

- [1] ZHENG Minghua, ZHOU Yufeng, LIU Jianming, et al. Stratabound Gold Deposits of Exhalation Type and Turbidity Type[M]. Chengdu: Sichuan Science and Technology Press, 1994. 273 (in Chinese). [郑明华, 周愉锋, 刘建 明,等. 喷流型与浊流型层控金矿床[M]. 成都: 四川科学技 术出版社, 1994. 273.]
- [2] LIU Jiajun, ZHENG Minghua, LIU Jianming, et al. Selenium enrichment in Cambrian stratabound gold deposits in the western Qinling Mountains [J]. Acta Geologica Sinica, 1997, 71(4): 423-432.
- [3] LIU Jiajun, ZHENG Minghua, LIU Jianming, et al. Geochemistry of the La'erma and Qiongmo Au-Se deposits in the western Qinling Mountains, China [J]. Ore Geology Review, 2000, 17: 91-111.
- [4] IJU Jiajun, LIU Jianming, ZHENG Minghua, et al. The Au-Se paragenesis in Cambrian stratabound gold deposits, western Qinling Mountains, China[J]. International Geology Review, 2000, 42(11): 1037-1045.
- [5] LIU Jiajun, LIU Jianming, ZHOU De'an, et al. Comparative chronological study of the gold and uranium deposits in Jiangzha, western Qinling Mountains, China[J]. Scientia Geologica Sinica, 1998, 33(3); 300-309 (in Chinese). [刘 家军,刘建明,周德安,等. 西秦岭降扎地区金、铀矿床成矿年 代学研究[J]. 地质科学, 1998, 33(3); 300-309.]
- [6] CHEN Haoshou, TONG Su, WEI Lin, et al. Chronology of Mineralization and Isotopic Geochemistry[M]. Beijing: Geological Press, 1994. 107-131 (in Chinese). [陈好寿,同 肃,魏林,等.成矿作用年代学及同位素地球化学[M].北京: 地质出版社, 1994. 107-131.]
- [7] MAO Yunian, MIN Yongming. Precambrian system. in the subzone, western Qinling [M]. Chengdu: Sichuan Science and Technology Press. 1990. 52 (in Chinese). [毛裕年, 闵永明. 西秦岭南亚带的前寒武系[M]. 成都:四川科学技术出版社, 1990. 52.]
- [8] YE Farong, LI Yadong, CUI Zhigang. Understanding of the Taiyangding Group in Laerma district of Gansu, China[J].

Acta Geologica Gansu, 1993, 3(2); 27-30(in Chinese). [叶发荣,李亚东,崔志刚.对西秦岭拉尔玛太阳顶群进一步 划分的意见[J].甘肃地质学报, 1993, 3(2); 27-30.]

