シ文 www.scichina.com csb.scichina.com

硼掺入 Mg(OH)2 过程中的硼同位素分馏

肖军 ,肖应凯 *,刘丛强 ,赵志琦 ,贺茂勇 ,梁重山

中国科学院地球化学研究所,环境地球化学国家重点实验室,贵阳 550002; 中国科学院青海盐湖研究所,中国科学院盐湖资源与化学重点实验室,西宁 810008; 中国科学院研究生院,北京 100049

* 联系人: xiaoyk@isl.ac.cn

2008-11-10 收稿, 2009-01-22 接受 国家自然科学基金(批准号: 40573013, 40776071)和中国科学院海外合作伙伴计划资助项目

关键词 摘要 为确定 B 掺入 Mg(OH)2 时的形式及掺入过程中硼同位素组成的变化, 进行了不同设定 pH 硼 (pH yz)的人工合成无 Mg 海水中 B 掺入 Mg(OH), 的实验.结果表明, B 掺入 Mg(OH), 非常迅速, 4 h 同位素分馏 能达到平衡, 平衡后 Mg(OH)2 中 B 浓度[B] 和固相与溶液相间的分配系数 Kd 随 pH with home back 掺入 低. 而且最高的[B] 和 K_a均远高于 B 被金属氧化物或黏土矿物吸附时的对应值, 表明 B 具有很强 Mg(OH)₂ 的掺入 Mg(OH)₂的能力. 平衡时溶液相的 $\delta^{11}B_{\#_f}$ 均低于原始溶液的 $\delta^{11}B_{\#_i}$, 计算的 Mg(OH)₂与平 衡溶液间的硼同位素分馏系数 α_{B-w} 变化范围为 1.0186~1.0220, 平均值为 1.0203. 这充分表明, B 掺 入 Mg(OH)2时¹¹B 优先进入固相, 这是 B(OH)2优先掺入的结果. B(OH)2与 Mg(OH)2间的沉积反应 是 B(OH), 掺入的直接原因. B(OH), 与 Mg(OH), 间的沉积反应和 B(OH),在 Mg(OH), 上吸附可能同 时存在,并以沉积反应为主,它们决定了 B 掺入 $Mg(OH)_2$ 时硼同位素特征. 与 B 只以 $B(OH)_4$ 形式 掺入生物碳酸盐不同, B 以 B(OH);和 B(OH),一两种形式同时掺入 Mg(OH),并以 B(OH),优先掺入为 主, pH wz起低掺入的 B(OH)3比例越高. 由于 Mg(OH)2普遍存在于石珊瑚中, 这将严重影响珊瑚的 硼同位素组成 δ^{11} B 与海水 pH 的定量对应关系,因此会给 δ^{11} B 作为古海水 pH 的代用指标带来极 大的不确定性.

海洋生物碳酸盐是海水中 B 的主要储库, 近些 年来利用海洋生物碳酸盐的硼同位素组成 $\delta^{11}B_{carb}$ 重 建海水 pH, 计算当时大气 CO₂ 含量, 进而推测古气 候的变化已成为国际同位素地球化学研究的热 点^[1~11], 被称为 $\delta^{11}B$ -pH 技术. 应用该技术的主要假 设之一为海水中的 B 仅以 B(OH)₄形式掺入海洋生物 碳酸盐, 此时不发生硼同位素分馏或分馏很小^[2], 因 此 $\delta^{11}B_{carb}$ 值就是海水 B(OH)₄的 $\delta^{11}B_4$ 值. 为确定方 解石的硼同位素组成与海水 pH 的依赖关系, 过去已 进行过大量实验研究^[12~15]. 他们的结果与预期的假 设一致, 支持了 B(OH)₄是掺入方解石结构主要形式 的假设. 早期 Palmer 等人^[15]进行的海洋黏土矿物吸 附 B 时发现固液相间 B 的分配系数和同位素分馏均 随溶液 pH 的升高而升高, 表明 B(OH)₄ 是被吸附的主 要形式. 但近期的许多研究表明, B(OH)₄ 不一定是掺 入方解石或被吸附的唯一形式. Pagani 等人^[16]指出 B(OH)₄ 也许不是掺入方解石结构的主要形式, B(OH)₃ 也可能同时掺入碳酸盐. 肖应凯等人^[17]在进 行无机碳酸盐沉积实验时发现无机碳酸盐沉积和母 液间的硼同位素分馏系数 $\alpha > 1$ 的异常现象, 推断这 是在高 pH 生成 Mg(OH)₂ 沉积后 ¹¹B 优先掺入的缘故. Lemarchand 等人^[18]在研究 B 被 Fe 和 Mn 的氧化物 (goethite, birnessite)吸附的硼同位素分馏时发现吸附 也受控于 pH. Fe 氧化物的硼同位素分馏在 $\Delta = -40\%$

引用格式: 肖军, 肖应凯, 刘丛强, 等. 硼掺入 Mg(OH)₂过程中的硼同位素分馏. 科学通报, 2009, 54: 2363~2371 Xiao J, Xiao Y K, Liu C Q, et al. Boron isotope fractionation during incorporation of boron into Mg(OH)₂. Chinese Sci Bull, 2009, 54, doi: 10.1007/ s11434-009-0138-y (pH < 8)到 0(pH > 10)之间变化, pH < 8 时, ¹⁰B 富集在 固相, 而当 pH > 10 时变为零分馏. 而对于 Mn 氧化 物, 当 pH > 9 时出现反分馏, 即 ¹¹B 在固相表面富集. 近来 Peak 等人^[19]采用 ATR-FTIR 光谱研究了水合铁 氧化物(HFO)对 B(OH)₃ 和 B(OH)₄的吸附, 推测出 B(OH)₃ 可能是被水合铁氧化物吸附的主要形式. McElligott 和 Byrne^[20]发现 B(OH)₃ 能与 HCO₃反应生 成 B(OH)₂CO₃络合物. Tossell^[21]采用 ¹¹B NMR 和硼同 位素分馏进行了 B(OH)₃ 在腐殖酸上的吸附研究, 发 现 B(OH)₃与腐殖酸(HL⁻)反应生成 B(OH)₂L⁻, 由此推 测, B 可能通过像 B(OH)₂CO₃表面络合物的形式掺入 方解石, 而不是通过简单的阴离子置换.

