化工分析与测试

含钙聚合氯化铝铁产品物相组成与稳定性关系

章兴华¹,龚国洪²,刘世荣²,雷 平³

(1. 成都理工大学地球科学学院,四川成都 610059;2. 中科院贵阳地化所;3. 贵州师范大学理化测试中心)

摘要:用 X 光粉晶衍射分析技术配合扫描电镜(带点能谱)对以矾土水泥和硫酸厂红尘为原料生产的聚合氯 化铝铁的结构进行表征,发现产物中明显存在两相:无定型的铝铁共聚物(PAFC)和铝、铁、钙氢氧化物(氧化物)微 晶。通过对原料、盐酸浸出液及其合成产物、浸出液残渣的 X 衍射分析比较,提出了含钙聚合氯化铝铁中结晶相的 结构主要为铝取代 Ca₄Fe₉O₁₇,铁取代 Ca₃Al₂(OH)₁₂及 CaAl₂Fe₄O₁₀,Ca₂(Al,Fe)₂O₅。这些细微结晶相的存在大大 降低了溶液中 Fe(II)和 Fe(III)离子浓度,从而延缓了酸性溶液中 β – FeOOH 的生成,使得高浓度含钙 PAFC 的稳 定期得以延长。

关键词:X 光粉晶衍射;聚合氯化铝铁;Ca4Fe9O17

中图分类号:TQ124.4 文献标识码:A 文章编号:1006-4990(2004)05-0053-03

Relationship between phase composition of calcium - containing

polyaluminum ferric chloride and its stability

Zhang Xinghua¹, Gong Guohong², Liu Shirong², Lei Ping³

(1. College of Geoscience, Chengdu University of Technology, Sichuan Chengdu 610059, China;

2. Institute of Geochemistry of the Chinese Academy of Science;

3. Physics and Chemistry Analysis Research Center, Guizhou Teachers' University)

Abstract: The morphs of polyaluminum ferric chloride (PAFC) preparation with calcium – containing minerals have been characterized by X – ray diffraction and scanning electron micrograph with energy dispersive spectrometry. There are evidently two phases in PAFC: amorphous hydroxyl polymers of Fe – Al, Ca – Al, Ca – Fe and micro – crystal hydroxide or oxide of Ca – Al, Ca – Fe, Al – Ca – Fe. By comparison of the X – ray diffraction spectra of PAFCCa, calcium – containing minerals, the decomposing liquid in chloride of calcium – containing minerals and non – dissolve matters in chloride solutions, the main morphs in micro – crystal of PAFCCa are put forward: Al substituted for Ca₄ Fe₉ O₁₇ (4CaO · FeO · 4Fe₂O₃), Fe substituted for Ca₃ Al₂ (OH)₁₂ (3CaO · 2FeOOH · 5H₂ O), CaAl₂ Fe₄ O₁₀ (CaO · Al₂O₃ · 2Fe₂O₃), Ca₂(Al,Fe)₂O₅(2CaO · (Al,Fe)₂O₃). There are those micro – crystal morphs what drops greatly the concentration of Fe(III) and Fe(II) in PAFCCa and puts off the formation of β – FeOOH, as a result, the stable period of calcium – containing polyaluminum ferric chloride can be prolonged.

Key words: X - ray diffraction; polyaluminum ferric chloride; Ca₄Fe₉O₁₇

1 实验部分

1.1 仪器及工作条件

D/max 2000 型全自动 X 射线衍射仪, [Cu 靶, 电压 40 kV,电流 20 mA,连续扫描,扫描速度 6 ~ 8(°)/min,扫描范围 2~60(°)]样品研磨至 75 μm。 KYKY - 1000B 型扫描电镜,加速电压 25 kV,样品 研磨成粉,用双面胶贴于铝制样品台上,镀碳膜。 TN5400 型 X 射线能谱仪,25 kV 下采集能谱。