- [9] ZENG Yunfu, YI Haisheng. Petrographic and geochemical features of cherts of Taiyangding Group in western Qinling
 [J]. Journal of Mineralogy and Petrology, 1993.13(3), 12-20(in Chinese). [曾允福,伊海生. 西秦岭太阳顶群硅 质岩的岩石学及地球化学特征[J]. 矿物岩石,1993,13(3): 12-20.]
- [10] DONG Weiquan, GAO Jiyuan, Hydrothermal sediment of chert and primary enrichment of gold in Taiyangding Group, western Qinling[J]. Acta Geologica Sichuan, 1992,12(Suppl): 76-77 (in Chinese). [董维全,高计元,西秦岭太阳 顶群硅质岩的热水沉积与金的初步富集[J].四川地质学报, 1992,12(增刊): 76-77.]
- [11] LIU Jiajun, LIU Jianming, ZHENG Minghua, et al. Geological and geochemical characteristics of the Cambrian chert and implications to sedimentary environment, western Qinling Mountains[J]. Acta of Petrologica Sinica, 1999, 15 (1): 145-154(in Chinese). [刘家军,刘建明,郑明华, 等. 西秦岭寒武系金矿床中硅岩的地质地球化学化学特征及 其沉积环境意义[J]. 岩石学报, 1999, 15(1): 145-154.]
- [12] LIU Jiajun, LIU Jianming, ZHENG Minghua, et al. Judging the sedimentary environment of the chert formation on the chemical characteristics of rocks in western Qinling Mountains[J]. Journal of Sedimentation, 1998, 20(4), 51-59 (In Chinese). [刘家军,刘建明,郑明华,等.利用 岩石地球化学特征判断西秦岭寒武系硅岩建造的沉积环境 [J]. 沉积学报, 1998, 15(4); 42-49.]
- [13] LIU Jiajun, LIU Jianming, ZHENG Minghua, et al. Submarine exhalative sedimentation and mineralization of the chert formation in western Qinling, China[J]. Geological Journal of China Universities, 1998, 4(1), 20-33 (in Chinese).
 [刘家军,刘建明,郑明华,等. 西秦岭寒武系硅岩建造的喷流 沉积作用与矿质聚集[J]. 高校地质学报, 1998, 4(1), 20-33.]
- [14] MAO Yunian, MIN Yongming. The Siliceous-Calcareous-Argillaceous Rock Type Uranium Deposit in Western Qinling[M]. Beijing: Geological Press, 1989. 150-171 (in Chinese). [毛裕年, 闵永明. 西秦岭硅灰泥岩型铀矿[M]. 北京: 地质出版社, 1989. 150-171.]
- [15] LIU Jiajun, ZHENG Minghua, LIU Jianming, et al. Geotectonic evolution and mineralization zone of gold deposits in western Qinling[J]. Geotectonica et Metallogenia, 1997, 21 (4): 307-314 (in Chinese). [刘家军,郑明华,刘建明,等. 西秦岭大地构造演化与金成矿带的分布[J]. 大地构造与成矿学, 1997, 21(4): 307-314.]
- [16] LUDWIG K R. Isoplot: A plotting and regression program for radiogenic-isotope data (Ver. 2. 90)[J]. US Geological Survey Open-File Report, 1996, 91(445): 1-47.
- [17] YORK D. Least squares fitting of a straight line with correla-

刘家军, 冯彩霞, 刘建明, 等/ 地学首尊 (Earth Science Frontiers)2004, 11 (2)

ted errors[J]. Earth Planet Sci Lett, 1969, 5(5); 320-324.

- [18] SANG Haiqing, WANG Songshan, HU Shiling, et al.
 ⁴⁰ Ar/³⁹ Ar dating method and Ar isotopic mass spectrometry analysis of quartz[J]. Acta Mass Spectrogram Sinica. 1994
 (2): 138-148 (in Chinese). [桑海清, 王松山, 胡世铃,
 等. 石英的⁴⁰ Ar/³⁹ Ar 定年方法及 Ar 同位素质谱分析[J]. 质 谱学报, 1994 (2): 138-148.]
- [19] WANG Andong, CHEN Ruijun. Rb, Sr isotopic composition features of siliceous rocks and their geologic significance[J]. Acta Geoscientia Sinica, 1997, 18(Suppl): 108-110(in Chinese). [王安东,陈瑞君, 硅岩的 Rb-Sr 同位素組成特点 及其地质意义[J]. 地质论评, 1997, 18(增刊): 108-110.]
- [20] FANG Weixuan, HU Ruizhong, XIE Guiqing, et al. Diagenetic-metallogenic ages of pyritic cherts and their implications in Mojiang nickel-gold deposit in Yunnan Province, China[J]. Chinese Science Bulletin, 2001, 46(10); 857-860 (in Chinese). [方维查,胡瑞忠,谢桂青,等. 墨江金矿床 (黄铁矿)硅质岩的成岩成矿时代[J]. 科学通报, 2001,46 (10); 857-860.]
- [21] WANG Yinxi, YANG Jiedong, TAO Xiancong, et al. Experimental research on Sm-Nd isotopic method of fossil-mineral-rock and its application[J]. Journal of Nanjing University (Science ed.), 1988, 21(2): 297-308 (in Chinese).
 [王银喜,杨杰东,陶仙聪,等. 化石、矿物和岩石样品的 Sm-Nd 同位素实验方法研究及应用[J]. 南京大学学报(自然科学版), 1988, 21(2): 297-308,]
- [22] HOLLISTER L S. Metamorphic evidence for rapid (2mm/ yr) uplift of a portion of the central gneiss complex, Coast Mountains[J]. B C Can Mineralogist, 1982, 20: 319-332.
- [23] JIANG Boming. Methodology and its limitation of Archean rock dating[J]. Geochemistry, 1989, (2): 103-120 (in Chinese). [江博明.太古宙岩石的定年——方法学和局限 性讨论[J].地球化学, 1989, (2): 103-120.]