B 被 Mg 的水合氧化物的摄取已被广泛研究^[22~26]. Petric 等人^[22]指出,在MgO从海水沉积过程中,B被共沉 淀而得到积累. Polat 等人^[23]发现,选择的煤和粉尘能有 效地去除水中的B. 另外,高Mg方解石和文石B含量要 比无 Mg 方解石的高出 5 倍以上. 这都表明 Mg 对 B 具 有很强的吸附能力. 刘玉胜等人^[24]和袁建军等人^[25]对 Mg(OH)₂吸附B的机理进行了研究. 结果表明,Mg(OH)₂ 对 B 的吸附受控于 pH,认为只有 B(OH)₄ 被 Mg(OH)₂ 吸附. 但他们没有研究吸附过程对硼同位素分馏的影 响,因此 B 被 Mg(OH)₂吸附的机理还不十分清楚.

Mg 是石珊瑚中的一种微量元素,石珊瑚的 Mg/Ca 比已被用来进行海水古温度的研究,但石珊瑚的 Mg 含 量具有种属或地域空间上的变化^[27],这可归因于 Mg 在 晶体表面和有机配合物的吸附,但 Mg 也可能以水镁石 形式存在于珊瑚矿物相中^[28]. Nothdurft 等人^[29]详细地 研究了澳大利亚大堡礁和美国佛罗里达群岛活石珊瑚 种属(*Acropora, Pocillopora, Porites*)中的 Mg(OH)₂,在 大部分所研究的活石珊瑚中均发现了水镁石,说明在 现代珊瑚礁中水镁石是普遍存在的. 珊瑚中水镁石的 存在可能引起珊瑚 Mg/Ca 与 SST 关系的异常^[29],它是 否会影响珊瑚的硼同位素组成而导致 δ^{11} B-pH 技术的 误差,这是我们应该关注的问题.

本文进行了 B 掺入 $Mg(OH)_2$ 时的硼同位素分馏 实验研究,采用硼同位素方法重点研究 B 掺入 $Mg(OH)_2$ 的可能形式,并为 δ^{11} B-pH 技术可能遇到的 问题提供科学依据.

- 1 实验与方法
- 1.1 试剂及设备

1.0 mol·L⁻¹ HCl, 0.5 mol·L⁻¹ NaOH 和 0.5 mol·L⁻¹ MgCl₂ 分别由两次蒸馏 HCl(GR), NaOH(GR), MgCl₂ (GR)与无 B 水配制而成; Cs₂CO₃ 纯度为 99.994%, 浓 度 12.3 g/L; 石墨悬浮液由石墨(SP)与 80%乙醇: 20% 水混合而成; 甘露醇浓度为 1.82 g/L, 由优级纯甘露 醇和无 B 水配制; 无 B 水由 18.2 MΩ MilliQ 水经硼 特效树脂柱交换得到.

英国 GV IsoProbe T 单聚焦热电离质谱仪;上海 尤尼柯仪器有限公司生产的 2100 型和 UV-2100 型分 光光度计;上海产 KS-2 型康氏振荡器;净化恒温烘 箱经四级 KOH 浸泡滤纸过滤.为避免 B 污染,实验 全过程均用聚四氟乙烯、聚乙烯或石英质器皿.

1.2 人工海水的配制

按照 Mocledon 的人工海水配方配制(表 1)人工无 Mg 海水, 实测的 B 浓度为 45.94 μg/g, 是正常海水 B 浓度(4.5 μg/mL)的 10.2 倍, 能保证足够量的 B 进行同 位素测定. 此合成无 Mg 海水的 pH 为 3.64, 比重为 1.020. 采用这种无 Mg 合成海水能避免在调节溶液 pH 时 Mg(OH)₂沉淀的形成.

1.3 Mg(OH)₂的合成

市场上出售的 Mg(OH)₂ 大多用作阻燃剂, 其杂 质 B 的含量很高, 测定的分析纯 Mg(OH)₂ 试剂 B 空 白为 11.6 μg/g, 大约是 Mg(OH)₂最小吸附 B 量的 5%, 会带来不可忽略的影响, 而市场上又难以获得高纯 度的 Mg(OH)₂, 因此须在实验室进行合成. 目前国内 外报道了很多 Mg(OH)₂ 的制备方法, 本研究采用最 简单的化学反应法制备. 即将优级纯 MgCl₂过 B 特效 树脂后与经蒸馏提纯后的优级纯 NH₃·H₂O 反应生 Mg(OH)₂ 沉淀, 沉淀经过滤与母液分离, 用低 B 水洗 涤至无 CI⁻后在超净箱中于 60 干燥. 经同位素稀释 法测定的 B 空白为 0.5 μgB/g, 约为 Mg(OH)₂ 最小吸 附 B 量的 0.2%, 对 Mg(OH)₂ 吸附 B 时同位素组成的 影响可以忽略. 自制 Mg(OH)₂ 的 XRD 示于图 1, 与 70239 标准图比较表明自制 Mg(OH)₂ 结晶非常理想, 完全能满足本实验要求.

表1 人工无镁富硼海水成分(g/L)^{a)}

分子式	NaCl	$CaCl_2$	NaHCO ₃	KCl	NaBr	${\rm H_3BO_3}$	Na_2SiO_3	$Na_2Si_4O_9$	${\rm H_3PO_4}$	Al_2Cl_6	LiNO ₃
含量	26.726	1.153	0.198	0.721	0.058	0.290	0.0024	0.0015	0.002	0.013	0.0013

a) 数据来源 http://zhidao. baidu. com/question/26278104.htmL?fr=qrl

自制 Mg(OH)2 与标准 70239Mg(OH)2 的 XRD 图 1

1.4 Mg(OH)2 吸附 B 实验

本研究进行了以下3种类型实验.

