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Abstract
Research on mercury (Hg) in aquatic ecosystems in China has focused mainly on fish, with little research on the base of the 
food chain and Hg bioaccumulation mechanisms. This paper summarizes research progress pertaining to the characteristics, 
current status, and trends of Hg accumulation in the aquatic food chain in China, analyzes the effects of human activities on 
the transmission and accumulation of Hg in aquatic food chains, and assesses their risks to human and ecosystem health. A 
comparison of fish samples in China between 2000 and 2018 indicates that their total Hg content remains at relatively safe 
levels. However, because current information is generally insufficient to confirm how anthropogenic activities affect trans-
formation and bioaccumulation in the aqueous environment, Hg isotope studies should be a focus of research on aquatic food 
webs. Additionally, more attention should be paid to Hg transport and bioaccumulation in the basic food chain by focusing 
on multi-contaminant joint exposure studies and establishing Hg bio-transport models.
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Hg is one of the most hazardous pollutants in aquatic eco-
systems, where it is readily transformed to methylmercury 
(MeHg), which bioaccumulates and biomagnifies in aquatic 
organisms. Elevated Hg concentrations in fish have been 
an environmental concern worldwide for decades, both 
in fish living near contaminated sites receiving direct Hg 
loads (Buzina et al. 1989; Mikac and Picer 1985; Puga et al. 
2018) and also in fish living in environments where no direct 

sources exist, such as natural lakes (Håkanson et al. 1990; 
Huggett et al. 2001; Lindqvist et al. 1991; Watras and Frost 
1989; Evans et al. 2005; Eagles-Smith et al. 2016), wetlands 
(Snodgrass et al. 2000; Gbogbo et al. 2017), oceans (Rolfhus 
and Fitzgerald 1995), and even new reservoirs (Bodaly et al. 
1984; Hecky et al. 1991; Lucotte et al. 1999; Hylander et al. 
2006) since the 1980s.

China is the world’s largest producer, user, and emitter of 
Hg, as well as the world’s largest producer and exporter of 
fish which contributed more than 60% of world production 
by quantity (FAO 2012). Through the past decades, thou-
sands of hydropower reservoirs have been built in China. 
Meanwhile, aquaculture blooms and eutrophication have 
become common in rivers, lakes, reservoirs, and coastal 
zones (Li 2018). Environmental pollution and destruction 
of ecosystems have also made the accumulation of Hg in 
aquatic food chains more complex in China. Therefore, more 
attention has been paid to the bioaccumulation of Hg in fish. 
However, results show that most of the Hg concentrations 
in fish across the country, except for in Tibet and Qiandao 
Lake, do not exceed the limit of Hg content established by 
the World Health Organization (WHO < 0.5 mg/kg) (Pan 
et al. 2014; Yan et al. 2010; Yi et al. 2011) and that concen-
trations have even been very low in some Hg-contaminated 
areas in the last decades (Liu et al. 2012; Yan et al. 2010). 
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Previous research has suggested that these low concentra-
tions can be attributed to the use of aquaculture and over-
fishing, which lead to a short and simple food chain due to 
the biodilution effect and destruction of food chain integrity 
(He et al. 2008; Liu et al. 2012; Wang et al. 2011; Yao et al. 
2011; Zhang 2009). Based on this context, this paper sum-
marizes and analyzes the research progress pertaining to Hg 
accumulation in China, including the characteristics, current 
status, and trends of accumulation in the aquatic food chain. 
We aim to provide a summary of the research on Hg bioac-
cumulation in aquatic ecosystems in China and also discuss 
prospects for future research.

To examine the spatial changes of Hg in fish, we estab-
lished a national database of Hg in both marine and freshwa-
ter fish in China covering up to 7197 fish samples collected 
from 35 different administrative 73 sites. Based on these 
extensive data collection and meta-analysis, we then created 
a national spatial distribution maps of fish Hg levels (Fig. 1), 
which illustrated all fish Hg data from 2000 to 2018 from 
different basins. All fish Hg data are presented on a wet 
weight (ww) basis.

