文章编号:0258-7106 (2004) 01-0052-09

内蒙古孟恩陶勒盖银铅锌铟矿床成因研究

朱笑青 张 乾 何玉良 邵树勋

(中国科学院地球化学研究所,矿床地球化学重点实验室,贵州 贵阳 550002)

摘 要 文章从地质特征及地球化学特征方面论证了孟恩陶勒盖矿床的成因。地质特征显示该矿床的形成与 花岗岩之间不存在成因联系,矿床相对于岩浆岩围岩是后成的,花岗岩及断裂构造只是为矿床提供了储存空间。矿 床地球化学特征显示该矿床的成因与可能位于深部的燕山期岩浆活动有关,成矿元素及硫主要来自岩浆,成矿流体 以岩浆水为主。因此该矿床属于岩浆热液型多金属矿床。

关键词 地质学 地质特征 地球化学特征 矿床成因 富铟多金属矿床 孟恩陶勒盖 内蒙古 中图分类号:P618.4;P618.82 文献标识码:A

Groves 等(Groves et al., 1998;2000)、Goldfarb 等(Goldfarb et al., 1998;2001)认为产于岩浆岩体 内部由断裂构造控制的金矿床属于造山型矿床,成 矿物质来源复杂,成矿与造山作用同步。但对于与 造山带型金矿床产状类似的铅锌多金属矿床的讨论 和认识很少。从 20 世纪 90 年代开始,王秀璋等 (1992)、Wang 等(Wang et al., 1998)、张乾等 (1996;2000)针对这类矿床的后成特点,提出了火成 改造成矿的成因观点。内蒙古孟恩陶勒盖银铅锌铟 矿床正是一个产于花岗岩基中心部位断裂构造中的 矿床。那么,该矿床究竟是属于火成改造成因矿床 还是造山带型矿床,是本文所要回答的主要问题。

1 矿床地质特征

1.1 区域地质特征

孟恩陶勒盖矿床位于内蒙古科右中旗西北约20 km 处, 西距杜尔基火车站15 km。区域上, 西北为 内蒙古东部大兴安岭隆起带, 南东为松辽沉降带, 矿 区位于这两个构造单元的接壤部位大兴安岭隆起带 一侧。自海西期至燕山期, 大兴安岭隆起带发生大 规模的岩浆侵入活动(内蒙古地质矿产局, 1991), 形 成构造-岩浆活动带, 与之伴随的成矿作用广泛发 育。尤其在该构造-岩浆带的中部, 形成了一个 AuAg-Cu-Pb-Zn-Sn-Fe 共存的大型多金属矿集区,也是中国铟富集区之一(Zhang et al., 1998),除孟恩陶 勒盖矿床外,莲花山、布敦化、闹牛山、敖脑达巴、浩 布高等矿床含铟都很高(盛继福等,1999)。

孟恩陶勒盖矿床直接产出于孟恩花岗岩基中心 部位的一组东西向断裂中。该花岗岩基东西长 30 km,南北宽18 km,面积>400 km²,北部和东部侵入 于下二叠统地层中,西被燕山期杜尔基花岗岩侵入, 南被中生代火山岩覆盖(图1)。岩基主要由黑云母 斜长花岗岩和白云母二长花岗岩组成。黑云母斜长 花岗岩为孟恩花岗岩体的主体,黑云母 K-Ar 年龄为 281 Ma[●], Rb-Sr 等时线年龄为 246.79 Ma(盛继福 等,1999),属铝过饱和系列,暗色矿物为黑云母(φ_B 8%~15%),长石类矿物为斜长石(45%~55%),石 英约 30%~40%。白云母二长花岗岩(白云母约 10%~15%、斜长石 35%~40%、正长石<15%、石 英35%~40%)侵入于黑云母斜长花岗岩中,白云母 K-Ar 年龄为 212~251 Ma[●]。两种斜长花岗岩是不 同期次的侵入产物(图 2),它们都含有较高的 Ag、 Ga、Ge、In、Sn 等成矿元素,并且随着岩石遭受蚀变, SiO₂、Na₂O减少, FeO、CaO、MnO、K₂O、Pb、Zn、Ag、 Sn、In 等增高(张乾等, 2002)。另外有少量煌斑岩 脉、闪长玢岩脉、辉绿岩脉等晚期岩脉沿 NW 向和 NNW向贯入并穿切两种花岗岩和矿体,它们的形成

^{*} 本文得到国家自然科学基金项目(批准号:40172037)的资助

第一作者简介 朱笑青,女,1955年生,副研究员,从事矿床地球化学研究。

收稿日期 2003-09-16;改回日期 2003-11-17。李 岩编辑。

❶ 吉林省地质局第十地质队,1978,吉林省科尔沁右翼中旗孟恩陶勒盖矿区银铅锌矿地质勘探总结报告,

第23卷 第1期

图 1 孟恩陶勒盖矿床区域地质图(据突泉幅 1:20 万矿产图修编) 1-第四系; 2-白垩纪流纹岩;3-侏罗纪火山碎屑岩;4-二叠纪砂岩;5-燕山期黑云母花岗岩;6-孟恩陶勒盖花岗岩; 7-断层;8-孟恩陶勒盖矿床;9-小矿点

Fig. 1 Regional geological sketch map of the Meng'entaolegai polymetallic deposit