() 溶液 pH 对吸附平衡时间的影响. 吸附实 验在 200 mL 塑料瓶中进行, 实验温度为(25±0.5) . 分别量取 150 mL 无 Mg 人工海水于 200 mL 塑料瓶 中,通过缓慢滴加 NaOH/HCl 溶液的方法调节到所需 要的 pH 分别为 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 由精度 为 0.01 的 pH 计测定. 然后分别取出 10 mL 加入准确 称量的 1.0 g Mg(OH)₂ 粉末加入到塑料瓶中, 混合均 匀后立即将塑料瓶放到振荡器上振荡,吸附不同的 时间间隔后立即采用离心法将固液分离、澄清液用 来进行 B 浓度测定.

() 不同固液比的吸附平衡实验。 调节合成海水 的 pH 为 9.0, 按照 Mg(OH)₂(g):合成海水(mL)为 1:5, 1:10, 1:20 和 1:30 的要求, 将不同比例的 Mg(OH)2和 合成海水混合进行 B 的吸附实验, 过程与上相同.

() B 同位素分馏实验. 将 5.0 g Mg(OH)₂ 固体 和 100 mL pH 分别为 8.5, 9.0, 9.5, 10.0, 10.5 和 11.0 的合成海水混合、实验温度为(25±0.5) . 混合均匀 后立即将塑料瓶放到振荡器上振荡, 420 min 后用离 心法将固液相分离、澄清液用来进行 B 浓度和同位 素组成的测定.

1.5 吸附过程中溶液 pH 的变化

以往的吸附实验中、均保持吸附开始溶液 pH 的 恒定, 未对吸附过程中 pH 的变化进行研究. 但本实 验却发现,当 Mg(OH)2 固体加入到不同 pH(pH uz)合 成海水的瞬间, 合成海水的 pH 立即发生变化, 经过较 长时间后才趋于稳定,稳定后的 pH 与设定的 pH ygz 有 所差别, 其变化结果列于表 2. 我们试图用加入 HCI 的方法维持设定的 pH, 但发现随着 HCl 的加入, Mg(OH)2 固体的量越来越少, 而 pH 却仍不能回到设 定值,因此不能采用加入 HCl 的方法维持设定的 pH, 这是以前研究中未曾遇到的现象.

表 2 B 掺入过程中溶液 pH 的变化 a)

				The L				
pH _{设定}	8.5	9.0	9.5	10.0	10.5	11.0		
pH_0	10.04	10.13	10.28	10.36	10.46	10.52		
pH _{稳定}	9.75	-	9.77	9.80	9.81	9.83		
a) 1 g Mg(OH) ₂ /10 mL 海水								

g Mg(OH)2/10 mL 海水

pH 的详细变化过程如图 2 所示. 结果表明, 当 Mg(OH)2 加入到不同 pH 合成海水的瞬间(设时间 为 0), 溶液的 pH 立刻发生改变, 改变后的 pH 与 pH yz 有关,并随 pH yz 的升高而升高,总的趋势是往 pH10.5 靠拢, 即当 pH 设定低于 10.5 时, 改变后的 pH 将高于设定值,当 pH 设定高于 10.5 时,改变后的 pH 将低于设定值. 随吸附时间的延长, pH 均呈降低趋势, 平衡后的 pH 随 pH we 的升高而升高. pH 的这种变化 特征可能与 Mg(OH)₂ 的电离常数有关, 我们测定的 1.0 g Mg(OH)₂ 在 10 mL 水中的 pH 为 10.58, 与文献 报道的 Mg(OH)₂ 的等电点 10.5 接近^[24], 但改变后 pH

图 2 B 掺入过程中溶液 pH 的变化

下降的原因需进一步研究.

当 Mg(OH)₂ 加入到合成海水时,溶液 pH 的改变 是瞬间的,来不及采用加酸/碱的方法对溶液 pH 进行 调节,因此 B 被 Mg(OH)₂ 吸附时溶液的 pH 不能精确 控制,这就只能就溶液 pH 对 B 掺入 Mg(OH)₂ 的影响 进行定性讨论,但这种定性讨论应该是确切的.

1.6 样品中 B 的分离纯化

采用两步离子交换分离技术从人工合成海水和 样品中提取分离 B 以进行硼同位素测定^[30]. 将约 0.5 mL Amberlite IRA 743 硼特效树脂(80~100 目)装入 0.2 cm 直径的聚乙烯管中,树脂高度为 1.5 cm. 混合 离子交换树脂由各 0.5 mL 的阳离子交换树脂(H⁺型) 和弱碱性阴离子交换树脂(Ion exchange II, HCO₃⁻型)组 成,装入 0.4 cm 直径的聚乙烯管中,树脂高度 1.5 cm.

取定量澄清液,通过装有 Amberlite IRA 743 硼 特效树脂的柱,用 10 mL 温度为 75 的 0.1 mol/L HCl 淋洗 B, 淋洗液在 60 的超净蒸发箱中蒸发至近 干^[31]. 再将此溶液装入装有混合树脂的柱中,用 5 mL 无 B 水淋洗 B. 加入等摩尔质量的甘露醇后,淋 洗液在 60 下蒸发至 B 浓度约为 1 μ g/ μ L 以进行硼 同位素测定. 同位素稀释法测定全化学过程和涂样 总空白为 46 ng B.

1.7 B浓度和硼同位素组成的测定

溶液中 B 浓度用甲亚胺-H 法测定. 取 1 mL 样品 溶液, 2 mL 甲亚胺-H 酸溶液和 2 mL 缓冲溶液, 充分 混合后静置 120 min, 在 420 nm 处测定 B-甲亚胺-H 络合物的吸光值, 测定精度为 2%. 所有样品的硼同位素组成均在 GV IsoProbe T 单聚 焦热电离质谱计上用基于加石墨的 $C_{s_2}BO_2^+$ 正热电离质 谱法测定^[32]. 首先将 2 μ L 石墨悬浮液涂在去气的 Ta 带 上, 再涂 1 μ L 含有大约 1~2 μ g B 和等摩尔的甘露醇与 $C_{s_2}CO_3$ 的样品溶液, 最后在 1.2 A 下干燥 5 min. 采用 在质量数为 308(¹³³Cs₂¹⁰B¹⁶O₂⁺)和 309(¹³³Cs₂¹¹B¹⁶O₂⁺)之 间峰跳扫描的方法采集数据, 计算它们的离子流强 度比值 $R_{309/308}$, 经氧同位素校正后, ¹¹B/¹⁰B = $R_{309/308}$ -0.00078.

