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Abstract Adsorption by nanoporous media is critically

involved in many fundamental geological and geochemical

processes including chemical weathering, element migra-

tion and enrichment, environmental pollution, etc. Yet, the

adsorption behavior of metal ions on nanoporous materials

has not been systematically investigated. In this study,

MCM-41 material with a monodisperse pore size (4.4 nm)

and a large BET specific surface area (839 m2/g) was

hydrothermally prepared and used as a model silica

adsorbent to study the adsorption characteristics of Cu2? as

a representative metal ion. The Cu2? adsorption capacity

was found to increase with increasing suspension pH in the

range from 3 to 5 and to decrease in the presence of

NaNO3. At 25 �C, pH = 5, and a solid-to-liquid ratio of

5 g/L, the adsorption capacity was determined to be

0.29 mg/g, which can be converted to a dimensionless

partition coefficient of 45, indicating a strong enriching

effect of nanoporous silica. The adsorption isotherm and

kinetic data were fitted to several commonly used ther-

modynamic, kinetic, and diffusion models. The adsorption

mechanism was also studied by Fourier transform infrared

spectroscopy, X-ray photoelectron spectroscopy and syn-

chrotron-based X-ray absorption spectroscopy. The results

suggest that Cu2? ion adsorption is an entropy-driven

endothermal process, possibly involving both outer-sphere

and inner-sphere complexes.
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1 Introduction

Nanoporous materials are well known for their much larger

specific surface area and distinctive reactivities compared

with nonporous materials (Wang et al. 2002). It has also

been recognized that the properties of fluids in nanopores

can differ very much from those of bulk fluids, indicating

the prominent effect of nano-confinement. As an example,

the freezing point, dielectric constant and even density of

water in nanopores can be significantly lower than those of

bulk water (Jahnert et al. 2008; Senapati and Chandra

2001; Takei et al. 2000). These unique features make

synthetic nanoporous materials excellent candidates in

numerous applications, such as catalysis (Ben Said et al.

2018; Hu et al. 2018; Taguchi and Schuth 2005), electro-

chemistry (Xu et al. 2003), adsorption (Dou et al. 2011),

separation (Lam et al. 2007; Ravi et al. 2015) and so on.

Interestingly, naturally occurring nanopores have been

commonly found in various geological media including

rocks, soils, sediments, minerals, organisms, etc., and may

tremendously contribute to the total surface areas (Wang

et al. 2003). Furthermore, it has become a consensus that

these widespread nanopores play substantial roles in many

important geoscience issues such as chemical weathering

(Hochella 2013; Hochella and Banfield 1995; Hochella

et al. 2008), element migration and enrichment (Cheng
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et al. 2012), treatment of environmental pollutants, storage

and transport of unconventional oil and gas (Bernard et al.

2012; Gu et al. 2018; Loucks et al. 2009; Oliver et al.

1995), geological storage of carbon dioxide (Rother et al.

2012), organic matter preservation (Zimmerman et al.

2004), etc. While adsorption of nanoporous media has been

considered a key process in many aforementioned fields,

many previous studies either aiming at enhancing adsorp-

tion efficiency through surface modification of nanopores

or using natural nanoporous samples with inevitable com-

positional and structural complexity are not conducive to a

clear understanding of the adsorption mechanism (Bradl

2004; Chen et al. 2017; Huang et al. 2012; Matsumoto

et al. 2002; Schulthess et al. 2011; Yuan et al. 2008). Up to

now, there is still a lack of systematic investigations on the

adsorption behavior of nanoporous materials.