1—Quaternary; 2—Cretaceous rhyolite; 3—Jurassic pyroclastic rock; 4—Permian sedimentary rock; 5—Yanshanian biotite granite; 6—Meng'entaolegai granite; 7—Fault; 8—Meng'entaolegai deposit; 9—Small ore spot

1—Biotite-plagioclase granite; 2—Muscovite-plagioclase granite; 3— Lamprophyre vein; 4—Diorite vein; 5—Fault; 6—Orebody and its serial number

明显晚于花岗岩和矿床。杜尔基燕山期花岗岩呈岩 基状,岩性为黑云母钾长花岗岩,位于矿区西部,距 矿区 15 km,在空间上与孟恩陶勒盖矿床无关,岩体 内部未见矿化。

1.2 矿床地质特征

据矿山生产资料,该矿床的主要控矿构造为一 组沿 EW 向或近 EW 向展布、向东收敛的脆性断裂 (图 1、图 2),断面向北倾斜,倾角 60~80°,断续分布 在东西大于 6 km,南北宽 200~1 000 m 的范围内。 该组断裂切穿了较晚形成的白云母二长花岗岩,说 明断裂发生于主岩体成岩之后。该组断裂在矿区西 部深,向东变浅,但都未到达地表,矿体沿其断续充 填,在不同深度上形成不同元素组合的矿体。矿区 另一组断裂呈 NW 或 NNW 向展布,规模较小,切穿 所有 EW 向断裂及矿体,属于成矿后断裂(图 2)。

全矿区共有 40 多个矿体,分布于西部、中部和 东部 3 个矿段,主矿体 9 条,单个矿体长 400~2 000 m,较大的分枝矿体 9 个,长度为数百米,零星小矿体 26 个。矿体均呈脉状,产状与断裂构造一致。矿区 西段(深部)以 V₈ 矿体为主,矿化以 Zn 为主,含少量 Cu,主要金属矿物为闪锌矿、黄铁矿及少量黄铜矿。 中段以 V₁ 矿体为主,矿化以 Zn-Pb 为主,富含 Ag, 主要金属矿物为闪锌矿和方铅矿。东段(浅部)以 V₁₁矿体为主,矿化以 Pb-Ag 矿体为主,主要金属矿 物为方铅矿、闪锌矿,矿体中富银,存在大量银矿物, 全矿区近2000 t银主要产于中段和东段。

1.3 矿石、矿物及围岩蚀变

孟恩陶勒盖矿床的矿石以块状矿石为主,组成 矿石的金属矿物颗粒粗大,方铅矿、闪锌矿的直径都 在3mm以上。矿石成分在西部以锌铜为主,中部 以锌铅为主,东部则以铅银为主。该矿床存在以下 几种矿石结构构造:①自形-半自形-他形粒状结构, 块状、浸染状构造,反映矿石形成于热液结晶作用; ②脉状、网脉状构造,反映热液沿断裂、裂隙充填;③ 交代熔蚀结构、交代残余结构、文象结构,条带状构 造、浸染状构造,反映热液交代成矿序列;④有些闪 锌矿中存在少量黄铜矿的乳滴状结构,细脉、网脉充 填构造,反映了温度降低的成矿过程;⑤角砾状构 造、碎裂构造,反映了成矿发生在不断变化的动力环 境中。

矿物的交代顺序大致为闪锌矿交代黄铁矿、黄 铜矿,方铅矿交代闪锌矿,银矿物可以交代闪锌矿、 方铅矿,银矿物细脉常沿贯穿所有其他矿物的裂隙 充填,说明银矿物形成最晚。

孟恩陶勒盖矿床的矿物组成较为复杂,共发现 了近 30 种矿物(战新志等,1999)。金属矿物以方铅 矿、闪锌矿、黄铜矿、黄铁矿为主,还存在毒砂、磁黄 铁矿、黝锡矿、锡石等次要矿物。已发现的银矿物主 要有自然银、银金矿、螺硫银矿、深红银矿、淡红银 矿、锑银矿、黑硫银锑矿、火硫锑银矿、脆银矿、辉锑 铅银矿及银黝铜矿等。非金属矿物以石英为主,少 量方解石、锰菱铁矿、绢云母及绿泥石。此外,矿体 浅部还见有菱锌矿、软锰矿、褐铁矿、孔雀石、黄钾铁 钒等。

围岩蚀变主要有硅化、绢云母化、绿泥石化、碳酸盐化和锰碳酸盐化。蚀变主要沿断裂构造发生, 一般限于断裂两侧 1~15 m 的范围内。绿泥石化主要见于西部矿段,硅化则存在于整个矿床。绢云母 化蚀变作用使花岗岩 Na₂O 含量降低,K₂O 含量升 高,锰碳酸盐化使岩石 MnO 含量升高,绿泥石化则 使岩石的 FeO 含量升高。当硅化不明显时,蚀变作 用使花岗岩 SiO₂ 含量明显降低(张乾等,2002)。

该矿床除主元素 Pb(16 万吨)、Zn(30 万吨)、Ag (2 000 t)外,还伴生有 Cd 1 800 t(矿石 w_{Cd} 为 0.24%)、In 400 t(矿石 w_{In} 为 118×10⁻⁶,张乾等, 2003)、Sn 3 000 t(矿石 w_{Sn} 为 220×10⁻⁶)。