硼同位素组成用δ¹¹B 表示,按下式计算:

 δ^{11} B (‰)=[(¹¹B/¹⁰B)_{#@}/(¹¹B/¹⁰B)_{标准}-1]×1000. 此处,标准物质是 NIST SRM 951,其¹¹B/¹⁰B 推荐值 为 4.04362 ± 0.00137^[33],我们测样过程的¹¹B/¹⁰B 实 测值为 4.05248±0.00272(2 σ_m , *n* = 5).

2 结果与讨论

2.1 不同 pH 时 Mg(OH)2 吸附 B 的平衡时间

对不同 pH we 的溶液各取 15 份体积为 10 mL 的 合成海水共 90 份样品溶液,每份均准确加入 1.0 g Mg(OH)₂,按照 1.3 节描述的过程进行 Mg(OH)₂ 对 B 的吸附时间实验.每份实验的吸附时间如表 3 所示, 到设定时间后立即采用离心法进行固液相分离,澄 清液用于 B 浓度测定. Mg(OH)₂ 吸附相 B 浓度[*B*]_@由 溶液相吸附前后 B 浓度([*B*]_{@,i},[*B*]_{@,f})计算如下:

 $[B]_{\boxtimes}(\mu g/g) = [([B]_{\aleph_i} - [B]_{\aleph_f}) \times V_{\aleph}] \div W_{\boxtimes}, \quad (1)$ 式中 V_{\aleph} 和 W_{\boxtimes} 分别为吸附实验所取的合成海水体积 和 Mg(OH)₂ 质量.

 $Mg(OH)_2$ 吸附相和合成海水间的 B 分配系数 K_d 计算如下:

$$K_{\rm d} = [B]_{\rm at} \div ([B]_{\rm at} \div 1.020),$$
 (2)

式中 1.020 为合成海水的密度.

					where the states of the states	100 (1.0.	/ u u					
pH _{设定}	8	3.5	9	.0	9	9.5	10	0.0	1	0.5	1	1.0
时间/min	$[B]_{\overline{lpha}}$	K _d	$[B]_{\overline{\alpha}}$	K _d	$[B]_{\overline{\alpha}}$	K _d	[<i>B</i>] _液	K _d	$[B]_{\overline{\alpha}}$	K _d	$[B]_{\overline{\alpha}}$	K _d
10	9.98	36.8	10.92	32.7	11.17	31.8	12.84	27.5	11.36	31.0	11.49	30.6
20	7.96	48.7	9.62	38.5	9.72	38.0	10.6	35.9	8.63	44.1	9.76	37.8
30	6.83	58.5	8.33	46.0	8.40	45.6	8.75	43.8	8.38	45.7	8.86	42.9
40	5.92	69.0	6.54	61.4	7.26	54.3	7.53	52.9	6.87	58.0	7.61	51.4
50	5.73	71.6	6.21	65.2	6.78	58.9	6.96	58.5	6.00	67.9	6.60	60.8
60	4.86	86.2	5.52	74.7	6.25	64.8	5.86	68.9	6.35	63.6	5.83	70.2
120	2.81	156.6	2.22	200.9	3.11	140.5	3.04	142.3	3.54	122.2	2.98	147.0
180	2.07	216.1	2.31	192.6	2.34	190.0	2.89	152.8	2.65	166.6	2.79	157.8
240	1.47	308.6	2.28	195.3	2.27	196.2	2.58	172.2	2.37	187.5	2.66	166.0
300	1.53	296.1	2.23	199.9	2.42	183.4	2.07	213.6	2.59	170.7	2.59	170.7
360	1.66	272.1	2.14	208.8	2.15	207.7	2.27	195.6	2.41	184.2	2.60	170.0
420	1.84	244.5	2.10	212.9	2.14	208.8	2.21	200.9	2.41	184.2	2.39	185.9
480	1.76	256.0	2.09	214.0	2.16	206.7	2.24	198.9	2.25	198.1	2.30	193.5
540	1.73	260.7	2.12	210.8	2.26	197.1	2.07	214.8	2.35	189.2	2.28	195.3
600	1.56	290.2	2.17	205.7	2.25	198.1	2.40	185.0	2.42	183.4	2.27	196.2
平均*	1.70	270	2.18	209	2.25	200	2.34	197	2.43	185	2.48	182
1.55	(0.19)	(20)	(0.08)	(5)	(0.10)	(9)	(0.28)	(15)	(0.13)	(8)	(0.20)	(13)
a) *为 240~600 min 间数据计算的平均值 括弧内数字为偏差												

表 3 不同 pH $_{wz}$ 时[B]_液 (μ g/mL)和 K_d 随时间的变化 ^{a)}

(c)为(b)的放大图

时和稳定时的 pH 均呈升高趋势,因此[*B*]_激随溶液 pH 呈现出升高趋势的结论是正确的.

B 被不同矿物吸附时的平衡时间不同, Keren 和 Mezuman^[34]的研究指出, B 被蒙脱石或高岭土吸附时, 2 h 内能达到平衡, 但被伊利石吸附时要 24 h 才能达 到平衡. Palmer 和 Spivack 等人^[15]在进行海洋黏土矿 物吸附 B 实验时, 采用 72 h 作为平衡时间. Fuente 和 Muñoz^[35]进行的 MgO 对 B 的吸附实验表明, 平衡时 间与 B 浓度有关, B 浓度越低, 吸附平衡的时间越长. 本研究表明, B 掺入 Mg(OH)₂ 时, 4 h 基本达到平衡, 与以上研究结果有所差别, 表明 Mg(OH)₂ 对 B 具有 较强的吸附能力, 这还表现在 B 在吸附相和溶液相 间的分配系数 *K*_d上.