Recently, synthetic nanoporous silica materials began to

attract considerable attention from geoscientists as model

materials in adsorption studies, because silica represents

one of the most abundant components of the Earth’s crust

and synthetic samples usually exhibit controllable compo-

sition and structure (Knight et al. 2018; Radha et al. 2016;

Singer et al. 2014; Wu et al. 2014; Wu and Navrotsky

2013). Among those nanoporous silicas, SBA-15 and

MCM-41 type mesoporous (pore size: 2–50 nm) silicas

have caught special interest due to their large specific

surface area, well-controlled size, and ordered pore

arrangement. However, in addition to mesopores, SBA-15

silica normally contains a large number of micropores

(pore size\ 2 nm) (Gibson 2014), which may bring

sometimes overlooked complication to the adsorption

process (Schulthess et al. 2011). For MCM-41 silica,

although having monodispersed mesopores without any

micropores, previous research still focused more on effi-

cient adsorption of contaminants (e.g., heavy metal ions)

by surface modification of nanopores (Elo et al. 2017;

Faghihian and Naghavi 2014; Guo et al. 2015; He et al.

2018; Lee et al. 2016; Zhang et al. 2018). After modifi-

cation, the geometry, volume, and surface functional

groups of the nanopores can be substantially changed, and

accordingly, the observed adsorption behavior cannot truly

reflect the characteristics of natural nanopores. To our

knowledge, only a very limited number of studies explored

the adsorption behavior of unmodified MCM-41 silica

(Thirumavalavan et al. 2011; Tian et al. 2011).

Therefore, we were motivated to systematically deter-

mine the adsorption properties of unmodified MCM-41

nanoporous silica using copper ion (Cu2?) as a represen-

tative adsorptive. Besides the routine uptake experiments,

we also carried out thermodynamic, kinetic, and spectro-

scopic analyses to investigate the adsorption mechanism of

Cu2? on MCM-41. Our work would provide useful insights

for a better understanding of the complex roles of geo-

logical nanoporous media.

2 Experiments

2.1 Materials

Tetraethyl orthosilicate (TEOS, 99%), octadecytrimethyl

ammonium bromide (OTAB, 99%) and ammonia (25–28

wt %) were purchased from Aladdin (Shanghai, China).

Copper nitrate [Cu(NO3)2�3H2O, 99%] was obtained from

West Long Co., Ltd. (Guangzhou, China). All chemical

reagents in this study were used without further purifica-

tion. Deionized water was obtained from a Millipore syn-

ergy UV system (Millipore corporation, Molsheim, Alsace,

France) and had a resistivity of 18.2 MX�cm.

MCM-41 silica was prepared according to a procedure

by Grün M et al (Grun et al. 1999), in which a synthesis

mixture with a molar ratio of

1TEOS:0.152OTAB:2.8NH3�H2O:141�2H2O was

hydrothermally treated at 105 �C for 18 days. In a typical

synthesis, 8.31 g of OTAB as the template was first dis-

solved in 381 g of deionized water. After the solution

became clear, 28.50 g of ammonia was added to the above

solution. Then, 31.25 g of TEOS was added slowly to the

solution over a period of 20 min under stirring. After the

hydrothermal treatment, the solid sample was obtained

through filtration, washed with copious water, and dried at

room temperature. Subsequently, the sample was heated up

from room temperature to 550 �C at a heating rate of 1 �C /

min, and calcined at 550 �C in air for 6 h to produce the

nanoporous MCM-41 silica.

2.2 Characterization methods

The adsorption and desorption isotherms of N2 were

obtained at - 196 �C using a gas adsorption analyzer

(Autosorb-iQ2-MP, Quantachrome). The samples were

degassed at 200 �C under vacuum for 20 h before mea-

surement. The BET (Brunauer–Emmett–Teller) model was

used to analyze the specific surface area and the NLDFT

(nonlocal density functional theory) model was used to

analyze the pore size and pore volume.

The morphology and structure of the samples were

characterized using a transmission electron microscope

(TEM; FEI Tecnai G2F20 S-TWIN TMP) operated at

200 kV and a scanning electron microscope(SEM, FEI,

USA)scanned at 1 kV.

X-ray diffraction (XRD) was performed on a PANalyt-

ical EMPYREAN instrument equipped with Cu Ka radia-

tion (k = 1.5418 Å) using an operating voltage of 40 kV

and an operating current of 40 mA. XRD measurements
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were conducted over a 2h range from 0.5 to 10� with a step

size of 0.013� and a scanning speed of 0.034�/min.