1.2 样品制备

将矾土水泥经酸溶搅拌浸取,保温聚合,冷却分 离得溶液 A;将硫酸厂红尘经酸溶搅拌浸取,冷却分 离得溶液 B;再将 A,B 两种溶液按一定比例和在一 定温度下搅拌共聚得液体 PAFC。该产品为棕黑色 稠状液体,密度 $\rho = 1.23 \text{ kg/dm}^3$,碱化度 B = 43.5%,c(Al + Fe) = 2.0 mol/L,<math>n(Al)/n(Fe) =3:1。三者自然风干后得矾土水泥酸浸出液样,硫 酸厂红尘酸溶浸出液样和本文 PAFC 样。

图2,表1。

- 2 结果与讨论
- 2.1 结果分析

图 1

图1是密封保存两年后制备的 PAFC 样品的扫

a一白色颗粒物

图2 能谱图

表1 含钙 PAFC 中白色颗粒结晶区与黑色胶体区元素成分

含钙 PAFC 的扫描电镜照片

区域		质	101100			
	Al	Si	C1	Ca	Fe	n(AI)/n(Fe)
白色颗粒区	9.10		53.31	12.18	25.4	1:2.8
黑色胶体区	27.21	1.63	52.61	10.41	8.15	3.3:1

用X射线衍射仪分别做矾土水泥、矾土水泥盐

酸浸出液样、矾土水泥酸浸残渣;硫酸厂红尘、硫酸 厂红尘盐酸浸出液样、硫酸厂红尘酸浸残渣;PAFC 样品的 X 光衍射图谱。图谱中各样品结构相由计 算机检索并以矿物 X 光衍射粉晶鉴定数据加以校 正^[1]的结果见表2。

b—黑色胶体区

描电镜照片。可以看出: PAFC 明显分为两相, 白色

颗粒结晶区和黑色胶体区。相应的能谱分析结果见

表 ?	X 米行財团港	些山久样马结构相的检索结果	
72 4	小 兀 1 / 別 団 日	百中百件吅纪怜怡的性系纪未	

14 11	X 光衍射测定数据						24.12.1m
样品	d _{max} (A)	$I_{\rm max}/I_{\rm o}$	$d(\mathbf{A})$	1/I_o	$d(\mathbf{A})$	I/I _o	结构相
矾土水泥	2.972 3	100	2.517 0	30	2.402 5	31	CaAl ₂ O ₄
	2.850 1	69	1.753 4	19	3.064 0	19	Ca ₂ Al ₂ SiO ₇
	2.705 7	27	1.913 3	18	1.560 4	12	CaTiO ₃
	3.509 2	19	2.596 1	14	4.453 5	10	Ca ₃ Al ₁₀ O ₁₈
	4.849 2	19	4.383 8	11	2.167 2	10	Al(OH) ₃
矾土水泥	3.304 4	100	3.257 0	88	2.312 1	85	AlCl ₃ · 6H ₂ O
酸浸出液	2.312 1	85	2.058 0	73	5.211 3	57	Ca ₃ Al ₂ (OH) ₁₂
	2.840 8	79	3.020 0	73	2.126 9	62	$CaCl_2 \cdot 2H_2O$
	2.161 9	65	3.912 7	63	2.798 5	76	CaCl ₂ · 6H ₂ O
矾土水泥	2.696 2	100	1.908 8	53	1.556 6	31	CaTiO ₃
酸浸残渣	7.570 3	84	4.275 2	47	3.055 8	51	$CaSO_4 \cdot 2H_2O$
硫酸厂红尘	2.689 9	98	2.511 6	100	1.690 9	38	Fe ₂ O ₃
	3.3336	68	4.242 8	17	1.815 8	7	SiO ₂
	2.088 8	15	2.567 3	10	1.612 2	15	Al_2O_3
	10.132 2	14	4.471 3	17	2.567 3	10	KAl ₂ [(OH) ₂ (Si,Al) ₄ O ₁₀]
	2.511 6	100	2.953 1	22	4.8387	7	Fe ₃ O ₄
酸浸出液	5.480 3	100	2.128 1	44	4.250 9	17	$FeCl_2 \cdot 2H_2O$
硫酸厂红尘	2.686 8	100	2.506 1	72	1.687 9	39	Fe ₂ O ₃
酸浸残渣	3.323 8	79	4.234 8	16	1.814 5	9	SiO ₂
	2.0796	9	2.558 7	13	1.597 9	12	Al_2O_3
	10.040 3	12	4.453 5	22	2.5587	13	KAl ₂ [(OH) ₂ (Si,Al) ₄ O ₁₀]
合成产品	5.1157	100	4.427 1	31	2.999 6	72	$FeCl_3 \cdot 5H_2O$
PAFC 样	4.8178	89	5.440 1	20	3.492 9	25	$FeCl_3 \cdot 2H_2O$
	3.294 8	78	3.247 7	63	2.310 0	35	AlCl ₃ · 6H ₂ O
	2.801 4	57	5.440 1	20	2.999 6	72	$Ca_4 Fe_9 O_{17}$
	2.832 5	44	3.055 8	57	2.145 5	24	$CaCl_2 \cdot 2H_2O$
	6.029 3	41	3.192 9	23	1.940 0	25	$FeCl_3 \cdot 6H_2O$