2.2 不同固液比时 Mg(OH)2 吸附 B 的平衡时间

在保持 pH 不变的条件下,不同固液比时[B]_速 和 K_d 随时间的变化列于表 4, 并绘于图 4. 结果显示, 不同固液比时, $[B]_{\infty}$, 随时间的变化基本一致, 前 120 min 为快速下降阶段, 120~240 min 为缓慢变化阶段, 240 min 后 $[B]_{\infty}$ 基本保持不变,表明 B 的吸附已达到 平衡.这种变化趋势与相同固液比不同 pH 时 Mg(OH), 吸附 B 的变化趋势相同. 图 4 还表明, 吸附 平衡后的[B]_液,与固液比有关,随固液比由 1:30 增加 到 1:5, 平衡后的 [B]_{速f}平均值由 7.09 μg/mL 逐渐减 少到 0.735 μg/mL, 这表明 B 被 Mg(OH)₂ 吸附的分数 在增加. 但由于相对于1g Mg(OH),来说, B的总量随 固液比的增加而减少,因此[B]_@也呈现由 1166 μg/g 至 226 μg/g 的降低趋势(图 3). 这与 Keren 和 Mezuman^[34]的研究结果不一致,他们实验时固定 B 的加入量, [B]_B自然是随固液比的增加而增加, 这是 溶液中 B 的浓度增加的结果

2.3 Mg(OH)2和滤液 B浓度及两者间分配系数 Ka

根据表 3 和 4 中的数据计算的不同 pH 设定和不同 固液比时 B 掺入 Mg(OH)₂ 的[B]_{液f}, [B]_国和分配系数

时间/min	1:5(1g固体/5mL溶液)			1:10(1	1:10(1g固体/10mL溶液)			1:20(1g固体/20mL溶液)			1:30(1g固体/30mL溶液)		
	[<i>B</i>] _{液 f}	$[B]_{ agentarrow}$	$K_{\rm d}$	[<i>B</i>]液 f	$[B]_{\blacksquare}$	K_{d}	[<i>B</i>] _{液 f}	$[B]_{\boxtimes}$	$K_{\rm d}$	[<i>B</i>]液 f	$[B]_{в}$	K _d	
20	2.72	216.1	80.93	7.43	385.1	52.9	19.70	524.8	27.2	26.26	590.5	22.9	
40	1.93	220.0	116.3	4.71	412.3	89.3	15.34	611.9	40.7	23.45	674.7	29.3	
60	1.57	221.8	144.3	4.37	415.6	96.9	12.31	672.5	55.7	19.02	807.6	43.3	
120	1.16	223.9	197.6	2.12	438.2	211.2	7.11	776.5	111.4	12.85	992.6	78.8	
180	0.76	225.9	302.5	1.78	441.6	252.4	3.49	849.0	248.1	9.96	1079	110.5	
240	0.73	226.1	318.0	1.68	442.6	268.4	3.99	838.9	214.3	7.38	1157	159.8	
300	0.72	226.1	321.3	1.50	444.4	302.1	3.58	847.2	241.4	7.42	1156	159.0	
360	0.70	226.2	327.3	1.57	443.7	287.6	3.51	848.6	246.8	7.24	1161	163.6	
420	0.71	226.3	337.0	1.48	445.6	330.0	3.80	842.9	226.4	7.19	1176	178.1	
480	0.80	225.7	285.7	1.54	444.0	294.3	3.81	842.5	225.4	7.13	1164	166.5	
540	0.78	225.8	294.6	1.53	444.1	295.8	3.01	858.6	290.7	6.68	1178	179.8	
600	0.72	226.1	318.8	1.44	445.0	314.8	2.99	859.0	293.3	7.04	1167	169.0	
平均*	0.735	226.0	315.0	1.521	444.0	299.0	3.53	848	248	7.09	1166	168.0	
千均	(43)	(0.2)	(18)	(97)	(1)	(19)	(39)	(8)	(32)	(29)	1100	(8)	

表4 pH 9.0 时不同固液比滤液[B]_{液 f}(μ g/mL)和 K_d 随时间的变化^{a)}

a) *为 240~600 min 之间吸附达到平衡后的平均结果

(a) [B]_{速f}随时间的变化; (b) [B]_圈随时间的变化(pH 9.0)

 K_{a} 绘于图 5. 图 5(a)表明平衡后[B]_■随溶液 pH $_{@z}$ 升高 而降低,由 pH $_{@z}$ 8.5 时的 443 μ g/g 降低到 pH $_{@z}$ 11.0 的 435 μ g/g,此处未观察到吸附峰值,这是因为对于 pH $_{@z}$ 8.5 溶液,吸附时真实 pH 为 10.04~9.75,此区间 不可能是最强吸附区间.图 5(b)表明,[B]_■值与固液比 有关,当保持溶液 pH 恒定条件下,[B]_■随固液比的降 低而增加,当固液比为 1:30 时高达 1166 μ g/g,远远 高于文献所报道的结果.B 被氧化铝和氧化铁吸附时, 在低 pH 时,吸附随 pH 而增加,在 pH 7~8 时达到最 大,随后下降,氧化铝、无定形氧化铝和磁铁矿对 B 的最大吸附分别为 73.4,487 和 19.9 μ g/g^[36].B 被黏土 矿物高岭土、蒙脱石和伊利石吸附时,在低 pH 时吸

图 5 $[B]_{\Re f}$, $[B]_{\square}$ 和 K_d 随溶液 pH $_{\Im z}(a)$ 和固液比(b)的变化

附随 pH 而增加,最大吸附出现在 pH 8~10,随后在高 pH 时下降, B 的最大吸附分别为 9.92 μg/g(高岭土)和 33.7 μg/g(蒙脱石)^[37].氢氧化铝络合物以及 Na-蒙脱 石吸附 B 时,吸附峰值出现在 pH 6~9 以及 pH 9.2, B 的最大吸附分别约为 1082 和 31.4 μg/g^[38].这些结果 表明, Mg(OH)₂具有比氧化物和黏土矿物更强的吸附 B 的能力,而与氢氧化铝络合物相当.