Research Progress

In the past three decades, research on Hg in aquatic eco-
systems in China has focused mainly on the accumulation 
of Hg in fish (Liu et al. 2014b; Razavi et al. 2014b; Shao 
et al. 2011), but there has been little research on the base of 
the food chain, such as on the benthic and pelagic commu-
nity or biofilms and aquatic plants, and more attention has 
been given to current human health risks than to ecosystem 
health risks. Additionally, the research on the accumulation 
of Hg in fish has focused mainly on the following points: 
(1) health risk assessment of edible aquatic products; (2) 
research on the effects of human activities on the biological 
transport and accumulation of Hg in aquatic food chains; and 
(3) evaluating bioaccumulation processes of Hg using stable 
isotopes of carbon, nitrogen, and Hg. These three points are 
discussed in detail in the remainder of this section.

Because fish is the main dietary source of high-quality 
protein for humans, health risk assessment of fish products 
has been given high priority. Investigations initiated in the 
late 1980 s in the northern-tier states of the United States, 

Fig. 1   Map of average THg in fish in China during 2000 to 2018 (See Supplemental information for References in S1-R5)
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Canada, and Nordic countries found that fish, mainly from 
oligotrophic lakes and often from very remote areas, com-
monly contained high levels of Hg. In the 1990s, elevated 
concentration levels of Hg were found in fish in some new 
reservoirs (Hecky et al. 1991; Schetagne et al. 2000). How-
ever, because China is a major producer of fish products, 
it is highly important to consider the status of Hg content 
in fish products in China.

As a whole, health risk assessments of Hg exposure 
from edible aquatic products have focused mainly on fish 
from coastal areas (Cheng and Hu 2012), Hg-contaminated 
areas (Zhang et al. 2014) and some wild fish from pristine 
areas (Zhang et al. 2014). Figure 1 summarizes the average 
THg content in fish from different regions and provinces 
in China. The results show that the THg in fish is within 
the average value range of 8.5–274.7.0 ng/g (w/w) with 
the highest value of 1218 ng/g (ww) (Liu et al. 2014a; 
Zhang et al. 2014). Generally, MeHg in fish increases 
with size, weight, age, trophic position and feeding habits 
(herbivorous < omnivorous < carnivorous). According to 
references, the concentration of MeHg is very low, only 
about 49.1 ng/g (ww) with a range from 8.0 to 680.0 ng/g 
(ww) (Wang et al. 2011; Liu et al. 2012; Feng et al. 2018; 
Xu et al. 2018). Therefore, the MeHg contents of most 
fish don’t exceed the national limit recommended by the 
Standardization Administration of China (500 ng/g ww) 
(GB2762-2012 2013), which indicates that THg in fish in 
China remains at a relatively safe level or a potential health 
risk by PDI/PTWI (probable daily intake-PDI, provisional 
tolerable weekly intake-PTWI) assessment (Cheung et al. 
2008; Li et al. 2013; Razavi et al. 2014a, b; Zhang et al. 
2018a, b). Nevertheless, marine fish on the consumer 
market are primarily carnivores, and may contain higher 
concentrations of Hg just like fishes from populated areas. 
Therefore, the potential health risks from Hg in fish, it is 
necessary to develop consumption guidelines for pregnant 
or nursing women and young children with diets heavy in 
marine fish in the coastal areas.

Human activities have had considerable effects on the 
accumulation and transmission of Hg in aquatic food chains. 
In the past three decades, the impacts of reservoir construc-
tion, aquaculture, pollution of water environments, and 
eutrophication have been of particular concern in China. 
This aspect of research began receiving more attention as a 
result of work in reservoirs in the Wujiang watershed since 
the 2000s. Subsequently, research has been conducted in 
many aquatic systems, including reservoirs (Li et al. 2015; 
Razavi et al. 2014a; Wang et al. 2014a, b; Yan et al. 2010), 
lakes (Yang et al. 2011; Zhu et al. 2012a, b; Zeng 2017), riv-
ers (Shao et al. 2016; Zhu et al. 2012a, b; Zhu et al. 2012a; 
Zeng 2017), aquaculture farms (Gao et al. 2011; Liang et al. 
2016; Shao et al. 2011; Xu and Wang 2017; Zhang et al. 
2018a, b), estuaries (Liu et al. 2018a, b, c; Yin et al. 2016), 

and other coastal areas (Liu et al. 2014a; Pan et al. 2014; 
Qiu and Wang 2016; Wang et al. 2005) across the country.

