
# Dalton Transactions

An international journal of inorganic chemistry

# Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Z. Li, Q. Liu, Y. Shi, Z. Yao, W. Ding and Y. Sun, *Dalton Trans.*, 2019, DOI: 10.1039/C9DT03424B.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/dalton

View Article Online

View Journal

Published on 09 September 2019. Downloaded by University of Texas Libraries on 9/12/2019 11:16:16 AM.

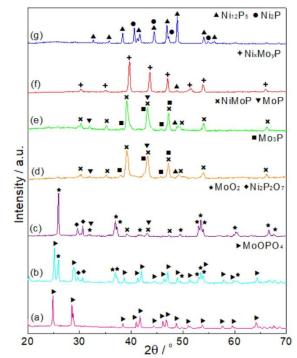
# Novel synthesis of NiMoP phosphide catalyst in a CH<sub>4</sub>-CO<sub>2</sub> gas mixture

Zhichao Li,<sup>a</sup> Qingyou Liu,<sup>\*b</sup> Yan Shi,<sup>a</sup> Zhiwei Yao,<sup>\*a</sup> Wei Ding<sup>a</sup> and Yue Sun<sup>a</sup>

NiMo bimetallic phosphide was synthesized from corresponding  $_5$  oxidic precursor in a 1:1 CH<sub>4</sub>:CO<sub>2</sub> gas mixture for the first time. The in-situ synthesized NiMoP phase in the feed for CH<sub>4</sub>-CO<sub>2</sub> reforming can exhibit higher activity than the one prepared in H<sub>2</sub>.

Transition metal phosphides are a new class of interstitial <sup>10</sup> compounds receiving much attention in recent years due to their widespread applications in various fields, such as electronics, photonics, magnetism, catalysis and so on.<sup>1-4</sup> In particular, monometallic (e.g. MoP and Ni<sub>2</sub>P) and bimetallic (e.g. NiMoP and CoMoP) phosphides have been identified as <sup>15</sup> potential catalysts for many reactions such as hydrogenation and hydrotreating,<sup>5,6</sup> dry (CO<sub>2</sub>) reforming of methane (DRM),<sup>7,8</sup> N<sub>2</sub>H<sub>4</sub> decomposition<sup>9,10</sup> NO dissociation<sup>11</sup> and electrocatalytic reactions including hydrogen evolution, oxygen reduction and evolution reactions.<sup>12-14</sup>

- <sup>20</sup> Generally, phosphide catalysts are typically prepared by temperature programmed reduction (TPR) method, in which the reported reducing agents include  $H_{2}$ ,<sup>5</sup> methane<sup>15</sup> and dimethyl ether.<sup>16</sup> Since the formation of phosphide from their corresponding oxidic precursors by H<sub>2</sub>-TPR (Scheme 1)<sup>17,18-24</sup>
- <sup>25</sup> is thermodynamically unfavorable, the forward reaction has to be aided by high temperature and low water vapor pressure. Thus, phosphides can only be obtained at a low heating rate (e.g. 1 °C min<sup>-1</sup>) and a high H<sub>2</sub> flow speed (e.g. 300 ml min<sup>-1</sup>)<sup>5</sup> to purge the water off the solid surface. In addition, a high
  <sup>30</sup> concentration of water produced during the reaction process can lead to serious hydrothermal sintering of phosphide particles.<sup>25,26</sup> In the case of the synthesis using methane and dimethyl ether as reducing agents, the resultant phosphide surface is usually contaminated by carbon deposition from the <sup>35</sup> pyrolysis of CH<sub>4</sub>, which can block in the pores and cover the active sites.<sup>15,16</sup> In this work, we developed a novel synthesis of NiMo bimetallic phosphide catalyst in a 1:1 CH<sub>4</sub>:CO<sub>2</sub> gas mixture. Compared with the TPR method using H<sub>2</sub>, methane
- and dimethyl ether as reducing agents, the reaction products 40 included a large amount of CO and H<sub>2</sub> besides H<sub>2</sub>O in this novel synthesis route, which can mitigate hydrothermal sintering of phosphide particles and avoid carbon deposition on the surface. Moreover, the in-situ synthesized NiMoP catalyst in the feed for DRM could exhibit higher activity than


45 the one prepared in H<sub>2</sub>.