Attenuated total reflectance infrared (ATR-IR) spectra

were recorded over a range of 1200–600 cm-1 with an

accumulation of 256 scans and a spectral resolution of

2 cm-1 using a Bruker Vertex 70 spectrometer equipped

with a mercury cadmium telluride (MCT) detector.

Differential scanning calorimetry measurements were

conducted over a temperature range from - 83 to 7 �C at a

heating rate of 0.5 �C /min using a Discovery DSC 250 (TA

Instruments, America). An air-dried MCM-41 sample

(2.3 mg) was put into an aluminum pan and contacted with

an excess of water (up to 10 mg). The pan was then sealed

and reweighed.

The point of zero charge (PZC) of MCM-41 was

obtained with an automatic potentiometric titrator

(Metrohm 905, Switzerland). A suspension was prepared

by mixing the MCM-41 powder with water at 25 �C in a

constant-temperature oscillator for 24 h (consistent with

the time of adsorption experiment). The suspension was

first titrated to pH = 1.6 with 5% HNO3 and then back-

titrated to 8.0 with 0.5 M NaOH. The blank solution was

obtained by filtering the suspension through a 0.45 lm
membrane filter. The PZC was determined as the pH value

at the intersection point of the titration curves of the blank

solution and the suspension.

X-ray photoelectron spectroscopy (XPS) data were

collected on an ESCALAB 250Xi spectrometer (Ther-

moFisher scientific, America) using an Al Ka radiation

(1486.6 eV). The Al Ka source was operated at 15 kV and

10 mA. The binding energy values were charge-corrected

to the C1s signal (284.8 eV).

Cu L-edge XANES spectroscopy analyses were carried

out at 4B7B beam-line using synchrotron radiation from

Beijing Synchrotron Radiation Facility, Institute of High

Energy Physics of China. Cu L-edge XANES spectra data

were recorded in the total electron yield (TEY) mode with

an energy step of 0.2 eV from 915 to 960 eV.

2.3 Batch sorption experiment

All batch sorption experiments were carried out in 25 mL

flasks. A Cu2? stock solution was prepared by dissolving

Cu(NO3)2�3H2O in distilled water. About 10 mL of an

aqueous solution containing 2, 4, 6, 8, and 10 mg/L of

Cu2? was added to the 25 mL glass flask and shaken with

0.05 g of MCM-41 nanoporous silica in a constant-tem-

perature oscillator (ZWYR-D2304, LABWIT Scientific,

China) for a period of time ranging from 1 to 36 h.

Adsorption experiment was carried out at a temperature of

5 and 25 �C. The solution pH was adjusted by adding drops

of 0.1 M HNO3 and NaOH for all experiments. Suspen-

sions were then filtered using a 0.45 lm PVDF syringe

filter and the Cu2? concentrations of the supernatants were

determined by atomic absorption spectrometry (AAS,

990SUPER, Beijing Purkinje General Instrument Co., Ltd.,

China). Qe (mg/g), the amount of Cu2? adsorbed per unit

mass of the adsorbent was calculated by the following

equation:

Qe ¼
C0 � Ceð ÞV

W
ð1Þ

where C0 is the concentration of Cu2? in the initial solution

(mg/L), Ce is the equilibrium concentration of Cu2? in the

aqueous phase (mg/L), V is the volume of the aqueous

phase (L), and W is the dry weight of the adsorbent (g).

3 Results and discussion

3.1 Characterization of the MCM-41 nanoporous

silica

The low-angle X-ray diffraction pattern of our MCM-41

sample shows a high-intensity peak (corresponding to a

d-spacing of 4.48 nm) and four higher-angle peaks

between 0.5 and 10.0� (Fig. 1a), which can be indexed as

(100), (110), (200), (210), and (300) reflections of the two-

dimensional hexagonal structure, respectively (Beck et al.

1992). The relatively narrow width of the (100) peak along

with the appearance of four additional diffraction peaks

indicates high-quality ordering of our sample (Huo et al.