Ag 主要以银矿物形式存在,约占矿床银总储量

的 90%,已发现 11 种银矿物,最常见的银矿物为深 红银矿、螺硫银矿、自然银和黑硫锑银矿,银矿物粒 度较大,粒径一般为 0.05~0.5 mm,有时可见银矿 物细脉沿方铅矿-闪锌矿矿石中的裂隙充填,细脉长 度达 10 cm,宽度可达 0.5~1 cm。Sn 主要以锡石和 黝锡矿存在于西部和中部矿段中,东部矿段中锡矿 物较少,锡含量较低。Cd、In、Ga 主要存在于闪锌矿 中,未发现它们的独立矿物(战新志等,1999)。由西 向东,矿石中 Sn 和 In 减少,Ag 和 Ga 增高。

2 矿床地球化学特征

2.1 硫同位素组成及硫的来源

据 24 个主成矿期硫化物样品的分析结果(表 1),孟恩陶勒盖矿床具有均一的硫同位素组成,总的 δ^{34} S 值变化于 $-1.7\% \sim +4.6\%$ 之间,极差 6.3,平 均 1.4%。

从图3可以看出,不同矿物的834S值从大到小

表 1 孟恩陶勒盖矿床硫同位素组成

Table 1 Sulfur isotopic composition of the Meng'

entaolegai deposit

样号	矿氐	矿石类型	矿物	δ ³⁴ S _{CDT} /‰
M2	下脉群,8号矿体	方铅矿矿石	方铅矿	0.7
M4	下脉群,8号矿体	方铅矿矿石	闪锌矿	1.9
M5	下脉群,8号矿体	铅锌矿石	闪锌矿	-0.8
M6	下脉群,8号矿体	闪锌矿矿石	闪锌矿	1.3
M8	下脉群,8号矿体	闪锌矿矿石	方铅矿	0.1
M9	下脉群,8号矿体	铅锌矿石	方铅矿	-0.2
M12	下脉群,8号矿体	铅锌矿石	方铅矿	-1.6
M14	下脉群,8号矿体	方铅矿矿石	黄铁矿	2.5
M15	下脉群,8号矿体	闪锌矿矿石	黄铁矿	3.1
M21	中脉群,1 号矿体	闪锌矿矿石	闪锌矿	2.9
M22	中脉群,1 号矿体	铅锌矿石	方铅矿	0.2
M25	中脉群,1 号矿体	铅锌矿石	闪锌矿	2.4
M28	中脉群,1 号矿体	闪锌矿矿石	黄铁矿	3.3
M29	中脉群,1 号矿体	方铅矿矿石	闪锌矿	0.3
M30	中脉群,1 号矿体	方铅矿矿石	方铅矿	-0.1
M31	中脉群.1 号矿体	铅锌矿石	黄铁矿	2.2
M32	上脉群,11 号矿体	铅锌矿石	闪锌矿	2.3
M33	上脉群,11 号矿体	闪锌矿矿石	方铅矿	1.5
M34	上脉群,11 号矿体	铅锌矿石	黄铁矿	4.6
M35	上脉群,11 号矿体	铅锌矿石	闪锌矿	1.2
M37	上脉群,11 号矿体	铅锌矿石	黄铁矿	1.3
M39	上脉群,11 号矿体	铅锌矿石	方铅矿	0.9
M41	上脉群,11 号矿体	方铅矿矿石	闪锌矿	1.8
M42	上脉群.11 号矿体	方铅矿矿石	方铅矿	1.2

样品处理由冯家毅高工完成,测试在中国科学院广州地球化学研 究所 MAT-250 质谱仪上完成;误差为 0.2‰。

图 3 孟恩陶勒盖矿床的硫同位素组成

Fig. 3 Sulfur isotopic composition of the Meng'entaolegi deposit

的变化顺序为:黄铁矿→闪锌矿→方铅矿。可以看 出,从方铅矿→闪锌矿→黄铁矿,重硫略有增加,这 种变化说明硫同位素达到了平衡。

从不同矿体来看,该矿床从西到东,重硫略有增加,但增加的幅度很小。硫同位素组成的这种变化, 很可能是从西向东(8号矿体→1号矿体→11号矿 体),由于成矿的物理化学条件发生变化(如成矿温 度逐渐降低)而引起硫同位素分馏的结果。从硫同 位素组成直方图(图4)可以看出,样品的 δ³⁴S 值分 布很集中,呈典型的塔式分布,大部分样品的 δ³⁴S 值 为 0~3.0‰,峰值位于 1.0‰~2.0‰之间。

由于矿床内所有硫化物的 δ³⁴S 值都接近零,而 该矿床又不存在富重硫的硫酸盐类矿物,因此可以 直接利用硫化物的硫同位素组成近似地代替成矿流 体的原始硫同位素组成。从其均一的、接近零值的 δ³⁴S 值可以认为,该矿床的硫来自岩浆。