- [24] LIN Li. Biogenic agency in the Laerma Gold Deposit[M]. Chengdu: Chengdu University of Technology Press, 1994.
 78 (in Chinese). [林丽. 拉尔玛金矿床中生物成矿作用 [M], 成都:成都科技大学出版社, 1994. 78.]
- [25] TAN Guangbi. A Concise Course in Paleontology[M]. Beijing; Geological Press, 1983. 306 (in Chinese). [谭光 弼主编. 古生物学简明教程[M]. 北京: 地质出版社, 1983, 306.]
- [26] HARRISON T M, MCDOUGALL I. Excess ⁴⁰Ar in metamorphic rocks from Broken Hill, New South Wales: Implications for ⁴⁰Ar/³⁹Ar age spectra and the thermal history of the region[J]. Earth Planet Sci Lett, 1981, 55: 123-149.
- [27] ZEITLER P K, GERALD D F, Saddle-shaped ⁴⁰ Ar/³⁹ Ar age spectra from young, micro-structurally complex potassium feldspars[J]. Geochim Cosmochim Acta, 1986, 50: 1185-1199.
- [28] LANPHERE M, DLRYMPLE G B, Identification of excess ⁴⁰ Ar by the ⁴⁰ Ar/³⁹ Ar age spectrum technique[J]. Earth Planet Sci Lett, 1976, 32: 141-148.
- [29] FOLLAND K A. ⁴⁰ Ar/³⁹ Ar incremental heating plateaus for biotite with excess argon[J]. Isot Geosci, 1983, 1: 3-21.
- [30] LI Zhenghua, DAI Tongmo, QIU Huaning. The release of ⁴⁰Ar(⁴⁰Ar* +⁴⁰Ar_E) and ³³Ar in ⁴⁰Ar.³³Ar samples and its chronological significance [J]. Scientia Geologica Sinica, 1995, 30(1): 40-45(in Chinese). [李正华, 戴瀘谟, 邱 华宁. ⁴⁰Ar(⁴⁰Ar* +⁴⁰Ar_E), ³⁹Ar 释气特征与过剩氢的甄别 及年代学意义[J]. 地质科学, 1995, 30(1), 40-45.]
- [31] LIU Jiajun, ZHENG Minghua, LIU Jianming, et al. Oreforming material sources of gold deposits in the Cambrian chert formation, western Qinling [J]. Mineral Deposits, 1997, 16(4), 330-339(in Chinese). [刘家军,郑明华, 刘建明,等. 西秦岭寒武系硅岩建造中金矿床成矿物质来源 研究[J]. 矿床地质, 1997, 16(4), 330-339.]

442

REIDENTIFICATION OF THE ORE-HOSTED STRATA AGE AND METALLOGENIC AGE OF THE STRATABOUND Au-Se DEPOSITS, THE WESTERN QINLING MOUNTAINS

LIU Jia-jun^{1,2}, FENG Cai-xia^{3,4}, LIU Jian-ming⁵, ZHENG Ming-hua⁶, LI Chao-yang³

(1. Key Laboratory of Lithospheric Tectonics and Lithoprobing Technology, China University

of Geosciences, Ministry of Education, Beijing 100083, China;

2. School of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China;

3. Institute of Geochemistry, CAS, Guiyang 550002, China;

4. Graduate School, CAS, Beijing 100039, China;

5. Institute of Geology and Geophysics, CAS, Beijing 100029, China;

6. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China)