1996; Kruk et al. 1997). While the SEM image (Fig. 1b)

shows the slightly curled, short rod-like (u0.3 9 1.2 lm)

morphology of our MCM-41 silica, TEM (Fig. 1c) presents

highly regular arrays of uniform nano-sized channels in

accordance with the well-defined 2-d hexagonal phase. The

ATR-IR study (Fig. 1d) reveals that the peaks at 1479,

2853, and 2923 cm-1 characteristic of OTAB (Costa et al.

2014) disappear in the spectrum of the calcined sample,

suggesting efficient removal of organic template through

calcination (550 �C, 6 h).

The N2 adsorption/desorption isotherm of the MCM-41

silica (Fig. 2a) is identified as type IV and exhibits capil-

lary condensation with a narrow Type I hysteresis loop as

reported in previous studies (Schreiber et al. 2001). These

features are considered signature evidence of mesoporosity

with relatively narrow pore size distribution (Thommes

et al. 2015), consistent with the calculated NLDFT results

shown in Fig. 2b. The average pore size of MCM-41 by

NLDFT was found to be 4.4 nm, in rough agreement with

the estimation by TEM. The nanopore volume by NLDFT

was 0.9 cm3/g, and the BET specific surface area of MCM-

41 was 839 m2/g.

The above characteristics including simple silica com-

position, high-quality ordering, nearly monodispersed
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nanopore size, and large specific surface area all seem to

make our MCM-41 sample an advantageous model mate-

rial for adsorption studies. Yet, when MCM-41 is in con-

tact with water, potential influences of several factors such

as the fraction of pore filling by water and dissolution of

silica should be evaluated. We estimated the degree of

nanopore filling by DSC measurements of MCM-41 sam-

ple immersed in sufficient water. As shown in Fig. 3, while

the normal melting temperature of the excessive water

outside nanopores of MCM-41 was observed to be around

0 �C, the drastic depression of freezing and melting tem-

peratures of water inside nanopores (to - 36.5 and - 32.1

�C respectively) clearly suggests the effect of nano-con-

finement mentioned earlier. More importantly, the degree

of pore filling by water (u) can be calculated using the

following equations:
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minH2O ¼ mH2O �MH2O � mMCM�41 þmH2Oð Þ � DfulHout

DfulHðH2O;SÞ

ð2Þ
VinH2O ¼ minH2O=qH2O

ð3Þ

u ¼ VinH2O=Vnanopore � 100% ð4Þ

where minH2O is the mass of water inside nanopores,

moutH2O is the mass of water outside of nanopores, mH2O is

the total mass of water added, DfulHout is fusion heat of ice

outside of nanopores,DfulHðH2O;SÞ is standard fusion heat of

ice, Vnanopore is the pore volume and VinH2O is the volume

of water inside of nanopores (see Table 1). The calculated

degree of pore filling from repeated DSC measurements is

always slightly larger than 100% suggesting complete and

probably easy filling of MCM-41 nanopores, which further

implies negligible effect of pore filling on the adsorption

process (da Silva et al. 2009; Findenegg et al. 2008).

Moreover, the structural stability of MCM-41 in water was

checked by comparing the XRD patterns of samples before

and after being shaken in water (pH = 5, 25 �C) for 24 h.

The negligible difference between the XRD patterns sug-

gests that our MCM-41 sample is robust enough to survive

significant structural degradation due to shaking or disso-

lution in water under our experimental condition of

adsorption.

The PZC is considered an important property for

adsorbents with charged surfaces. The PZC of MCM-41

was determined by following a previously reported method

using an automatic potentiometric titrator (Huang and

Stumm 1973). The acid-base titration data are plotted in

Fig. 4, with the pHapparent PZC value being estimated to be

2.9 (i.e., the pH value at the intersection point of the

titration curves). Therefore, the surface charge of MCM-41

should be positive, around zero, or negative at pH lower

than, equal to, or larger than 2.9, respectively.
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Table 1 Freezing, melting

temperatures and DfulH of water

in the MCM-41 silica

Sample mMCM-41(mg) mH2O(mg) Tf (�C) Tm (�C) DfulHin (J/g) DfulHout (J/g)