图 4 孟恩陶勒盖矿床硫同位素直方图 Fig. 4 Sulfur isotopic diagram of the Meng'entaolegi deposit

2.2 铅同位素组成及铅的来源

为了查明该矿床铅的来源,笔者对矿石及有关 的岩浆岩进行了铅同位素组成的测试,测定结果见 表 2。

2.2.1 海西期花岗岩的铅同位素组成

从表2可以看出,虽然黑云母斜长花岗岩和白 云母二长花岗岩的形成有先有后,但两者具有相同 的铅同位素组成,并且长石铅同位素比值明显低于 全岩铅同位素比值。一般来说,全岩铅同位素比值 的增高是由于放射性元素衰变产生的放射性成因铅 所致,而长石铅同位素组成的一致性则可能预示着 两类花岗岩是同源岩浆不同期次侵入的产物。

在 Zartman 等(Zartman et al., 1981)的铅演化 图(图 5)中,长石样品铅同位素比值分布集中,位于 造山带铅演化线下方,说明海西期花岗岩铅具有一 定的幔源成分,但受到了地壳组分的混染。

2.2.2 燕山期花岗岩的铅同位素组成

燕山期花岗岩体位于矿区西部外围,距矿区 15 km,称为杜尔基花岗岩。与孟恩花岗岩不同,杜尔 基岩体以黑云母钾长花岗岩为主,长石以正长石为 主,K₂O含量明显大于 Na₂O含量,岩石中成矿元素 含量与孟恩花岗岩接近,但铅主要存在于正长石中 (正长石含 w_{Pb} 一般在 50×10⁻⁶~130×10⁻⁶),有趣 的是,正长石蚀变后,Pb含量都有不同程度的降低, 蚀变越强,降低的幅度越大(Zhang et al., 2003)。

一般来说,位于 15 km 以外的花岗岩提供成矿 物质的可能性不大。但是该矿床控矿断层西部被掩 埋,是否与燕山期岩体相通不得而知。因此,笔者选 择了 3 个正长石和 1 个全岩样品分析了铅同位素组 成,结果如表 2 所示。尽管样品数偏少,但也可以看 出铅同位素组成的变化情况。3 个长石样品具有比 全岩低得多的铅同位素比值。无论是长石还是全 岩,铅同位素比值都略高于孟恩海西期花岗岩,但从 整体来看,它们具有类似的同位素组成(图 5)。

2.2.3 矿石铅同位素组成及铅的来源

矿石铅同位素组成的测定对象为不同类型矿石 中的方铅矿,分析结果见表 2。

13 个方铅矿样品具有非常均一的铅同位素组成。从图 5 可以看出,所有方铅矿样品都位于上地 幔铅演化线的端点附近,具有地幔铅同位素组成的 特点。

对比矿石与花岗岩长石的铅同位素组成可以发现,方铅矿3组铅同位素比值明显低于海西期和燕

和"	床	抛	质
њу	<i>v</i> 1	ᄱ	<u>//</u>

表 2 孟恩陶勒盖矿床的铅同位素组成

2004 年

维普资讯 http://www.cqvip.com

	Table 2 Lead isotopic composition of the Meng'entaolegai deposit						
类 型	样品号	岩 性	采样位置	测试对象	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb
燕山期							
	M-44	富钾黑云母花岗岩	杜尔基火车站	正长石	18.742(4)	15.588(3)	38.858(5)
	M-45	富钾黑云母花岗岩	杜尔基火车站	正长石	18.702(3)	15.557(2)	38.712(6)
	M-46	富钾黑 云母花岗岩	杜尔基西山采石场	正长石	18.679(3)	15.571(3)	38.905(5)
	M-47	富钾黑云母花岗岩	杜尔基西山采石场	全 岩	19.445(6)	15.607(5)	38.932(9)
海西期							
	M-10	黑云母斜长花岗岩	15 线 1 号脉远矿围岩	斜长石	18.491(4)	15.537(2)	38.077(5)
	M-18	黑云母斜长花岗岩	矿区北部白查干矿段	斜长石	18.593(4)	15.567(3)	38.395(5)
	M-18-2	黑云母斜长花岗岩	矿区北部白查干矿段	斜长石	18.518(3)	15.518(2)	38.143(6)
	M-16	白云母斜长花岗岩	79 线 11 号脉围岩	斜长石	18.605(3)	15.550(2)	38.145(5)
	M-11	白云母斜长花岗岩	15 线 1 号脉远矿围岩	斜长石	18.497(2)	15.553(2)	38.173(4)
	M-40	白云母斜长花岗岩	B5 中段 1 号脉群围岩	斜长石	18.460(4)	15.514(3)	38.003(5)
	M-10	黑云母斜长花岗岩	15 线 1 号脉远矿围岩	全 岩	19.197(5)	15.588(4)	38.453(7)
	M-40	白云母斜长花岗岩	B5 中段 1 号脉群围岩	全 岩	19.309(6)	15.575(4)	38.462(8)
矿石							
	M-2	粗粒方铅矿矿石	下脉群 96 线 8 号脉	方铅矿	18.137(2)	15.421(1)	37.713(4)
	M-3	粗粒铅锌矿石	下脉群 100 线 8 号脉	方铅矿	18.203(3)	15.488(2)	37.878(4)
	M-12	粗粒方铅矿矿石	上脉群 47 线 11 号脉	方铅矿	18.308(3)	15.564(2)	38.116(5)
	M-14	铅锌矿石	上脉群 63 线 11 号脉	方铅矿	18.216(2)	15.461(2)	37.845(3)
	M-33	块状闪锌矿矿石	1号脉群,135中段	方铅矿	18.242(2)	15.522(2)	37.925(3)
	M-34	含菱铁矿的铅锌矿石	1 号脉群,135 中段	方铅矿	18.131(3)	15.437(2)	37.690(4)
	M-36	含铜锌矿石	1号脉群,135中段	方铅矿	18.155(4)	15.430(3)	37.710(5)
	M-41	细铅锌矿石	B5 中段1号脉群围岩	方铅矿	18.283(2)	15.540(2)	37.945(5)
	M-43	黄铜矿闪锌矿矿石	B5 中段1号脉群围岩	方铅矿	18.239(2)	15.498(2)	37.892(4)
	M-19	细粒方铅矿石	中脉群,1号矿体	方铅矿	18.191(3)	15.467(3)	38.109(5)
	M-21	船铎矿石	中脉群,1号矿体	方铅矿	18.251(3)	15.440(2)	37.718(5)
	M-24	高锌矿石 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	中脉群,1号矿体	方铅矿	18.224(2)	15.429(2)	37.731(4)
	M-28	花岗岩中闪锌矿矿脉	中脉群,1 号矿体	方铅矿	18.179(2)	15.452(2)	37.824(4)