Abstract: The stratabound gold and selenium deposits in the south subzone of the western Qinling Mountains include the Laerma (Edu) and the Qiongmo gold and selenium deposits and the Yaxiang gold and selenium ore occurrence. They constitute a new type of gold deposits discovered in China, which possess unique geological characteristics. They are hosted in Taiyangding Group, which is composed of a series of carbonaceous cherts and slates. However, the ore-hosted strata age has been confused because of lacking fossil and dependable data of isotopic age, which is identified by comparison between structure and lithology. The recently tendentious idea about the ore-hosted strata age is the Late Cambrian-Ordovician or the Late Sinian-the Early Cambrian. However, identification of the Archaeocyathus in chert in the lower Taiyangding Group shows that the fossil age ranges from the Early to Middle Cambrian. Combining with Rb-Sr and Sm-Nd isochron ages, the authors conclude that the ore-hosted strata age is the Early Cambrian. Two quartz samples collected from the Qiongmo Au-Se deposit in the western Qinling Mountains were measured by ⁴⁰ Ar/³⁹ Ar fast neutron activation techniques, and the spectra are characterized as being saddle-shaped. The sample measurements show a plateau age of $(71.45\pm0.55)\sim$ $(80, 05\pm 0, 65)$ Ma, a minimum apparent age of $(70, 24\pm 1, 93) \sim (78, 59\pm 2, 85)$ Ma and an isochron age of $(69, 45\pm0, 38) \sim (81, 61\pm0, 55)$ Ma, and the three ages being close to each other, indicating that the ages of the quartz samples so far measured are reliable. The authors suggest that the time of formation of Au-Se ores corresponds to the Late Yanshan period,

Key words: stratabound Au-Se deposit; age of the ore-hosted strata; metallogenic age; western Qinling Mountains

西秦岭南亚带层控金-硒矿床的赋矿地层年代与成矿时代

作者:	刘豕车, 冯杉葭, 刘建明, 郑明平, 李朝阳
作者单位:	刘家军(中国地质大学"岩石圈构造、深部过程及探测技术"教育部重点实验室,北京
	,100083;中国地质大学,地球科学与,资源学院,北京,100083), 冯彩霞(中国科学院,地球化
	学研究所,矿床地球化学重点实验室,贵州,贵阳,550002;中国科学院,研究生院,北京
	,100039), 刘建明(中国科学院,地质与地球物理研究所矿产资源研究重点实验室,北京
	,100029), 郑明华(成都理工大学,地球科学学院,四川,成都,610059), 李朝阳(中国科学
	院,地球化学研究所,矿床地球化学重点实验室,贵州,贵阳,550002)
刊名:	地学前缘 ISTIC PKU
英文刊名:	EARTH SCIENCE FRONTIERS
年,卷(期):	2004, 11(2)
引用次数:	0次

参考文献(31条)