# $zMO_x(s) + PO_y(s) + (zx+y)H_z(g) \xrightarrow[very fast]{slow} M_zP(s) + (zx+y)H_zO(g)$

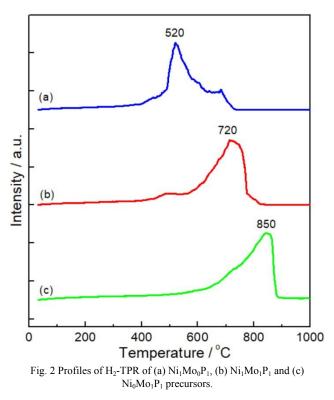

Scheme 1 A simplified equation for the preparation of phosphides by  $\rm H_{2}\text{-}$  TPR method.

Fig. 1 shows the XRD patterns of the products from  $Ni_xMo_yP_1$  oxidic precursors with different Ni:Mo molar ratios in CH<sub>4</sub>/CO<sub>2</sub> gas mixture. In the case of treating Ni<sub>x</sub>Mo<sub>1</sub>P<sub>1</sub> (x=0, 0.3, 0.6, 1) precursors, the XRD pattern of the product from Ni<sub>0</sub>Mo<sub>1</sub>P<sub>1</sub> showed the peaks of MoOPO<sub>4</sub> (main peaks at

- 20=25.2, 28.9, 38.7 and 41.3°, PDF 73-2333), indicating that <sup>55</sup> Mo phosphide cannot be in-situ synthesized during DRM. When the Ni (x=0.3) was added into the precursor, the product was composed of MoOPO<sub>4</sub>, MoO<sub>2</sub> (main peaks at 20=26.0, 36.9, 37.0 and 53.4°, PDF 78-1071) and Ni<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (main peaks at 20=29.6 and 30.6°, PDF 49-1082). With the <sup>60</sup> increase of Ni content from x=0.3 to x=0.6, the MoOPO<sub>4</sub> reflections disappeared, and some weak peaks due to MoP (20=32.0 and 43.0°, PDF 65-6487) and NiMoP (main peaks at 20=39.2, 43.2 and 47.3°, PDF 31-0873) were detected. With a further increase of Ni content to x=1, the phase composition <sup>65</sup> of the product was predominant NiMoP with very minor Ni<sub>12</sub>P<sub>5</sub> (main peaks at 20=38.4, 41.8, 47.0 and 48.9°, PDF 74-1381) and Mo<sub>2</sub>P (main peaks at 20=38.0, 42.4, 45.8 and 47.3°)
- 1381) and Mo<sub>3</sub>P (main peaks at 2θ=38.0, 42.4, 45.8 and 47.3°, PDF 89-2587). As for Ni<sub>1</sub>Mo<sub>y</sub>P<sub>1</sub> (y=0, 0.3, 0.6, 1) precursors, they all were reduced to phosphide phases. Note that there <sup>70</sup> was a clear main phase transformation (NiMoP→Ni<sub>x</sub>Mo<sub>y</sub>P<sup>27</sup>→Ni<sub>x</sub>P) with decreasing Mo content from y=1 to y=0 in the oxidic precursors. The results indicated that the increase of Ni/Mo molar ratio in the oxidic precursors can promote the formation of phosphide phase and <sup>75</sup> well crystalline NiMoP phase can be obtained with a
- stoichiometric ratio of 1:1:1 Ni:Mo:P. The XRD result was in good agreement with the result of  $H_2$ -TPR (Fig. 2) that the Ni<sub>1</sub>Mo<sub>0</sub>P<sub>1</sub> was more easily reduced than Ni<sub>0</sub>Mo<sub>1</sub>P<sub>1</sub> and the addition of Ni to precursor can facilitate precursor reduction.