图 5 表明, B 在 $Mg(OH)_2$ 和溶液间的分配系数 K_d

随溶液 pH $_{@x}$ 的升高或固液比降低而降低,同样未观 察到 K_d 峰值,最大的 K_d 应该出现在 pH $_{@x}$ <8.5 时.但 pH $_{@x}$ 8.5 时的 K_d 为 270,而 pH $_{@x}$ 9.0、固液比为 1:5 时的 K_d 为 315,均高于文献所报道的对于氧化物和腐 殖酸的结果. B 被金属氧化物吸附时,在 pH $_{@x}$ 8.5~9 范围内, B 的吸附随 pH 升高而增加,最大值出现在 pH 9,最大 K_d 为 40(铁氧化物, goethite)和 35(锰氧化 物, birnessite),随后 B 的吸附随 pH 升高而下降^[18]. B 被腐殖酸(humic acid)吸附时,在 pH 9.5~10 时的最大 K_d 为 40^[39]. Goldberg and Galubig 进行的针铁矿、赤 铁矿和无定形氧化铁吸附 B 实验时测定的 K_d 分别为 11,6.4 和 170^[36].这些结果表明 B 掺入 Mg(OH)₂能力 比金属氧化物和腐殖酸吸附 B 的能力更强.

2.4 B 掺入 Mg(OH)2 时的硼同位素分馏

测定的平衡时不同 pH _{设定}溶液的硼同位素组成 $\delta^{11}B_{\pi}$,列于表 5, Mg(OH)₂吸附相与平衡溶液相间的 硼同位素分馏系数 α_{B} 波短下面的公式计算^[15]:

 $\alpha_{\boxtimes -\bar{\aleph}} = [1/(\delta^{11} \mathbf{B}_{\bar{\aleph}_{\mathrm{f}}} + 1000)] \times [(\delta^{11} \mathbf{B}_{\bar{\aleph}_{\mathrm{i}}} + 1000) - F(\delta^{11} \mathbf{B}_{\bar{\aleph}_{\mathrm{f}}} + 1000)]/(1 - F),$ (3)

 $<math>
 \delta^{11}B_{x_1} n \delta^{11}B_{x_1} \beta^{11} \beta_{x_1} \beta^{11} \beta_$

 $\delta^{11}B_{\#f}$ 测定值的变化范围为-19.2‰~-17.8‰,平均值为-18.5‰,均落在 $\delta^{11}B_{\#i}(-7.00\% \pm 0.07\%)$ 之下. 由(3)式计算的 $\alpha_{\square-\%}$ 的变化范围为 1.0186~1.0220,平均值为 1.0203. 根据 $\delta^{11}B_{\#f}$ 和 $\alpha_{\square\%}$ 计算的 $\delta^{11}B_{\square}$ 变化范围为 0.4‰ ~ 2.6‰,平均值为 1.5‰,均落在 $\delta^{11}B_{\#i}$ (-7.00‰ ± 0.07‰)之上,这与海洋生物碳酸盐沉积时的现象^[1~10]完全相反,表明两者间具有完全不同的硼同位素分馏机理.由于吸附时溶液的真实pH不是pH_{1%E},且 B 掺入时溶液的 pH 在不断变化,无法确定掺入时溶液的真实 pH,因此无法定量讨论 $\alpha_{\square,\#}$ 与溶液 pH 的关系.

2.5 B 掺入 Mg(OH)₂ 的模型

金属氧化物及黏土矿物吸附 B 的特征可用现象

方程(Phenomenological equation)^[38]解释: 它假设, 溶 液中有 B(OH)₃, B(OH)₄和 OH⁻同时存在时, 它们都会 被 Mg(OH)₂、氧化物和黏土矿物吸附, 其亲和系数 *K*_{HB}, *K*_B, *K*_{OH}分别为 194, 1745 和 25803 L/mol^[38]. 在 溶液中它们会竞争相同的吸附位置、当 pH < 7 时、 B(OH)₃占优势,由于它对黏土矿物的亲和力很低, 因此吸附量很小. 在这种 pH 下, B(OH)₄和 OH⁻的浓 度很低,尽管它们对黏土等具有相对强的亲和力,但 对总吸附 B 的贡献仍然很小. 当 pH 增加到 9 时, B(OH)₄的浓度急速增加,这时与 B(OH)₄相比, OH 浓 度还是低的,因此吸附的 B 量会快速增加. pH 进一步 升高时, OH⁻浓度会显著增强, 它会与 B(OH);争夺吸 附位置而造成 B 吸附的降低. 本研究 pH wz范围为 8.5~ 11.0, 但真实的 pH 可能为 9.7~10.6, 不能充分体现 出[B]圆随溶液 pH 变化特征,因此无法判断 B 掺入 Mg(OH)₂ 是否符合以上模型,但我们也不排除 B 以 $B(OH)_4^-$ 形式被 Mg(OH)₂ 吸附的可能.

但采用这种模型完全解释不了 B 掺入进 Mg(OH)₂ 的硼同位素的分馏特征以及最大吸附值和 K_d 值的差别.氧化物和黏土矿物对 B(OH)₄的吸附能 力要远远强于 B(OH)₃,此时 B(OH)₄将优先被吸附, 因此造成 ¹⁰B 在吸附相的富集^[15,18].B 掺入进 Mg(OH)₂时 ¹¹B 富集在 Mg(OH)₂固相,表明 B(OH)₃ 优先进入固相,这可能是发生化学反应的结果. Rodionov 等人^[40]在总结废水中除 B 的现状文章中, 列举了沉积除 B的方法,当在含 B的溶液中加入石灰 水时会产生硼酸钙结晶,其反应为

 $2H_{3}BO_{3} + Ca(OH)_{2}+aq$ CaO·B₂O₃·*n*H₂O+aq 当 B 掺入 Mg(OH)₂ 时, 与以上类似的反应是可能发 生 的, 生 成 的 MgO·B₂O₃·*n*H₂O 晶 体 会 沉 积 在 Mg(OH)₂ 表面, 但是其生成的量与 Mg(OH)₂ 相比是 很少的. 以上的反应对 B(OH)₄是不可能的, 因此会 有超过溶液 B₃分数的 H₃BO₃ 掺入 Mg(OH)₂, 造成 ¹¹B 在固相的富集.