样品处理由中国科学院地球化学研究所彭建华高级工程师完成,在中国科学院地质与地球物理研究所测试,仪器型号:MAT-261;括号内的 数字为 2*a*。

图 5 孟恩陶勒盖矿床铅同位素组成 铅演化线据 Zartman 等(Zartman et al., 1981)。M—上地幔铅; L—下地壳;O—造山带铅;U—上地壳铅 Fig. 5 Lead isotopic composition of Meng'entaolegai deposit lead evolutionary lines based on data by Zartman et al., (1981). M—Upper mantle lead; L—Lower crust lead; O—Orogenic lead; U—Upper crust lead

山期花岗岩长石的该比值。经 ICP-MS 分析,所有 长石样品的 U、Th 含量均低于 0.1×10⁻⁶的检出限. 说明长石形成后铅同位素组成并未受放射成因铅的 影响,可以代表长石结晶时岩浆的铅同位素组成。 由此不难看出,矿石铅既不是由海西期岩浆提供的, 也不是由远离矿体的燕山中期的杜尔基花岗岩浆提 供的。在地质上,以下几点也不支持孟恩花岗岩浆 提供铅:①矿体由花岗岩基中心部位的断裂控制,因 此判断,成矿明显晚于赋矿主岩的成岩时代。张炯 飞等(2003)利用 Ar-Ar 法测得了该矿床云英岩化阶 段形成的白云母 179.0 Ma 的坪年龄和 182.3 Ma 的 等时线年龄,该年龄不仅可作为该矿床的成矿年龄, 同时也表示该区在早侏罗世—中侏罗世时存在一次 重要的构造-岩浆-热液成矿事件。据张炯飞等 (2003)的研究,该矿床的形成比区内中生代火山岩 还要早16 Ma,同时区内有不少矿床(如台布呆铜 矿、白音诺铅锌矿、布敦化铜矿等)的成矿时代都在 166~177 Ma之间, 孟恩陶勒盖矿床的成矿年龄略

早于这一年龄段,但也可以看出,它们之间的差别不 大,都可以作为该区燕山早期一次重要的岩浆-热液 成矿事件的产物;②岩浆热液矿体一般位于岩体靠 顶部边缘部位或接触带部位,甚至进入围岩中,岩体 中心部位很难形成同期热液矿床;③形成铅锌多金 属矿床的岩浆岩绝大多数为小岩体,而孟恩岩体出 露面积达 400 km² 以上。

王秀璋等(1992)、张乾(1996)曾认为产于岩浆 岩体内部的矿床有可能是岩浆岩经后期改造形成 的。那么,孟恩陶勒盖矿床是否就是这种改造型矿 床呢?形成岩浆岩型改造矿床的前提条件是成矿物 质来自已固结的岩浆岩,一般通过淋滤溶解等方式 进入成矿流体。在淋滤条件下,放射成因铅最易进 入溶液(Andrew et al., 1990; Nie, 1994),林尔为等 (1985)的实验研究结果显示,岩石中淋滤出来的铅 比全岩本身具有更高的铅同位素比值。由此判断, 该矿床的铅也不是由成岩后的花岗岩所提供的。从 花岗岩蚀变后铅含量的明显增高(张乾等,2002)可 以推测,成矿流体带来的铅进入了矿体附近的花岗 岩。

从方铅矿在图 5 中位于上地幔铅演化线附近的

分布特点判断,矿石铅有来自上地幔的可能。矿区 存在不同期次的煌斑岩脉、辉绿岩脉和闪长岩脉,有 些切割矿体,说明其形成晚于矿体的形成,有些略早 于或与矿体同时形成(被矿化),这些岩脉的存在说 明海西期孟恩花岗岩形成之后,矿区发生过幔源岩 浆活动,大规模的幔源岩浆岩可能隐伏于深部,为该 矿床的形成提供了成矿物质。

为查明矿石铅是否来自区域及深部的基底变质 岩,笔者将包括内蒙古中、东部地区在内的华北地台 北缘太古代-古元古代和中元古代基底变质岩的铅 同位素组成数据(笔者尚未发表的 50 多个岩石样品 的铅同位素资料)与该矿床对比(图 6),从对比结果 不难看出,该矿床均一的铅同位素组成很难与比值 低得多且分散性很大的基底岩石铅相对应,也就是 说,矿石铅不大可能来自基底变质岩。这也从矿质 来源上排除了该矿床属于造山带型矿床的可能性。