**nsactions Accepted Manuscript** 



Whereafter, XPS analysis was used to further determine 5 the surface composition of as-prepared NiMoP sample from N<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub>. Fig. 3 shows the XPS spectra of Ni 2p, Mo 3d and P 2p levels for the NiMoP sample. It can be seen that the surface region of the sample was composed of oxidized species and phosphorized species. The binding energies of 10 oxidized Ni (856.0 eV), Mo (228.8 and 232.5 eV) and P (133.1 eV) were agreed with assignments by others to  $Ni^{2+}$ , Mo<sup>4+</sup>/Mo<sup>6+</sup> and P<sup>5+</sup> species,<sup>28,29</sup> respectively. The binding energies of the peaks at 853.3, 227.9 and 129.8 eV were attributed to Ni<sup> $\alpha$ +</sup>, Mo<sup> $\delta$ +</sup> and P<sup> $\sigma$ -</sup> in phosphide, <sup>23,26</sup> respectively. 15 The detection of these oxidized species should be attributed to surface oxidation of phosphide in the passivation process.<sup>29</sup>

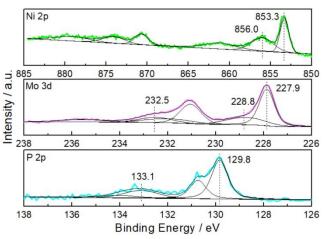



Fig. 3 XPS spectra of Ni 2p, Mo 3d and P 2p regions of NiMoP sample prepared from Ni1M01P1 oxidic precursor.

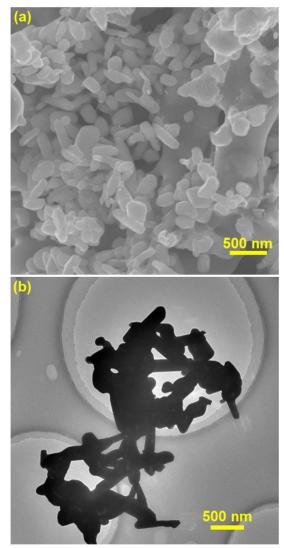



Fig. 4 SEM (a) and TEM (b) images of NiMoP sample prepared from Ni<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub> oxidic precursor in CH<sub>4</sub>/CO<sub>2</sub> gas mixture.

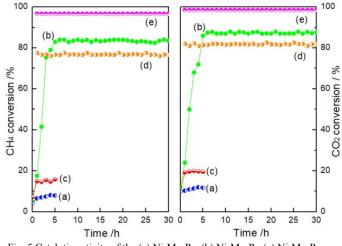
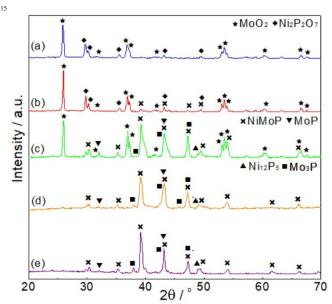
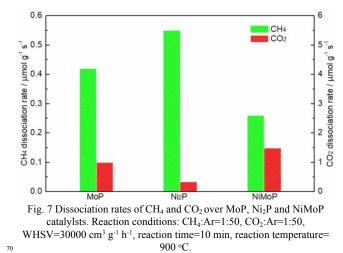



Fig. 5 Catalytic activity of the (a)  $Ni_0Mo_1P_1$ , (b)  $Ni_1Mo_1P_1$ , (c)  $Ni_1Mo_0P_1$ 25 precursors, (d) H2-NiMoP in DRM and (e) estimated values of conversions at the reaction equilibrium. Reaction conditions: CH<sub>4</sub>:CO<sub>2</sub>=1:1, WHSV=9000 cm<sup>3</sup> g<sup>-1</sup> h<sup>-1</sup>, reaction pressure= 1 atm, reaction temperature=900 °C.

Additionally, the morphology of as-prepared NiMoP sample (hereafter denoted as CH<sub>4</sub>/CO<sub>2</sub>-NiMoP) from N<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub> was characterized by SEM and TEM. As shown in SEM image (Fig. 4a), the product consisted of aggregates of <sup>5</sup> irregularly rod-shaped particles. The SEM result was in good agreement with the observation of TEM image (Fig. 4b). However, the NiMoP sample (hereafter denoted as H<sub>2</sub>-NiMoP) obtained by H<sub>2</sub>-TPR consisted of large aggregates of particles (Fig. S1), indicating that serious hydrothermal sintering <sup>10</sup> occurred in this synthesis process.<sup>30</sup> Therefore, the surface area of CH<sub>4</sub>/CO<sub>2</sub>-NiMoP (8.1 m<sup>2</sup> g<sup>-1</sup>) was higher than that of H<sub>2</sub>-NiMoP (4.2 m<sup>2</sup> g<sup>-1</sup>). In addition, CHN analysis result showed no carbon in the CH<sub>4</sub>/CO<sub>2</sub>-NiMoP sample, indicating that no carbon deposition formed in the synthesis process.