- 1. 郑明华. 周愉锋. 刘建明 喷流型与浊流型层控金矿床 1994
- 2.Liu Jiajun.ZHENG Minghua.Liu Jianming Selenium enrichment in Cambrian stratabound gold deposits in
- the western Qinling Mountains 1997(4)
- 3. Liu Jiajun. ZHENG Minghua. Liu Jianming Geochemistry of the La'erma and Qiongmo Au-Se deposits in
- the western Qinling Mountains, China 2000
- 4. Liu Jiajun. LIU Jianming. Zheng Minghua The Au-Se paragenesis in Cambrian stratabound gold
- deposits, western Qinling Mountains, China 2000(11)
- 5. 刘家军. 刘建明. 周德安 西秦岭降扎地区金、铀矿床成矿年代学研究 1998(3)
- 6. 陈好寿. 同肃. 魏林 成矿作用年代学及同位素地球化学 1994
- 7. 毛裕年. 闵永明 西秦岭南亚带的前寒武系 1990
- 8. 叶发荣. 李亚东. 崔志刚 对西秦岭拉尔玛太阳顶群进一步划分的意见 1993(2)
- 9. 曾允孚 西秦岭太阳顶群硅质岩的岩石学及地球化学特征 [期刊论文] 矿物岩石 1993 (3)
- 10. 董维全. 高计元 西秦岭太阳顶群硅质岩的热水沉积与金的初步富集 1992(z1)
- 11. 刘家军. 郑明华. 刘建明. 周渝峰. 顾雪祥. 张斌 西秦岭寒武系金矿床中硅岩的地质地球化学特征及其沉积环境意
- 义[期刊论文]-岩石学报 1999(1)
- 12. <u>刘家军</u>. <u>刘建明</u>. <u>郑明华</u>. <u>周渝峰</u>. <u>顾雪祥</u>. 张斌. 林丽. <u>周德安</u> <u>利用岩石地球化学特征判断西秦岭寒武系含矿硅岩</u>
 建造的沉积环境[期刊论文]-沉积学报 1998(4)
- 13. <u>刘家军</u>. <u>郑明华</u>. <u>刘建明</u>. <u>林丽</u>. <u>周渝峰</u>. <u>顾雪祥</u>. <u>张斌</u> 西秦岭寒武系硅岩建造喷流沉积作用与矿质聚集</u>[期刊论文]
 高校地质学报 1998(1)
- 14. 毛裕年. 闵永明 西秦岭硅灰泥岩型铀矿 1989
- 15. <u>刘家军</u>. <u>郑明华</u>. <u>刘建明</u>. <u>周渝峰</u>. <u>顾雪祥</u>. <u>张斌</u> 西秦岭大地构造演化与金成矿带的分布[期刊论文]-大地构造与成</u> 矿学 1997(4)
- 16. Ludwig KR Isoplot: A plotting and regression program for radiogenic-isotope data (Ver. 2. 90) 1996 (91)
- 17.YORK D Least squares fitting of a straight line with correlated errors 1969(5)
- 18. 桑海清 石英的40Ar/39Ar定年方法及Ar同位素质谱分析[期刊论文]-质谱学报 1994(2)
- 19. 王安东. 陈瑞君 硅岩的Rb-Sr同位素组成特点及其地质意义 1997(z1)
- 20. 方维萱. 胡瑞忠. 谢桂青. 苏文超. 漆亮 墨江镍金矿床(黄铁矿)硅质岩的成岩成矿时代[期刊论文] 科学通报

2001(10)

- 21. 王银喜. 杨杰东. 陶仙聪 化石、矿物和岩石样品的Sm-Nd同位素实验方法研究及应用 1988(2)
- 22.Hollister L S Metamorphic evidence for rapid (2mm/yr) uplift of a portion of the central gneiss

complex, Coast Mountains 1982

23. 江博明 太古代岩石的定年——方法学和局限性的讨论[期刊论文]-地球化学 1989(2)

24. 林丽 拉尔玛金矿床中生物成矿作用 1994

25. 谭光弼 古生物学简明教程 1983

26. Harrison T M. MCDOUGALL I Excess 40Ar in metamorphic rocks from Broken Hill, New South

Wales:Implications for $40 \mbox{Ar}/39 \mbox{Ar}$ age spectra and the thermal history of the region 1981

27. Zeitler P K. GERALD D F Saddle-shaped 40Ar/3gAr age spectra from young, micro-structurally complex potassium feldspars 1986

28. Lanphere M. DLRYMPLE G B Identification of excess 40Ar by the 40Ar/39 Ar age spectrum technique 1976

 $29.\,Folland$ K A 40Ar/39Ar incremental heating plateaus for biotite with excess argon 1983

30. 李正华. 戴潼谟. 邱华宁 40Ar (40Ar • +40ArE)、39Ar释气特征与过剩氩的甄别及年代学意义 1995(1)

31. <u>刘家军</u>. <u>郑明华</u>. <u>刘建明</u>. <u>周渝峰</u>. <u>顾雪祥</u>. <u>张斌</u> 西秦岭寒武系硅岩建造中金矿床成矿物质来源研究[期刊论文]-矿</u> 床地质 1997 (4)

相似文献(0条)

本文链接: http://d.wanfangdata.com.cn/Periodical_dxqy200402013.aspx

下载时间: 2009年12月21日