B 掺入 $Mg(OH)_2$ 时发生的沉积反应还表现在[B]_{液f}

	12 3	$M_{\rm CO}/R_{\rm C}$ $M_{\rm CO}/R_{\rm C}$	190 D 及回冲号	冰心风间力阻示权	22 固-液	
pH _{设定}	8.5	9.0	9.5	10.0	10.5	11.0
$[B]_{\overline{\alpha} i}/\mu g \cdot mL^{-1}$	44.40	44.34	44.21	43.74	43.09	41.97
$[B]_{{\mathfrak k}{\mathfrak f}}/\mu{\mathfrak g}\cdot{\mathfrak m}{ m L}^{-1}$	17.11	17.95	18.37	18.74	19.09	19.23
$\delta^{11}\mathrm{B}_{\ {\mathrm{\ref f}}}(\%)$	-18.9 ± 0.5	-17.9 ± 0.3	-17.8 ± 0.3	-19.2 ± 0.2	-19.0 ± 0.3	-18.1 ± 0.2
$\delta^{11} \mathbf{B} \equiv (\%)$	0.5	0.4	0.7	2.2	2.6	2.4
<i>α</i> в-ж	1.0198	1.0186	1.0188	1.0218	1.0220	1.0209

表 5 滤液、 $\mathrm{Mg}(\mathrm{OH})_2$ 的 δ^{11} B 及固体与滤液间分馏系数 $lpha_{\mathrm{arg}}$

随溶液 pH 的变化特征和 K_d 值上. $[B]_{\mbox{w}f}$ 随溶液 pH $_{\mbox{w}z}$ 的升高而升高(表 3),表明 B 掺入 Mg(OH)₂ 的量随溶 液 pH $_{\mbox{w}z}$ 的升高而减少. 这是因为随 pH 升高溶液中 H₃BO₃ 的分数降低,降低了 B 掺入 Mg(OH)₂ 的量. 图 3 表明 K_d 随溶液 pH $_{\mbox{w}z}$ 的升高而降低,同时最大的 K_d 达到 1166 远高于 B 被金属氧化物或黏土矿物吸附时 的 K_d ,这都表明 B 掺入 Mg(OH)₂ 时不仅仅是 B 的吸 附过程,沉积反应可能占有重要位置. 因此, B 掺入 Mg(OH)₂ 时, B 在 Mg(OH)₂ 上的吸附和 H₃BO₃ 与 Mg(OH)₂ 的沉积反应将同时存在,它们共同决定了 B 掺入 Mg(OH)₂ 的特性.

2.6 对 δ^{11} B-pH 技术可能带来的影响

将珊瑚 δ^{11} B 值作为海水 pH 指示剂的最重要的假 设条件之一是海水中只有 B(OH)₄⁻的掺入,即¹⁰B 优先 进入珊瑚碳酸盐.但 Nothdurft 等人^[29]的研究结果表 明, Mg(OH)₂ 普遍存在于现代珊瑚中.本研究结果证 实,B 掺入 Mg(OH)₂时,将引起¹¹B 在珊瑚中的富集, 因此由于 Mg(OH)₂的存在,必然会给 δ^{11} B-pH 技术带 来极大的不确定性.Nothdurft 等人^[29]的研究指出,珊 瑚中 Mg(OH)₂ 的出现是极端微环境高 pH 和低 CO₂ 含量的产物,因此是一种极端微环境的指示剂,同时 珊瑚中异常高的 δ^{11} B 值,可能反映极端海洋微环境 高 pH 的存在,与海洋大环境的 pH 不存在对应关系. Vengosh 等人^[41]报道的来自日本和大堡礁珊瑚的 δ^{11} B值高达28‰~32‰,这是否与Mg(OH)₂的存在有 关需要更深入的研究.

3 结论

根据以上实验结果与分析,得到以下结论.

() B 掺入 Mg(OH)₂ 非常迅速, 4 h 后平衡. 平衡 时的[*B*]_國和分配系数 *K*_d均随溶液 pH _{⊎元}的升高而减小, 最大的[*B*]_@和分配系数 *K*_d均远远高于 B 被金属氧化 物或黏土矿物吸附时的相应值, 表明 B 具有更强的 掺入 Mg(OH)₂ 的能力.

()B掺入平衡后, Mg(OH)₂的δ¹¹B_B要高于原始
 合成海水的δ¹¹B_{液i}, Mg(OH)₂与滤液间的硼同位素分
 馏系数的变化范围为 1.0186~1.0220, 平均值为
 1.0203. 这都表明 ¹¹B 优先进入 Mg(OH)₂, 这是
 B(OH)₃优先进入 Mg(OH)₂固相的结果.

() B 将通过吸附作用和 Mg(OH)₂ 的沉积反应
 而掺入 Mg(OH)₂, 且以后者为主, 两者共同决定了
 Mg(OH)₂ 与滤液间分馏系数的变化.

()珊瑚中 $Mg(OH)_2$ 的存在会极大地改变珊瑚 中硼同位素分馏特征,在这种情况下,珊瑚的 $\delta^{11}B$ 值 与海水的 pH 不存在定量的对应关系,因此珊瑚的 $\delta^{11}B$ 值将失去作为海水 pH 指示剂的作用.

致谢 龚国宏和杨波对样品进行 X-射线衍射分析, 审稿专家提出建设性修改意见, 在此表示感谢.