Fig. 6 XRD patterns of the products obtained from  $Ni_1Mo_1P_1$  precursor with different time in  $CH_4/CO_2$  at 900 °C. (a) 0 h, (b) 1 h, (c) 3 h, (d) 5 h and (e) 30 h.

The catalytic activity of the Ni<sub>0</sub>Mo<sub>1</sub>P<sub>1</sub>, Ni<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub> and 20 Ni1Mo0P1 precursors in DRM was investigated at 900 °C (Fig. 5). Among the three samples, the  $Ni_0Mo_1P_1$  precursor exhibited the poorest activity with CH<sub>4</sub> and CO<sub>2</sub> conversions of ca. 7 and 10%, respectively within a period of 5 h. This was 25 because the Ni<sub>0</sub>Mo<sub>1</sub>P<sub>1</sub> precursor cannot be reduced to MoP in  $CH_4/CO_2$  gas mixture (see Fig. 1) and the MoOPO<sub>4</sub> product was almost not active for DRM. In the case of the Ni<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub> and Ni<sub>1</sub>Mo<sub>0</sub>P<sub>1</sub> precursors, there was a rapid increase in CH<sub>4</sub> and CO<sub>2</sub> conversions in the initial period, which should be 30 attributed to the in-situ formation of NiMoP from Ni<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub> and Ni<sub>x</sub>P from Ni<sub>1</sub>Mo<sub>0</sub>P<sub>1</sub>, as suggested by XRD result (see Fig. 1). Note that the NiMoP ( $X_{CH4} = ~83\%$  and  $X_{CO2} = ~87\%$ ) showed much higher CH<sub>4</sub> and CO<sub>2</sub> conversions than Ni<sub>x</sub>P  $(X_{CH4} = ~15\%$  and  $X_{CO2} = ~19\%)$  when the reaction proceeded to 35 reach its steady state. In addition, the high activity and

selectivity (see Fig. S2) can be maintained over the catalyst for the duration of the experiment of 30 h and there was almost no change on the catalyst structure during the reaction from 5 to 30 h, as proved later by XRD. For the sake of

- <sup>40</sup> comparison, the DRM performance of NiMoP catalyst prepared in H<sub>2</sub> was also investigated under similar reaction conditions (see Figs. 5 and S2). It can be seen that the conversions over both CH<sub>4</sub>/CO<sub>2</sub>-NiMoP and H<sub>2</sub>-NiMoP were far away from the values ( $X_{CH4}$ =~96% and  $X_{CO2}$ =~98%) at the
- <sup>45</sup> reaction equilibrium.<sup>31</sup> And the conversions over CH<sub>4</sub>/CO<sub>2</sub>-NiMoP were slightly higher (about 6%) than those over H<sub>2</sub>-NiMoP under a WHSV=9000 cm<sup>3</sup> g<sup>-1</sup> h<sup>-1</sup>. When the WHSV was increased to 24000 cm<sup>3</sup> g<sup>-1</sup> h<sup>-1</sup>, the values of X<sub>CH4</sub> and X<sub>CO2</sub> for CH<sub>4</sub>/CO<sub>2</sub>-NiMoP were above 10% higher than those
  <sup>50</sup> for H<sub>2</sub>-NiMoP (Fig. S3). These results should be mainly attributed to its higher surface area and better particle dispersion (see Figs. 4 and S1).

Finally, in order to investigate the formation process of the NiMoP in CH<sub>4</sub>/CO<sub>2</sub> gas mixture, some intermediate <sup>55</sup> samples were characterized. Fig. 6 shows the XRD patterns of the products obtained from Ni<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub> precursor with different time in CH<sub>4</sub>/CO<sub>2</sub> at 900 °C. At 0 h, the precursor was transformed into a mixture phase of MoO<sub>2</sub> and Ni<sub>2</sub>P<sub>2</sub>O<sub>7</sub>. This mixture should also include amorphous PO<sub>x</sub>.<sup>25</sup> When the time <sup>60</sup> increased to 1 h, a small amount of desired product NiMoP had appeared. With further increasing time, the intensity of the MoO<sub>2</sub> and Ni<sub>2</sub>P<sub>2</sub>O<sub>7</sub> peaks gradually decreased, and the Ni<sub>1</sub>Mo<sub>1</sub>P<sub>1</sub> precursor had been basically transformed into a single NiMoP phase at 5 h except a small quantity of Mo<sub>3</sub>P <sup>65</sup> and Ni<sub>12</sub>P<sub>5</sub> phases.