54

				续表			
样品							
	$d_{\max}(A)$	$I_{\rm max}/I_{\rm o}$	<i>d</i> (A)	1/I_	$d(\mathbf{A})$	<i>1/1</i> 。	结构相
	2.309 8	35	2.052 7	27	5.115 7	100	$\operatorname{Ca}_{3}\operatorname{Al}_{2}(\operatorname{OH})_{12}$
	2.561 6	33	2.5419	29	3.1929	23	CaAl ₂ Fe ₄ O ₁₀
	4.427 1	31	1.700 2	22	5.1157	100	$Ca_3 Fe_2 (OH)_{12}$
	2.696 2	22	7.019 5	29	1.8199	28	$Ca_2(Al,Fe)_2O_5$

注:部分峰有重叠

2.2 讨论

表 2 说明: 矾土水泥的主要成分是铝酸钙 CaAl₂O₄、硅铝酸二钙 Ca₂Al₂SiO₂、钙钛矿 CaTiO₃; 矾土水泥酸浸残渣的主要成分是钙钛矿 CaTiO₃、石 膏 CaSO₄ · H₂O、少量磁铁矿 Fe₃O₄和刚玉 Al₂O₃。 矾土水泥盐酸浸出液产物的物相结构主要是非晶质 Al, Fe 羟基络合物, 以及未聚合的三氯化铝 (AlCl₃ · 6H₂O)、二氯化钙(CaCl₂ · 2H₂O)。由此可 知,矾土水泥中铝酸钙全溶, 硅铝酸二钙大部分溶 解,钙钛矿、磁铁矿和刚玉不溶。

硫酸厂红尘的主要成分是赤铁矿 Fe_2O_3 以及少 量磁铁矿 Fe_3O_4 、刚玉 Al_2O_3 、石英 SiO_2 、伊利石 $KAl_2[(OH)_2(Si,Al)_4O_{10}]$ 。硫酸厂红尘酸浸残渣主 要成分是赤铁矿 Fe_2O_3 、刚玉 Al_2O_3 、石英 SiO_2 、伊利 石 $KAl_2[(OH)_2(Si,Al)_4O_{10}]$ 。硫酸厂红尘盐酸浸 出液中主要是二氯化铁(FeCl₂ · 2H₂O)、三氯化铁 (FeCl₃ · 2H₂O)。因此,硫酸厂红尘酸浸后赤铁矿 大部分溶解,磁铁矿全溶,刚玉、石英、伊利石不溶。