参考文献。

- 1 Ishikawa T, Nakamura E. Boron isotope systematic of marine sediments. Earth Plant Sci Lett, 1993, 117: 567-580
- 2 Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta, 1992, 56: 537—543
- 3 Vengosh A, Kolodny Y, Starinsky A, et al. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta, 1991, 55: 2901–2910
- 4 Spivack A J, You C F, Smith J. Foraminiferal boron isotopic ratios as a proxy for surface ocean pH over the past 21 Myr. Nature, 1993, 363: 149–151
- 5 Gaillardet J, Allègre C J. Boron isotopic compositions of corals: Seawater or diagenesis record? Earth Plant Sci Lett, 1995, 136: 665-676
- 6 Sanyal A, Hemming N G, Hanson G N, et al. Evidence for a high pH in the glacial ocean from boron isotopes in foraminifera. Nature, 1995, 373: 234–236
- 7 Sanyal A, Hemming N G, Broecker W S, et al. Changes in pH in the eastern equatorial Pacific across stage 5—6 boundary based on boron isotopes in foraminifer. Glob Biogeochem Cycle, 1997, 11: 125—133
- 8 Palmer M R, Pearson P N, Cobb S J. Reconstructing past ocean pH-depth profiles. Science, 1998, 282: 1468-1471
- 9 Pearson P N, Palmer M R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science, 1999, 284: 1824-1826

- 10 Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406: 695-699
- 11 Lécuyer C, Grandjean P, Reynard B, et al. ¹¹B/¹⁰B analysis of geological materials by ICP-MS Plasma 54: Application to the boron fractionation between brachiopod calcite and seawater. Chem Geol, 2002, 186: 45–55
- 12 Sanyal A, Nugent M, Reeder R J, et al. Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta, 2000, 64: 1551—1555
- 13 Hemming N G, Reeder R J, Hanson G N. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim Cosmochim Acta, 1995, 59: 371—379
- 14 Sanyal A, Hemming N G, Broecker W S, et al. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography, 1996, 11: 513—517
- 15 Palmer M R, Spivack A J, Edmond J M. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta, 1987, 51: 2319—2323
- 16 Pagani M, Lamarchand D, Spivack A, et al. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates. Geochim Cosmochim Acta, 2005, 69: 953—961
- 17 肖应凯,李世珍,魏海珍,等. 从海/咸水中沉积碳酸钙时异常的硼同位素分馏. 中国科学 B 辑: 化学,2006,36:263-272
- 18 Lemarchand E, Schott J, Gaillardet J. How surface complexes impact boron isotope fractionation: Evidence from Fe and Me oxides sorption experiments. Earth Plant Sci Lett, 2007, 260: 277—296
- 19 Peak D, Luther III G W, Sparks D L. ATR-FTIR spectroscopic studies of boron acid adsorption on hydrous ferric oxide. Geochim Cosmochim Acta, 2003, 67: 2551—2560
- 20 McElligott S, Byrne R H. Interaction of B(OH)₃⁰ and HCO₃⁻ in seawater: Formation of B(OH)₂CO₃⁻. Aquat Geochem, 1998, 3: 345— 356
- 21 Tossell J A. Boric acid adsorption on humic acid: Ab initio calculation of structures, stabilities, ¹¹B NMR and ¹¹B, ¹⁰B isotopic fractionations of surface complexes. Geochim Cosmochim Acta, 2006, 70: 5089—5103
- 22 Petric N, Martinac V, Labor M, et al. Isothermal and activated sintering of magnesium oxide from sea water. Mater Chem Phys, 1998, 53: 83—87
- 23 Polat H, Vengosh A, Pankratov I, et al. A new methodology for removal of boron from water by coal and fly ash. Desalination, 2004, 164: 173—188
- 24 刘玉胜,李法强,乌志明. Mg(OH)2吸附卤水中硼的研究. 盐湖研究, 2004, 12: 45-48
- 25 袁建军, 崔蕊, 张勇. 海水 Mg(OH)2 对硼的吸附及卤水降硼的研究. 盐业与化工, 2006, 36: 1-6
- 26 王路明. Mg(OH)2对海水中硼的吸附效果. 海湖盐与化工, 2003, 32: 5-7
- 27 Fallon S J, McCulloch M T, Woesik V R, et al. Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Plant Sci Lett, 1999, 172: 221–238
- 28 Smith P L, Delong R C. Brucite in modern corals. Geol Soc Amer Abs Progr, 1978, 10: 494
- 29 Nothdurft L D, Webb G E, Buster N A, et al. Brucite microbialites in living coral skeletons: Indicators of extreme microenvironments in shallow-marine settings. Geology, 2005, 33: 169—172
- 30 Wang Q Z, Xiao Y K, Wang Y H, et al. Boron separation by the two-step ion-exchange for the isotopic measurement of boron. Chin J Chem, 2002, 20: 45—50
- 31 Xiao Y K, Liao B Y, Liu W G, et al. Ion exchange extraction of boron from aqueous fluids by Amberlite IRA 743 resin. Chin J Chem, 2003, 21: 1073—1079
- 32 Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Proc, 1988, 85: 203-213
- 33 Catanzaro E J, Champion C E, Garner E L, et al. Boric acid: Isotopic and assay standard reference materials. US Natl Bur Stand Spec Publ, 1970, 17: 70
- 34 Keren R, Mezuman U. Boron adsorption by clay minerals using a phenomenlogical equation. Clays Clay Miner, 1981, 29: 198-204
- 35 De la Fuente M M, Muñoz E C. Boron removal by means of adsorption with magnesium oxide. Sep Purif Technol, 2006, 48: 36-44
- 36 Goldberg S, Glaubig R A. Boron adsorption on aluminium and iron oxide minerals. Soil Sci Soc Am J, 1985, 49: 1374-1379
- 37 Goldberg S, Glaubig R A. Boron adsorption and silicon release by the clay minerals kaolinite, montmorillonite and illite. Soil Sci Soc Am J, 1986, 50: 1442—1448
- 38 Keren R, Gast R G. pH-dependent boron adsorption by montmorillonite hydroxy-aluminium complexes. Soil Sci Soc Am J, 1983, 47: 1116—1121
- 39 Lemarchand E, Schott J, Gaillardet J. Boron isotope fractionation related to boron sorption on humic acid and the structure of surface complexes formed. Geochim Cosmochim Acta, 2005, 69: 3519—3533
- 40 Rodionov A I, Voitova O M, Romanov N Y. The current state of the problem of the elimination of boron from waste waters. Russ Chem Rev, 1991, 60: 1271–1279
- 41 Vengosh A, Kolodny Y, Starinsky A, et al. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta, 1991, 55: 2901—2910