It had been confirmed from XRD that  $Ni_2P_2O_7$  can be reduced easily to  $Ni_xP$  in  $CH_4/CO_2$  (see Figs. 1 and 2). And the  $CH_4$  and  $CO_2$  dissociation studies (Fig. 7) indicated that the  $Ni_2P$  exhibited relatively high activity for  $CH_4$ <sup>75</sup> dissociation but relatively low activity for  $CO_2$  dissociation. Therefore, it was reasonable to deduce that once the  $Ni_xP$  was formed, the Mo species might be reduced to  $Mo_xP$  by  $H_2$  from  $CH_4$  dissociation over  $Ni_xP$ . It was also found from Fig. S4 that the Ni phosphide can directly react with the Mo <sup>80</sup> phosphide to form  $Ni_xMo_yP.^{27}$  Thus, the formation process of NiMoP from  $Ni_1Mo_1P_1$  precursor was proposed as follows: (i) the  $Ni_xP$  was formed in  $CH_4/CO_2$ ; (ii) the  $Mo_xP$  was formed in  $Ni_xP$ -catalyzed  $CH_4$  dissociation; (iii) the  $Ni_xP$  reacted with

Page 3 of 4

 $Mo_xP$  to produce NiMoP. Note that the reaction products included a large amount of CO and H<sub>2</sub> besides H<sub>2</sub>O, which can mitigate the hydrothermal sintering of phosphide particles and avoid carbon deposition on the surface.

#### **5** Conclusions

In summary, we developed a novel in-situ approach to produce NiMoP catalyst in CH<sub>4</sub>-CO<sub>2</sub> for the DRM. In this method, first the Ni<sub>x</sub>P was formed and then the Mo<sub>x</sub>P was formed in Ni<sub>x</sub>P-catalyzed CH<sub>4</sub> dissociation. Finally, the Ni<sub>x</sub>P <sup>10</sup> reacted with Mo<sub>x</sub>P to produce NiMoP. Compared with traditional H<sub>2</sub>-TPR method, the reaction products included a large amount of CO and H<sub>2</sub> besides H<sub>2</sub>O in this novel synthesis route, which can mitigate hydrothermal sintering of phosphide particles. The in-situ synthesized NiMoP in CH<sub>4</sub>-<sup>15</sup> CO<sub>2</sub> showed higher DRM activity than the NiMoP catalyst prepared in H<sub>2</sub>, which should be mainly attributed to its higher

surface area and better particle dispersion.

#### Acknowledgements

The work was supported by the National Natural Science <sup>20</sup> Foundation of China (No. 21978125 and No. 21802061), the Project of Liaoning Province Department of Education (No. L2017LZD003), the Program for Liaoning Innovative Talents in University (No. LR2018070), the Liaoning Province Natural Science Foundation (No. 20180551272), the public <sup>25</sup> welfare project of Guizhou province (No. 2016-09-1).

#### Notes and references

<sup>a</sup>College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, P.R. China E-mail: mezhiwei@163.com