MCM-41 2.3 7.8 - 36.5 - 32.1 24.2 172.3
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3.2 Effect of experimental conditions on adsorption

A variety of relevant adsorption parameters (such as pH,

contact time, ionic strength, temperature) are expected to

significantly influence the adsorption behavior of Cu2? on

MCM-41 nanoporous silica and were thus systematically

investigated through batch experiments. The effect of time

and temperature is presented in Fig. 5a. It can be seen that

the amount of adsorption increases rapidly in the first

serval hours and then gradually with the prolongation of

contact time until it reaches its maximum within 24 h.

Whereas the initial rapid adsorption rate is normally

attributed to the higher availability of metal ions (Cu2?)

and functional groups on the silica adsorbent, the pro-

longed plateau in the adsorption curve probably implies the

hindered diffusivity of Cu2? inside the narrow nanopores.

In the following experiments, the contact time was set as

24 h to obtain the adsorption capacity at equilibrium. The

higher initial adsorption rate at 25 �C than that at 5 �C
seems to reinforce the diffusion control on the adsorption

kinetics. The equilibrium adsorption amount of Cu2? was

0.29 mg/g at 25 �C, higher than that (0.22 mg/g) at 5 �C,
which is interpreted as a consequence of an endothermic

adsorption process (see Sect. 3.3).

The effect of pH on the equilibrium adsorption capacity

of MCM-41 is shown in Fig. 5b. The adsorption capacity

apparently follows an increasing trend with the increase of

initial pH values from 3 to 5. Since the pHapparent PZC value

for MCM-41 was determined to be 2.9, the increasing pH

also resulted in a greater extent of deprotonation of surface

silanol groups and thus more negative charges on the

MCM-41 surface. The similar influence of pH on both the

adsorption capacity and the absolute surface charge density

suggests that the electrostatic attraction between Cu2? ions

and SiO- surface charges constitutes an important driving

force of the adsorption process. Moreover, a slight decrease

of the suspension pH was observed after the adsorption

process, indicating certain ion exchange between Cu2? and

H? from the surface silanols (Echeverria et al. 2003). At

pH higher than 5, hydrolysis of Cu2? ions and precipitation

of Cu(OH)2 may become serious, making such a condition

inappropriate for adsorption studies (Stumm and Morgan

1996).

When the adsorption experiment was conducted in the

presence of an often assumed ‘‘inert’’ electrolyte solution

(i.e., NaNO3, 10 mg/L or 0.01 M), a pronounced decrease

in the adsorption capacity of Cu2? was observed from

Fig. 6. A common reason to account for such a depressed

adsorption capacity is that an increased ionic strength can

lower the electric potential of the charged surface, com-

press the electric double layer (Kraepiel et al. 1998; Wang

and Revil 2010), and thus weaken the electrostatic attrac-

tion between Cu2? and charged MCM-41 surface. Another

reason supported by the declined Na? concentration in the

solution is that Na? and Cu2? ions can actively compete

for the adsorption sites on the MCM-41 surface. The

existence of such a competitive role suggests that salts such

as NaNO3 cannot simply be considered just an inert
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electrolyte when studying the adsorption of metal ions on

nanoporous materials. More importantly, based on the

perception that outer-sphere complexes (compared with

inner-sphere complexes) are much more susceptible to the

introduction of an electrolyte solution during adsorption

(Baeyens and Bradbury 1997; Gao et al. 2015), it can be

preliminarily inferred that at least a large proportion of

adsorbed Cu2? ions form outer-sphere complexes with

MCM-41 nanoporous silica. This recognition perhaps

highlights an important distinction between the adsorption

of metal ions on nanoporous silica and that on nonporous

silica, because formation of inner-sphere complexes has

been substantiated on nonporous silica (Cheah et al.

1998, 2000).