The results show that overfishing, aquaculture, eutrophi-
cation, and environmental pollution have caused great 
changes in aquatic food webs. Most results have supported 
the following conclusions: (1) Overfishing, eutrophication, 
and aquaculture lead to shorter food chains, lower ages of 
fish, faster growth rates of fish (Liang et al. 2016), and low 
bioaccumulation factors (BMFs), about 0.06–0.08 for the 
correlation slope between log10[Hg] and δ15N‰ (Li et al. 
2015; Liu et al. 2012; Pan et al. 2014; Razavi et al. 2014a, b). 
(2) The number of large carnivorous fish has declined, and 
the Hg concentration in fish no longer increases with trophic 
level, size, and age (Feng et al. 2018; Yan et al. 2010). (3) 
There has been no significant increase in Hg concentration 
in the fish at the beginning of reservoir construction due to 
the low organic matter content in flooded soil (Larssen 2010; 
Li et al. 2013, 2015, 2017; Yu et al. 2013). (4) Hg concentra-
tion in fish depends on their feeding habits (Li et al. 2009; 
Liang et al. 2016; Zhou and Wong 2000), and the proportion 
of MeHg to THg in fish and other organisms is low, mostly 
in the range of 30%–60%, due to the low% MeHg in water 
and sediment (Feng et al. 2018; Li et al. 2018; Liu et al. 
2012; Zhu et al. 2012a). The ratio of MeHg to THg in some 
maricultured-fish is up to 66%–81% (Liang et al. 2011; Liu 
et al. 2018b). Additionally, in some aquatic systems, such 
as in Tibet (Zhang et al. 2014) and Qiandao Lake (Razavi 
et al. 2014a), both Hg-contaminated areas (Xu and Wang 
2017), a small part of fish have higher Hg concentration for 
the possible reason that they feed commercial food pellets 
with high Hg concentration or are wild fish with higher age. 
This contamination probably occurs at high trophic position 
and with low growth rate.

Anthropogenic activities have greatly altered the sources 
and biogeochemical processes of Hg; however, their impact 
on the transformation and bioaccumulation of Hg in the 
aqueous environment remains less clear (Fitzgerald et al. 
2007). The use of stable isotopes to solve biogeochemical 
problems in ecosystem analysis is increasing rapidly because 
stable isotope data can contribute to both source–sink 
(tracer) and process information (Peterson and Fry 1987). 
Therefore, stable isotopes are often used to trace the source, 
process, and fate of pollutants or other matters in air, water, 
sediment, soil and organisms. For instance, the elements C, 
N, and Hg all have more than one isotope, and the isotopic 
compositions of natural materials can be measured with 
great precision with a mass spectrometer. Isotopic compo-
sitions change in predictable ways as elements cycle through 
the biosphere.

The stable isotopes of nitrogen (expressed as δ15N) and 
carbon (δ13C) have been used to estimate trophic positions 
of consumers and carbon flows to consumers in food webs 
(Liu et al. 2012; Liu et al. 2018a, b, c; Post 2002; Zhang 
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et al. 2014). However, it has been found that phytoplank-
ton, as the base of the basic food chain, sometimes have 
much higher δ15N values than fish, which suggests that the 
discharge of nitrogen-containing wastewater might have 
an effect on accurately identifying the nutrient position of 
organisms in the food chain using only nitrogen isotopes.

Stable isotopic compositions of Hg in aquatic organ-
isms have been used to trace the source and transport of 
Hg in the environment. The results of Yin et al. showed 
variations in mass-independent fractionation (Δ199Hg: 
+0.05 ± 0.10‰ to +0.59 ± 0.30‰) with a Δ199Hg/Δ201Hg 
of ~ 1.26, suggesting that aqueous MeHg underwent photo-
degradation prior to incorporation into the food chain. The 
significant differences of Δ199Hg values among different 
feeding habit fish indicated that it may have incorporated 
MeHg with various degrees of photo-demethylation (Yin 
et al. 2016). Xu and Wang (2017) tracked Hg exposure 
from different food sources in marine-caged fish in south-
ern China using δ202Hg and Δ199Hg values. According to 
the slope of Δ202Hg/Δ199Hg in fish, the study of Hua et al. 
indicated the mass independent fractionation in fish from 
the Xiaolangdi Reservoir subject to the photodegrada-
tion of monomethylmercury (Hua et al. 2016). In addi-
tion, his results inferred the MeHg source of fish by the 
correlation of MeHg concentrations and % MeHg in the 
fish with δ202Hg and Δ199Hg. The results show that Hg 
isotopes, especially the Hg-MIF (mass-independent iso-
tope fractionation) can be a powerful tool for revealing the 
exposure pathways and geochemical behaviors of MeHg in 
aquatic food webs (Hua et al. 2016; Liu et al. 2018a; Wang 
et al. 2013; Xu and Wang 2017; Xu et al. 2016; Yin et al. 
2016). However, this field remains in the development 