- <sup>30</sup> <sup>b</sup>Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, P.R. China
  - E-mail: liuqingyou@vip.gyig.ac.cn
  - 1 A.-M. Alexander and J.S.J. Hargreaves, Chem. Soc. Rev., 2010, 39, 4388-4401.
- <sup>35</sup> 4388-4401.
   2 E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis and R.E. Schaak, *J. Am. Chem. Soc.*, 2013, **135**, 9267-9270.
   3 K.Y. Yoon, Y. Jang, J. Park, Y. Hwang, B. Koo, J.-G. Park and T. Hyeon, *J. Solid State Chem.*, 2008, **181**, 1609-1613.
- 40 4 X.C. Jiang, Q.H. Xiong, S. Nam, F. Qian, Y. Li and C.M. Lieber, *Nano Lett.*, 2007, 7, 3214-3218.
  - 5 C. Stinner, R. Prins and Th. Weber, J. Catal., 2001, 202, 187-194.
  - 6 R. Wang and K.J. Smith, Appl. Catal. A, 2009, 361, 18-25.
- 7 Z. Yao, F. Luan, Y Sun, B. Jiang and J. Song, *Catal. Sci. Technol.*, 2016, **6**, 7996-8004.
- 8 Y. Cui, Q. Liu, Z. Yao, B. Dou, Y. Shi and Y. Sun, Int. J. Hydrogen Energy, 2019, 44, 11441-11447.
- 9 M. Zheng, Y. Shu, J. Sun and T. Zhang, Catal. Lett., 2008, 121, 90-96.
- 10 R. Cheng, Y. Shu, M. Zheng, L. Li, J. Sun, X. Wang and T. Zhang, J. Catal., 2007, 249, 397-400.
- 11 Z.W. Yao, H. Dong and Y. Shang, J. Alloys Compd, 2009, 474, L10-13.
- 12 Y. Lv and X. Wang, Catal. Sci. Technol., 2017, 7, 3676-3691.
- 13 E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis and R. E. Schaak, *Angew. Chem.*, 2014, **126**, 5531-5534.
- 14 L. Feng, H. Vrubel, M. Bensimon and X. Hu, Phys. Chem. Chem. Phys., 2014, 16, 5917-5921.
- 15 S. Burns, J.S.J. Hargreaves and S.M. Hunter, *Catal. Commun.*, 2007, 8, 931-935.

- 60 16 Z. Yao, M. Li, X. Wang, X. Qiao, J. Zhu, Y. Zhao, G. Wang, J. Yin and H. Wang, *Dalton T.*, 2015, 44, 5503-5509.
  - 17 A. Wang, M. Qin, J. Guan, L. Wang, H. Guo, X. Li, Y. Wang and R. Prins, *Angew. Chem.*, 2008, **120**, 6141-6143.
  - 18 V. Zuzaniuk and R. Prins, J. Catal., 2003, 219, 85-96.
- <sup>65</sup> 19 R. Wang and K.J. Smith, *Appl. Catal. A*, 2009, **361**, 18-25.
  20 B. Guichard, M. Roy-Auberger, E. Devers, C. Legensb and P. Raybaude, *Catal. Today*, 2008, **130**, 97-108.
  - 21 S. Izhar and M. Nagai, Catal. Today, 2009, 126, 172-176.
  - 22 M. Nagai, T. Fukiage and S. Kurata, *Catal. Today*, 2005, **106**, 201-205.
- 70 23 J. Chen, Y. Yang, H. Shi, M. Li, Y. Chu, Z. Pan and X. Yu, Fuel, 2014, **129**, 1-10.
  - 24 K Li, R Wang, J Chen, Energy Fuels, 2011, 25, 854-863.
  - 25 Z. Yao, J. Tong, X. Qiao, J. Jiang, Y. Zhao, D. Liu, Y. Zhang and H. Wang, *Dalton Trans.*, 2015, 44, 19383-19391.
- 75 26 Z. Yao, G. Wang, Y. Shi, Y. Zhao, J. Jiang, Y. Zhang and H. Wang, *Dalton Trans.*, 2015, **44**, 14122-14129.
  - 27 D. Ma, T.C. Xiao, S.H. Xie, W.Z. Zhou, S.L.Gonzalez-Cortes and M.L.H. Green, *Chem. Mater.*, 2004, 16, 2697-2699.
- 28 P. Xiao, M.A. Sk and L. Thia, X.M. Ge, J.Y. Wang, K.H. Lim, R.J. Lim and X.Wang, *Energy Environ. Sci.*, 2014, 7, 2624-2629.
- 29 A.W. Burns, A.F. Gaudette and M.E. Bussell, J. Catal., 2008, 260, 262-269.
- 30 Q. Guan, X. Cheng, R. Li and W. Li, J. Catal., 2013, 299,1-9.
- 31 J. Li, C. Chen, D. Wang, W. Yao and S. Zhang, *Chem. Eng. Oil Gas*, 2015, **44**, 60-64.