3.3 Adsorption thermodynamics

Langmuir and Freundlich models are widely employed to

fit adsorption data. Langmuir isotherm is based on local-

ized monolayer adsorption at a set temperature. The

Langmuir adsorption equation can be written in the fol-

lowing form:

Qe ¼ QmbCe= 1þ bCeð Þ ð5Þ

where Qe is the amount of solute adsorbed per unit weight

of adsorbent at equilibrium (mg/g); Ce is the equilibrium

bulk concentration of adsorbate (mg/L); Qm is the maxi-

mum surface density at monolayer coverage (mg/g); b is

the Langmuir constant (L/mg). Freundlich isotherm is an

empirical formula to model multilayer adsorption on

heterogeneous surfaces (Wu 2007), and is expressed as:

Qe ¼ KfC
ð1=nÞ
e ð6Þ

where Qe and Ce, as defined above, are the equilibrium

amount adsorbed (mg/g) and bulk equilibrium adsorptive

concentration (mg/L), respectively. Kf is the Freundlich

constant (mg/g) representing the strength of the adsorptive

bond, and n is a characteristic factor related to the bond

distribution (Reed and Matsumoto 1993).

As shown in Fig. 7, our experimental data were fitted to

the Langmuir and Freundlich models using the non-linear

method. The model parameters of Langmuir and Fre-

undlich isotherms are presented in Table 2. The R2 value of

Langmuir isotherm appears close to that of Freundlich

isotherm, making it inconspicuous to identify a better fit.

As indicated by the effect of suspension pH on the

adsorption capacity, adsorption of Cu2? might go through

monolayer binding of Cu2? ions to the -OH groups on

MCM-41 wall. It is also possible that Cu2? can diffuse and

fill in the MCM-41 nanopores through electrostatic

attraction. If the adsorption capacity at equilibrium is

converted to the ion volume concentration inside nano-

pores, an ‘‘enrichment factor’’ (i.e., the concentration ratio

of ions inside and outside nanopores) can reach as high as

45, which manifests the dramatic effect of nanopores on

ion distribution in relevant micro-environments.

Since the Freundlich model is purely empirical and lacks

any solid theoretical basis, we used the Langmuir model to

obtain thermodynamic parameters for the adsorption pro-

cess. The Gibbs free energy change (DGH) is the funda-

mental criterion of spontaneity in adsorption systems. At a

given temperature, adsorption reactions occur sponta-

neously if DGH is a negative quantity. The Langmuir

constant obtained from isotherm fitting is related to the

adsorption DGHand other thermodynamic parameters

through the following equations (Sabio et al. 2001; Saeed

and Ahmed 2006):

DGH ¼ �RT lnðbxÞ ð7Þ
ln b ¼ �DH= RTð Þ þ DS=R ð8Þ
DG ¼ DH� TDS ð9Þ

where x refers to the standard mass concentration of the

solution.

The results of the thermodynamic calculation are shown

in Table 2. It can be seen that the DGH values are - 18.39

and - 21.36 kJ/mol at 278 and 298 K respectively, veri-

fying that the sorption process was spontaneous. The

decreasing value of DGH with increasing temperature

implies that the spontaneity degree increased as the tem-

perature increased, consistent with our previous mentioned

temperature effect. The positive DHH value (22.75 kJ/mol)

indicates that the adsorption process was endothermic,

possibly involving breaking the ion-water and water-water

bonding of hydrated metal ions (Saeed and Ahmed 2006).

The positive DSH value (148 J/mol) suggests increasing

randomness during the adsorption of metal ions on MCM-

41, possibly resulting from the dehydration of the bound

water molecules. Therefore, the adsorption of Cu2? on
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Fig. 6 Effect of salt on the adsorption of Cu2? on MCM-41
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MCM-41 nanoporous silica is considered an entropy-dri-

ven, endothermic, spontaneous process.

3.4 Adsorption kinetics

The kinetics of any adsorption process can be influenced by

the structure of adsorbent, properties and concentrations of

adsorbate, and interaction between adsorbent and adsorbate

(Kyriakopoulos and Doulia 2006; Mohan and Singh 2002).