stage and requires further research due to the uncertainty 
of some theories and methods.

Areas of Limited Research

Compared with research on fish, research on the base of the 
food chain in China is relatively weak because risk to human 
health is not directly involved. The following provides a 
summary of recent research progress on bioaccumulation 
of Hg in plankton and benthic organisms in China.

Study of the concentration of Hg in phytoplankton in 
China is at a moderate level compared with such studies 
worldwide, and studies in China are still being carried out 
mostly in Guizhou (Table 1). As revealed by these studies, 
the high Hg content of phytoplankton in Guizhou may be 
because the high Hg geological background value. Because 
the natural THg is higher, the Hg content in phytoplankton 
is also higher. Correspondingly, phytoplankton Hg content 
in Daya Bay in Guangdong is low.

Zooplankton is one of the largest aquatic communities in 
lakes and reservoirs and is also one of the important food 
sources for aquatic organisms. The important position of 
zooplankton in the aquatic food chain has led to study of its 
concentration of heavy metals, including Hg. Hg pollutants 
in water can be understood in the contexts of the food chain 
and the aquatic environment. However, there have been few 
studies on the concentrations of heavy metals, including 
Hg, in zooplankton in China. Guizhou, located in south-
west China, is within one of the three major Hg mineraliza-
tion zones in the Pacific Rim. The region has abundant Hg 
resources, mining of Hg, and a high natural Hg geological 

Table 1   THg concentrations 
in phytoplankton (64–112 µm) 
in different areas from selected 
published data

Country Geographical area Concentration (ng/g dw) References

Brazil Tapajos River 66 (n = 8) (Roulet et al. 2000)
Canada La Grande Hydroelectric Complex 87 ± 20 (n = 13) (Schetagne et al. 2000)
Colombia Grande Marsh, Cauca River Basin 520 ± 30 (n = 9) (Marrugo-Negrete et al. 2008)
India Husain Sagar Lake 43 (n = 5) (Prahalad and Seenayya 1988)
China Baihua Reservoir, Guizhou 0–227 (n = 21) (Li et al. 2014; Deng 2016)

Caohai Wetland, Guizhou 135 (n = 17) (Zeng 2017)
Guangdong, Daya Bay 54

(n = 4)
(Lin et al. 2013)

Taihu Lake, Jiangsu 33.0 ± 11.0
(n = 6)

(Wang et al. 2012)

680–1050
(n = 102)

(Wang et al. 2015)

Xiaoguan Reservoir, Guizhou 24.43–42.34
(n = 24)

(Deng 2016)

Hongfeng Reservoir, Guizhou 21.63–79.48
(n = 20)

(Deng 2016)

River, Hunan 4.0–15.0
(n = 5)

(Lu et al. 2016)
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background, which makes Guizhou one of the regions with 
serious Hg pollution. Therefore, the few systematic studies 
currently available on the concentration of heavy metals in 
zooplankton have been concentrated in Guizhou and a few 
other locations (Li et al. 2014; Zeng 2017). According to 
the available data, the median value of Hg in zooplankton 
is relatively lower than at other sites in the world (Table 2).

The study of Hg content in benthic organisms in China 
is still very limited with large research gaps, and published 

literature on benthic THg data are available in only about 
nine provinces (Fig. 2, S1-R5). China has a vast marine 
area and abundant inland water resources, so many types of 
aquatic products are output. If high Hg concentrations exist 
in these edible aquatic products, it will cause great harm to 
humans. Therefore, the research objects of Hg enrichment in 
benthic animals in China are mostly listed aquatic products 
such as shrimp, crab, and shellfish, and the research sites are 
mostly coastal provinces such as Guangdong and Jiangsu.