2.3 成矿流体的氢、氧同位素组成及流体来源

显微镜鉴定发现,在一些浅色闪锌矿中存在大量的原生流体包裹体。因此,笔者利用硫化物矿物中的流体包裹体水直接测定了成矿流体的氢、氧同位素组成,测定结果见表 3。

Fig. 6 A lead isotopic comparison of the Meng'entaoleigai deposit with the basement rocks of the region (The source of the lead evolutionare lines as for Fig. 5)

Table 3 H,O isotopic compositions of the Meng'entaolegai deposit					
 样号	矿段	矿石类型	矿物	δD _{SMOW} /‰	δ ¹⁸ O _{* -SMOW} /%
M6	下脉群,8号矿体	闪锌矿矿石	闪锌矿	- 64	7.2
M15	下脉群,8号矿体	闪锌矿矿石	黄铁矿	- 53	6.1
M23	中脉群,1 号矿体	铅锌矿石	闪锌矿	- 60	7.9
M25	中脉群,1 号矿体	铅锌矿石	闪锌矿	- 62	5.8
M33	上脉群,11号矿体	闪锌矿矿石	闪锌矿	67	4.8

表 3 孟恩陶勒盖矿床成矿流体的 H,O 同位素组成

分析单位:桂林冶金地质研究院;仪器型号:MAT-252;分析误差:0.2‰。

尽管样品较少,但 5 个样品分别代表了从西到 东的整个矿床,由于采用硫化物矿物直接测定,测定 结果就是流体包裹体中流体的氦、氧同位素组成(已 用爆裂法除去后期次生的低于 200℃的流体包裹 体)。可以看出, dD 值为 - 52.8‰ ~ -66.9‰, d¹⁸O 分布在 4.8‰ ~ 7.9‰之间,除东部矿体闪锌矿中流 体包裹体的 d¹⁸O 值较低外,其余均分布于 6‰ ~ 8‰ 之间。在 H-O 同位素组成图中(图 7),4 个样品都在 原生岩浆水范围内,只有东部矿段的一个样品位于 原生岩浆水范围外,但偏离很小。由此不难看出,形 成该矿床的成矿流体主要来自岩浆作用。位于岩浆 水范围以外的一样品采自东矿段 11 号矿体,尽管对 利用图 7 判断成矿流体来源存在不少疑虑,但是笔 者认为,对像孟恩陶勒盖矿床这样的氦、氧同位素组 成,用该图判断流体来源还是可信的。

2.4 矿物流体包裹体及其成矿温度

孟恩陶勒盖矿床矿物中的流体包裹体可以分为 两个期次,其一以主成矿阶段形成的石英和闪锌矿 为代表,流体包裹体形态较为规则,以圆形、椭圆形 为主,长轴长 3~25 μm,以气液两相包裹体为主,个 别可见含子矿物包裹体;其二为成矿后另一次热液 活动所形成的流体包裹体,沿裂隙产出,呈线状排 列,这种包裹体一般非常细小,长轴长都在 3~5 μm 以下,以纯液体包裹体为主。本文只对流体包裹体 进行了均一温度测定。结果显示,在主成矿阶段,西 段矿体形成温度为 270~350℃,中段矿体为 240~ 330℃,东段矿体为 180~250℃。次生流体包裹体 中个别较大的气液包裹体均一温度为130~170℃,

图 7 孟恩陶勒盖矿床成矿流体的氢氧同位素组成 底图据 Shepperd (1979)

明显低于主成矿温度。根据矿物和元素分布及成矿 温度西高东低的特点判断,成矿流体是从西(深部) 向东(浅部)运移的。

由于目前尚未对成矿流体进行更多的研究,因此,有些成矿物理化学参数还无法获得。仅从成矿 温度来看,该矿床是一个典型的中温热液脉状多金 属硫化物矿床。

3 矿床成因讨论

造山型金矿床的特点是:① 矿床产于变形的中 地壳变质块体中;② 成矿物质来源通常是复杂的; ③ 赋矿岩石以花岗闪长质岩石为主;④ 流体的形成 及运移与造山作用间的热事件有关;⑤ 矿床的形成 与造山作用是同步的。孟恩陶勒盖矿床与造山型金 矿相比,存在以下明显的差别:① 成矿元素组合不 同,除主元素 Ag、Pb、Zn、In 外,还伴生工业可利用的 Sn、Cu、Ga、Cd,但不存在 Au。西部矿段 Sn-Cu-Zn-In,中部矿段 Sn-Zn-Pb-Ag-In,东部矿段 Pb-Zn-Ag构 成了连续的从高温到中低温的元素组合,与造山带 型金矿具有明显差异;② 成矿元素的来源是单一 的,虽然成矿元素并非来自赋矿的海西期花岗岩,但 仍然属于单一的岩浆来源;③ 成矿流体主要为岩浆 水。因此,笔者认为,该矿床不属于造山型矿床。