The linear fitting method was used to fit our kinetic data

with two well-known kinetic models as shown below:

ln Qe � Qtð Þ ¼ ln Qe� k1t Pseudo� first� order model

ð10Þ

t=Qt ¼ 1=k2Q
2
e

� �
þ 1=Qeð Þt

Pseudo� second� order model
ð11Þ

where Qe is amount adsorbed at equilibrium, Qt is amount

adsorbed at time t, k1 and k2 are the pseudo-first-order and

pseudo-second-order rate constants of adsorption, respec-

tively. It is clear that our data fit better with the pseudo-

second-order equation, as evident from the much higher R2

value (see Fig. 8). This fitting result also implies that the

adsorption process might involve interaction between Cu2?

and silanol groups on MCM-41 silica.

In mechanism study of adsorption, characteristics of

adsorbate and adsorbent, and their interaction through the

contact time are generally considered. The adsorption

mechanism may become much more complicated when it

involves nanoporous materials with pore diffusion playing

an important role. The adsorption of the metal ion by

porous adsorbents usually has three main steps:

1. The migration of adsorbate to the outer surface of

adsorbent (film-diffusion).

2. The migration of adsorbate in the pores of adsorbent

(intra-particle diffusion).

3. Adsorption of adsorbate in porous adsorbents.

Obviously, the slowest transport step would determine

the total adsorption rate (Sen Gupta and Bhattacharyya

2011).

The Weber and Boyd model is usually used to study the

diffusion mechanism because it determines the rate of ion

diffusion in pores. Weber’s diffusion model is represented

by:

Qt ¼ kdt
1=2 ð12Þ

where Qt is amount adsorbed at time t, and kd (mg/(gh1/2))

is the intra-particle diffusion rate constant. Applying The

Weber and Morris model can help determine the rate-

controlling mechanism of the adsorption process. The kd
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Fig. 7 Fitting of adsorption isotherms through a Langmuir and b Freundlich models

Table 2 Fitting parameters of Langmuir and Freundlich models determined by non-linear method, and thermodynamic parameters derived from

Langmuir model (DG: kJ/mol; DH: kJ/mol; DS: J/mol)

SampleID T (K) Exp.Qe FreundlichQe = Kf Ce
(1/n) Langmuir

Qe = QmbCe/(1 ? bCe)

Thermodynamic

Parameters

N Kf R2 Qm b R2 DG DH DS

MCM-41 278 0.22 1.7059 0.0581 0.9502 0.3501 0.1586 0.9670 - 18.39 22.75 148

MCM-41 298 0.29 2.1750 0.1088 0.9755 0.3971 0.2955 0.9674 - 21.36 22.75 148
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value of MCM-41 is calculated to be 0.180 mg/(gh1/2).

However, the plot in Fig. 9a does not pass through the

origin, indicating that the intra-particle diffusion is not the

only rate-controlling step (Acharya et al. 2009).

Boyd film-diffusion model assumes that the main

resistance of diffusion is in the boundary layer around the

adsorbed particles, and is expressed as:

F tð Þ ¼ 1� 6

p2

� �
exp �Btð Þ ð13Þ

F tð Þ ¼ Qt

Qe

ð14Þ

The equation below is obtained by taking the natural

logarithm of the rearranged Eq. (13):

Bt ¼ �0:4977� ln 1� F tð Þð Þ ð15Þ

B ¼ Dip2

r2
ð16Þ

where F(t) is the fraction of Cu2? adsorbed at different

time, B can be used to calculate the effective diffusion

coefficient Di (m2/h), r is the radius of the adsorbent

particles assuming a spherical shape. Boyd model analysis

is presented in Fig. 9b. The plot of Bt against time t is

linear but does not pass through the origin, implying film-

diffusion control of the adsorption rate (Malash and El-

Khaiary 2010). The Di value is found to be 1.3 9 10-14

m2/h for MCM-41 nanoporous silica.