Table 2   THg in zooplankton (112–500 µm) in different areas from selected published data

Country Geographical area Concentration (ng/g dw) References

Canada Northern Quebec 75–310 (n = 19) (Kainz and Lucotte 2002)
La Grande Hydroelectric Complex 132 ± 10 (n = 13) (Schetagne et al. 2000)
Canadian lakes 25–377 (n = 3) (Li 2018)

Colombia Grande Marsh, Cauca River Basin 940 ± 50 (n = 9) (Schetagne et al. 2000)
India Husain Sagar Lake 68 (n = 5) (Prahalad and Seenayya 1988)
USA Vermont and New Hampshire lakes 16–335 (n = 20) (Kamman et al. 2004)
USA–Canada Lake Superior 20–130 (n = 9) (Lucotte et al. 1999)
China Baihua Reservoir, Guizhou 186 (n = 16) (Xu and Wang 2017)

Caohai Wetland, Guizhou 181.96 (n = 17) (Zeng 2017)
Reservoirs and wetlands, Guizhou 152.59 (n = 30) (Long et al. 2018)
Taiwan, Okinawa Trough 80–1090 (n = 8) (Xu 2014)

Fig. 2   Average THg in benthonic organisms in China
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The province with the highest Hg content in benthic 
animals has levels as high as 393.92 ng/g at Deer Island, 
northern Yellow Sea (Lin et al. 2013). Provinces with lower 
concentrations are located mostly in East China: Shandong, 
about 21.24 ng/g (Cui et al. 2011; Zhang and Zhang 2014), 
Fujian, about 22.5 ng/g (Lin et al. 2013), and Guangdong 
(Qiu and Wang 2016). A comparison of national and inter-
national limits for Hg in marine products shows that the 
Hg in benthos is lower than the national Hg content limit. 
In addition, crab has higher Hg content than other benthos 
(Fan et al. 2012).

As mentioned above, studies on Hg bioaccumulation in 
the basic food chain have been carried out only in a few 
areas. Meanwhile, there are some problems for sampling 
methods of base food chain samples. For instance, those 
64–112 µm phytoplankton and 112–500 µm zooplankton 
may be too large to be fed by these fishes in higher trophic 
position. Therefore, this could affect us to draw accurate 
conclusions on Hg transport and bioaccumulation in the 
food chain. Additionally, the study on Hg bioaccumulation 
mechanisms in food chain is very lack till now. For instance, 
it is still unclear what factors affect the transformation and 
accumulation efficiency of Hg in the food chain. What is 
the bioaccumulation and metabolic mechanism of Hg in 
different fish species? There are few studies to investigate 
these similar questions which is in vivo Hg methylation and 
demethylation in freshwater tilapia. Results indicated the 
inter-organ transportation of MeHg from liver toward muscle 
and net methylation in vivo (Wang et al. 2013).

Perspectives on Future Research

As mentioned above, most of the research has focused on 
the bioaccumulation of Hg in the aquatic environment. But 
there are only a few detailed studies on the mechanism of 
Hg bioaccumulation. Additionally, although many studies on 
the bioaccumulation of Hg in benthic organisms and plank-
ton have already been conducted in the world, the research 
published in this field in China is quite lacking, with fewer 
detailed studies of mechanism (Wang et al. 2013, 2017).

In recent years, the ecosystem environment in China has 
improved with implementation of environmental protection 
policies such as no-fishing policies and policies pertaining 
to the elimination of eutrophication of water bodies, which 
should be conducive to the restoration of ecosystems and the 
intact food chain. However, this would increase Hg concen-
tration level in fish in the future. Recent international stud-
ies have shown that the Hg levels in fish are increasing in 
some areas. Therefore, we need to pay more attention to the 
transport and bioaccumulation of Hg in the basic food chain, 
such as in benthic organisms and plankton, and also pay 
continuous attention to ecosystem change for an extended 

period of time. Secondly, multi-pollution exposure is more 
toxic than single-contamination exposure for aquatic organ-
isms. Therefore, we should pay attention to multi-contami-
nant joint exposure study of the food chain in some polluted 
areas and also conduct research on the mechanism of joint 
exposure through laboratory simulation, which protects both 
human health and ecological health. Additionally, establish-
ment and application of a biological transport model of Hg 
in China’s water environment is needed.
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