由于碱化度不很高,合成产物 PAFC 中还有较 多未聚合的三氯化铝(AlCl₃ · 6H₂O)、三氯化铁 (FeCl, · 6H, 0, FeCl, · 2H, 0); 少量氯化钙 (CaCl₂·2H₂O)和非晶质 Al - Fe 羟基络合物。但 结晶相与反应物中的大不相同。主要结晶 相有 Ca₄ Fe₉ O₁₇, Ca₃ Al₂(OH)₁₂; 次要结晶相有 $CaAl_2Fe_4O_{10}, Ca_3Fe_2(OH)_{12}, Ca_2(Al,Fe)_2O_5$ 。与 合成前反应物相比,产品中既有 PAF(Ⅲ)C,也有 PAF(Ⅱ)-C。由于 PAF(Ⅲ)C 中 Fe(Ⅲ)离子周围 的化学环境相同,而 PAF(Ⅱ)C 中 Fe(Ⅱ)离子周围 的空间环境有所差异^[2],这就使得以含钙矿物生产 的 PAFC 产品物相组成更加复杂,形成的结晶相更 多。最明显的特点就是 Ca 分别参与了 Al, Fe 两相 的共聚[Ca₄Fe₉O₁₇, Ca₃Al₂(OH)₁₂],甚至形成 Al, Fe, Ca 3 相 共 聚 产 物 [CaAl₂ Fe₄ O₁₀, $Ca_2(Al,Fe)_2O_5]_{\circ}$

在高 n(Al)/n(Fe) 下 Al(Ⅲ)对 Fe(Ⅲ)的保护 作用^[3]的基础上,在等浓度 Fe,Al 条件下,PAFC 溶 液中大量 Ca 离子的存在必然增加这几种阳离子对 OH⁻的相互竞争。Ca – Fe, Ca – Fe – Al 共聚物的 存在更是使 Fe 转移到微晶相,相当于减少了溶液中 Fe(Ⅲ),Fe(Ⅱ)离子浓度,并分散已形成的 Fe 羟基 络合物使它们难以形成大的聚合物,从而阻碍了在 盐酸介质条件下 PAFC 中 β – FeOOH 结晶的顺利形 成^[4],可较长时间地保持高浓度 PAFC 溶液的稳定。

3 结语

扫描电镜照片和点能谱分析直观证明: PAFC 明显分为两相,微结晶中以铁为主,有部分铝结晶; 非晶相中以铝为主,部分铁、钙分散其中(红外光谱 表明其中铝铁也形成相互取代的羟基络合物);Cl⁻ 均匀分布于两相,以平衡正电荷。X 光衍射分析证 实 Ca 分别参与了 Al, Fe 两相的共聚[Ca₄ Fe₉O₁₇, Ca₃Al₂(OH)₁₂],甚至形成 Al, Fe, Ca 3 相共聚产物 [CaAl₂Fe₄O₁₀, Ca₂(Al, Fe)₂O₅]。通过分析对比提 出了在大量聚合铝存在状态下,高浓度含钙 PAFC 溶液能长期稳定的主要原因除了高 n(Al)/n(Fe)Al(II)对 Fe(II)的保护作用外,还有铝取代 Ca₄Fe₉O₁₇等相的存在。它们的共同作用大大延缓 了酸性溶液中 β – FeOOH 的生成,保持了高浓度含 钙 PAFC 的稳定。

参考文献:

- [1] 张月明. 矿物 X 射线粉晶鉴定手册 [M]. 北京:科学出版社, 1978.72,80
- [2] 吴钧,周志洁. 聚碱式氯化铝铁的结构及应用研究[J]. 华东化 工学院学报,1992,18(1):119-123
- [3] 章兴华. 聚合氯化铝铁性质及其应用研究[D]. 成都:四川大 学,2000
- [4] Atkinson R J. Crystal nucleation and growth in hydralyzing iron
 (Ⅲ) chloride solutions[J]. Clays and Clay Minerals, 1977, 25:
 49-56

收稿日期:2004-03-25 作者简介:章兴华(1954--),男,博士生,中级职称。 联系方式:0851-5827370