3.5 Spectral analysis of adsorption mechanism

In order to investigate the adsorption mechanism of Cu2?

on MCM-41, ATR-IR measurement of MCM-41 samples

before and after Cu2? adsorption was carried out. As

shown in Fig. 10a, the absorption bands at around 1082,

970, and 800 cm-1 are typical of silica species. Specifi-

cally, the bands at 1082 and 800 cm-1 represent asym-

metric and symmetric stretching vibrations of Si-O-Si,

respectively. The band at 970 cm-1 is ascribed to the

stretching vibration of Si-OH species (Spiekermann et al.

2012). The asymmetry of the peak at around 970 cm-1

indicates the presence of multiple vibrations, probably due

to Si-O- and Si-OH groups for sample before Cu2?
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adsorption (Ma et al. 2013). Compared with the peak at

970 cm-1, the slight red-shift to 967 cm-1 for sample after

Cu2? adsorption is likely due to the intensity changes of

several superimposing modes (including Si-O-, Si-OH and

Si-O-Cu groups), suggesting a possible interaction between

Cu2? ions and Si-OH/Si-O- groups (Ma et al. 2013).

The Cu 2p XPS spectrum of the MCM-41 adsorbent

after adsorption (initial Cu2? concentration 10 mg/L, 24 h)

is shown in Fig. 10b. The two peaks centered at 934.37 and

954.18 eV are attributed to the Cu 2p3/2 and Cu 2p1/2 levels

of the Cu2? species, respectively. Compared with that of

Cu(NO3)2�3H2O, the Cu 2p XPS spectrum of MCM-41

after Cu2? adsorption shifted to a lower energy level. This

result again suggests the interaction between Cu2? and the

Si–OH, which leads to increased electron cloud density on

copper ions and therefore lowered binding energy level of

the adsorbed Cu2? species (Ma et al. 2013; Yuan et al.

2013).

Figure 10c shows the Cu L3 XANES spectrum of

MCM-41 after Cu2? adsorption. The peak is assigned to

the transition from the 2p3/2 to the highest unoccupied 3d

state. The XANES spectrum exhibits absorption maxima at

930.1 and 930.8 eV, which are assigned to CuO4 tetrahedra

and CuO6 octahedra respectively (Shimizu et al.

2000, 2001). This result implies that the Cu2? adsorption

process is probably accompanied by the formation of Si-O-

Cu bonds, which seems to favor inner-sphere adsorption

complexation consistent with previous investigations

(Cheah et al. 1998; Nelson et al. 2017).

4 Conclusions

MCM-41 material with a uniform pore size (4.4 nm) and a

large specific area (839 m2/g) was synthesized and used as

a model adsorbent to systematically study the adsorption

behavior of Cu2? on nanoporous silica. The easy accessi-

bility of the nanopores by aqueous solution as revealed by

the high pore-filling degree (* 100%) serves as a solid

foundation to validate the practical role of nanoporous

media in numerous geological environments. A high value

(over 45) of the dimensionless partition coefficient high-

lights the intense metal ion-enriching effect due to the

existence of nanopores. The relatively slow adsorption

kinetics is interpreted as a result of film diffusion and intra-

particle diffusion associated with the restricted nanopores.
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The adsorption capacity of Cu2? decreases with the

decrease of pH or the increase of ionic strength, suggesting

the important role of electrostatic interaction between

oppositely charged species. Thermodynamic analysis

indicates that Cu2? adsorption on nanoporous silica is a

spontaneous entropy-driven process very likely involving

an endothermal dehydration step. The often considered

inert electrolyte (e.g., NaNO3) significantly reduces the

adsorption capacity through not only suppression of the

electric double layer but also competition for the adsorbing

sites, implying that a large proportion of adsorbed Cu2?

inside nanopores may engage in outer-sphere complexa-

tion. Conversely, spectroscopic characterization appears to

support the formation of inner-sphere complexes. We

believe that the severe superposition of electric potentials

from the charged walls of narrow nanopores must consti-

tute a key mechanism in the adsorption process, which

certainly strengthens the electrostatic interaction and per-

haps exerts substantial perturbation on the electronic

structure of Cu2? species.
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