改造型矿床的显著特点是,成矿物质来源于被 改造的赋矿岩石或地层甚至基底,成矿流体的来源 也是多种多样的,既可以是大气降水,也可以是建造 水等,但大多数情况下是多种来源流体的混合。而 孟恩陶勒盖矿床的成矿流体以岩浆水为主。但目前 还不能肯定究竟是哪一期岩浆作用提供了成矿流 体,远在矿区外的燕山期岩浆作用、矿区内与 NW 向 脉岩有关的岩浆作用及岩体外围的火山作用都有这 种可能。可以确定的是,与赋矿的主岩体有关的岩 浆提供成矿流体的可能性不大,因为从地质特征判 断,成矿明显晚于主岩体的形成。成矿物质中的硫 属于典型的岩浆硫。铅的来源与地表可见的岩浆活 动及基底变质岩无关,其低放射成因铅及低的铅同 位素比值显示其来源更不可能是区内沉积岩。与华 北地央北缘上地幔铅(张乾,1994)相比,该矿床的铅 具有上地幔铅的特点,结合矿床地质特征,判断矿石 铅是由地幔提供的,而提供铅的幔源岩浆岩没有在 地表出露,判断其可能晚于赋矿主岩体侵位于深部。 因此,该矿床也不具备赋矿的岩浆岩经改造所形成

的特点,即不属于改造成因矿床。

至此,笔者可以简单地描述该矿床的形成机理: 海西期花岗岩基形成后,燕山早期(约179~182 Ma,张炯飞等,2003)由深部岩浆作用分异出的含矿 流体沿断裂构造上升,当压力减低到使流体无法再 上升时,含矿流体即在海西期花岗岩中的东西向断 裂构造中降温、减压,最终使金属元素发生沉淀,形 成孟恩陶勒盖矿床。因此,该矿床属于一种异地型 岩浆热液矿床(即矿床与成矿母岩分离)。

4 结 论

(1)产于海西期花岗岩体中心部位断裂构造中的孟恩陶勒盖银铅锌铟多金属矿床的地质特征显示,其成矿明显晚于赋矿的孟恩陶勒盖花岗岩。除成矿元素不同外,该矿床与造山带型金矿及火成改造型金-银矿床具有相似的地质产状。

(2)硫同位素组成显示出该矿床的硫来自岩 浆;铅同位素组成显示铅的来源单一,既不是由海西 期花岗岩及矿区西部的燕山期花岗岩提供的,也不 是来自古老变质基底,而是来自燕山早期的岩浆作 用;成矿流体以岩浆水为主。矿物流体包裹体均一 温度显示矿床形成于中-高温环境。

(3) 矿床地质特征及地球化学特征表明,该矿 床既不是造山带型矿床,也不是花岗岩改造形成的 改造型矿床,而是一个远离成矿母岩的岩浆热液型 多金属硫化物矿床,其成矿母岩可能位于深部,未出 露地表。在成矿过程中,侵入于深部的岩浆首先分 异出含矿流体,高温高压的含矿流体沿断裂构造上 升,在海西期花岗岩基内的断裂构造中沉淀成矿。

References

- Andrew W M, Pablo M, Anne P L, et al. 1990. Lead isotope provinces of the Central Andes inferred from ores and crustal rocks[J]. Econ. Geol., 85(8): 1857~1880.
- Geology and Mineral Resource Bureau of Inner Mongolia Autonomous Region. 1991. Regional Geology of Inner Mongolia Autonomous Region [M]. Beijing: Geol. Pub. House. 351~499 (in Chinese).
- Goldfarb R J, Groves D I and Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis [J]. Ore Geol. Rev., 18: 1~75.
- Goldfarb R J, Phillips G N and Nokleberg W J. 1998. Tectonic setting of synorogenic gold deposits of the Pacific Rim [J]. Ore Geol. Rev., 13: 185~218.
- Groves D I, Goldfarb R J, Gebre-Mariam M, et al. 1998. Orogenic

gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types [J]. Ore Geol. Rev., $13:7 \sim 27$.

- Groves D I, Goldfarb R J, Knox-Robinson C M, et al. 2000. Late-kinematic timing of orogenic gold deposits and significance for computerbased exploration techniques with emphasis on the Yilgarn Block, Western Australia [J]. Ore Geol. Rev., 17: 1~38.
- Lin E W and Guo Y J. 1985. Study of the lead isotopic compositions of the gold deposit centralized district in east Hebei Province [J]. J. Changchun Univ. Sci. Tech., (4): 1~10 (in Chinese with English abstract).
- Nie F J. 1994. Lead and sulfur isotope of the Wulashan quartz-K feldspar and quartz vein gold deposit, southwestern Inner Mongolia [J]. Econ. Geol., 98: 1289~1305.
- Sheng J F, Li Y and Fan S Y. 1999. A study of minor elements in minerals from polymetallic deposits in the central part of the Dahingan mountains [J]. Mineral Deposits, 18(2): 153~160 (in Chinese with English abstract).
- Wang X Z, Cheng J P, Mo C H, et al. 1998. Geology and Geochemistry of reworking gold deposits in intrusive rocks of China—II. Gold deposits and their genesis [J]. Chinese J. Geochem., 17(3): 193~200.
- Wang X Z, Cheng J P, Zhang B G, et al. 1992. Geochemistry of the deform-type gold deposits in China [M]. Bejing: Sci. Press. 1~15 (in chinese).
- Zartman R E and Deo B R. 1981. Plumbotectonics—the model[J]. Tectonophysics, 75: 135~162.
- Zhan X Z, Zhang Q, Dong Z S, et al. 1999. Mineralogical research of several single-silver deposits [J]. Acta Mineralogica Sinica, 19(4): 465~469 (in Chinese with English abstract).
- Zhang J F, Pang Q B, Zhu Q, et al. 2003. Mengentaolegai Ag-Pb-Zn deposit in Inner Mongolia: Ar-Ar age of muscovite and its significance [J]. Mineral Deposits, 22(3): 253~256 (in Chinese with English abstract).
- Zhang Q. 1994. Lead isotopic compositions of Huanren polymetallic ore deposit, Liaoning Province: Evidence from Phanerozoic mantlesource lead [J]. Geochemica, 23(Supp): 32~38 (in Chinese with English abstract).
- Zhang Q. Pan J and Shao S X. 1996. Igneous-deformed mineralization of the Au-Ag deposits occurring in faults of the igneous rocks[J]. Geology-Geochemistry, 24(1): 67~71 (in Chinese with English abstract).
- Zhang Q, Zhan X Z and Pan J Y. 1998. Geochemical enrichment and mineralization of indium [J]. Chinese J. Geochem., 17(3): 221~ 225.
- Zhang Q, Pan J Y and Shao S X. 2000. An interpretation of ore lead sources from lead isotopic compositions of some ore deposits in China [J]. Geochemica, 29(3):231 ~ 238 (in Chinese with English abstract).
- Zhang Q, Qiu Y Z, Zhan X Z, et al. 2002. Lead isotopic composition and lead source of the Meng'entaolegai Ag-Pb-Zn-In deposit in In-

质

ner Mongolia [J]. Geochemica, 31(3): $253 \sim 258$ (in Chinese with English abstract).

Zhang Q, Liu Z H, Zhan X Z, et al. 2003. Specialization of ore deposit types and minerals for enrichment of indium[J]. Mineral Deposits, 22(3): 309~316(in Chinese with English abstract).

附中文参考文献

- 林尔为,郭裕嘉.1985.冀东金矿集中区的铅同位素研究[J].长春 地质学院学报,(4):1~10.
- 内蒙古地质矿产局.1991.内蒙古区域地质志[M].北京:地质出版 社.351~499.
- 盛继福,李 岩,范书义.1999.大兴安岭中段铜多金属矿床矿物微量元素研究[J].矿床地质,18(2):153~160.
- 王秀璋,程景平,张宝贵,等. 1992. 中国改造型金矿床地球化学 [M]. 北京:科学出版社. 1~15.

- 战新志,张 乾,董振生,等. 1999. 几个独立银矿床矿物学研究 [J]. 矿物学报, 19(4): 465~469.
- 张炯飞, 庞庆邦, 朱 群, 等. 2003. 内蒙古孟恩陶勒盖银铅锌矿床 白云母 Ar-Ar 年龄及其意义[J]. 矿床地质, 22(3): 253~256.
- 张 乾. 1994. 辽宁桓仁金属矿床的铅同位素组成──显生宙单阶 段幔源铅的证据[J]. 地球化学, 23(增刊): 32~38.
- 张 乾,潘家永.1996.火成岩断裂带中金、银矿床的火成改造成矿 作用[J].地质地球化学,24(1):67~71.
- 张 乾,潘家永,邵树勋.2000.中国某些金属矿床矿石铅来源的铅 同位素诠释[J].地球化学,29(3):231~238.
- 张 乾,裘愉卓,战新志,等.2002.内蒙古孟恩陶勒盖银铅锌铟矿 床的铅同位素组成及铅的来源[J]、地球化学,31(3):253~ 258.
- 张 乾,刘志浩,战新志,等. 2003. 分散元素铟富集的矿床类型和 矿物专属性[J]. 矿床地质, 22(3): 309~316.

Genesis of Meng'entaolegai Ag-Pb-Zn-In Polymetallic Deposit in Inner Mongolia

Zhu Xiaoqing, Zhang Qian, He Yuliang and Shao Shuxun

(Key Laboratory of Mineral Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences,

Guiyang 550002, Guizhou, China)

Abstract

The Meng'entaolegai polymetallic deposit located in the center of a granitic batholith is controlled by EWtrending faults. The major useful elements of the deposit are silver, lead and zinc, with rich indium, tin and cadmium. Its geological characteristics show that there exists no genetic correlation between the deposit and the granites. The deposit was formed later than the granites. The granites and faults provided only room for the orebodies. The δ^{34} S values are -1.7% to +4.6%, indicating that sulfur was derived from the magmatism. The ore-forming fluid must have come from the magmatic differentiation in the light of the H-O isotopic compositions. The lead isotopic compositions of all related rocks and ores indicate that lead in ores has no relationship with the Hercynian granite, the Yanshanian granite and the Precambrian basement metamorphic rocks, and it has the same source as sulfur. Although the geological features of the deposit are somewhat similar to those of the orogen-type deposits, its geochemical features imply that its origin is related to other deep-seated magmatism. During the mineralization, the Huolinhe regional fault acted as the channel for the migration of ore-forming fluids from the depth, and the EW-trending faults served as room for the settling of orebodies.

Key words: geology, geological characteristics, geochemical features, origin of the deposit, indium-rich polymetallic deposit, Meng'entaolegai, Inner Mongolia