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ABSTRACT
It is important to study the responses of the magnetotelluric (MT) method in anisotropic
media. However, MT anisotropy research has focused mainly on one-dimensional (1D) and two-
dimensional (2D) solutions. Therefore,wedeveloped a three-dimensional (3D) finite element (FE)
algorithm for MT modelling in anisotropic media. This approach is based on the weak formula-
tion of the governingMaxwell equations using Coulomb-gauged potentials. The node-based FE
method is adopted here, and the values of the coefficientmatrixes are obtainedwith hexahedral
meshes. To validate the correctness and accuracy of this method, its results are compared with
previous solutions for a 2D anisotropicmodel and a 3D arbitrary anisotropicmodel, respectively.
Different solvers with different preconditioners are tested, and the results show that the quasi-
minimum residual method with the incomplete LU preconditioner is more stable and faster
compared with the other schemes. We then studied a 3D anisotropic model in three different
conditions, and analysed the results in detail. Finally, three main conclusions are obtained: the
xy- and yy-mode apparent resistivities remain almost unchanged if a principal conductivity is
in the x-direction; the yx- and xx-mode apparent resistivities remain almost the same if a prin-
cipal conductivity is in the y-direction; a principal conductivity in the z-direction has almost no
influence on apparent resistivities.

ARTICLE HISTORY
Received 10 July 2017
Accepted 19 December 2018

KEYWORDS
Magnetotelluric; anisotropy;
3D modelling;
Coulomb-gauged potentials;
finite element

Introduction

The magnetotelluric (MT) method, a passive geophys-
ical exploration technique, has been used in many
areas such as mineral resources surveys, oil and gas
exploration, and investigation of deep Earth electri-
cal structures (Farquharson and Craven 2009; Bai et al.
2010; Sarvandani et al. 2017). Researchers (Christensen
1984; Klein and Santamarina 2003; Evans et al. 2005)
have shown that the Earth is anisotropic, and electrical
anisotropy has been recognised as a significant factor
for the interpretation of MT data. Although it is not
reasonable to ignore the anisotropic influence, interpre-
tations of MT data generally assume that the medium
is isotropic. Because modelling is the base of the inver-
sion, it is meaningful and important to study MT mod-
elling in anisotropic media.

In one-dimensional (1D) anisotropic media, forward
modelling and inversion of MT have been widely stud-
ied (O’Brien et al. 1967; Reddy and Rankin 1971; Dekker
and Hastie 1980; Yin 2000; Pek and Santos 2002; Kirkby
et al. 2015). A great many of studies (Heise and Pous
2001, 2003; Yin 2003; Hu et al. 2013; Huo et al. 2015)
of two-dimensional (2D) anisotropic media have also
been carried out: early research focused on symmetri-
cal anisotropic media (Xu 1994); Pek and Verner (1997)

developed the finite difference (FD) method for MT
modelling in 2D arbitrary anisotropic media; later, Li
(2002) presented a 2D finite element (FE) method
for MT modelling in generalised anisotropic media;
and Li and Pek (2008) further developed a 2D adap-
tive FE modelling algorithm in arbitrary anisotropic
media. However, despite the great deal of work car-
ried out in this general area, there are just a handful
of three-dimensional (3D) anisotropicmodelling studies
(Martinelli and Osella 1997; Wang and Fang 2001;
Häuserer and Junge 2011; Löwer and Junge 2017; Kong
et al. 2018; Cao et al. 2018). In particular, Weidelt et al.
(1999) presented a staggered-grid FD algorithm for
MT modelling in 3D arbitrary anisotropic media, how-
ever, this algorithm is not convenient for dealing with
irregular anomalies. Li (2000) presented a node-based
FE method for MT modelling, however, it is not accu-
rate enough because the nodal FE method cannot
meet the required condition that the normal electric
fields are discontinuous at electrical interfaces. To avoid
this disadvantage of the node-based FE method, Xiao
et al. (2018b) developed an edge-based FE method,
but it is also not convenient for dealing with irregular
anomalies or topography as rectangular meshes were
adopted. Recently, Liu et al. (2018) presented an adap-
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tive FEmethodwith tetrahedronelements in 3Dgeneral
anisotropicmedia,which is able to simulate topography
and irregular anomalies.

FE methods are widely used in the area of electro-
magnetic (EM) numerical modelling (Everett 2012; Cai
et al. 2014; Ren et al. 2014; Li et al. 2016). For MT mod-
elling, most of the FE methods are formulated in terms
of electric fields or magnetic fields, although they can
also be formulated in terms of coupled vector–scalar
potentials (Biro and Preis 1989; Haber et al. 2000; Badea
et al. 2001; Mitsuhata and Uchida 2004; Xiao et al. 2018).
Puzyrev et al. (2013) presented a nodal FE algorithm
for 3D controlled-source EM (CSEM) forward modelling
problems using the secondary coupled-potential for-
mulation of Maxwell’s equations in anisotropic media,
however, the case of generalised anisotropy was not
taken into consideration. Cai et al. (2015) implemented
a 3D FE solution for marine CSEM data and formulated
the problem with the scalar and vector potentials, but
also did not consider generalised anisotropy.

Here, the algorithm for 3D MT forward modelling in
anisotropic media is formulated in terms of Coulomb-
gauged EM potentials (A − ψ ) using a node-based FE
method. The main contribution of this paper is that
we develop a method to simulate MT responses in 3D
electrical anisotropic media. Although there are several
algorithms in terms of electric or magnetic fields, we
present another option.

Problem formulation

Applying the MT method, displacement currents are
negligible in comparison with their conduction coun-
terparts. For the EM field, the diffusive Maxwell’s equa-
tions with a time dependence of e−iωt are (Xu 1994):

∇ × E = iωμH (1)

∇ × H = σ̃E (2)

In these expressions, E and H are the EM field, ω is
the angular frequency, μ is the magnetic permeability

of free space, and σ̃ is the conductivity in anisotropic
media. σ̃ in Equation (2) is a tensor as follows:

σ̃ =
⎛
⎝σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ (3)

There are twomethods (Yin 2000; Pek and Santos 2002)
to define σ̃ , the latter of which is adopted here. As
shown in Figure 1, σ̃ is represented by six variables:
three principal conductivities (σx , σy , σz), as well as the
strike angle, dip angle and slant angle (αS,αD,αL). The
rotation axes of three rotations are the z-axis, x′-axis and
z′-axis, respectively.

The EM field can be expressed in terms of amagnetic
vector potentialA and an electrical scalar potentialψ as
(Puzyrev et al. 2013),

B = ∇ × A (4)

E = iω(A + ∇ψ) (5)

where B = μ0H.
To guarantee the uniqueness of the vector potential

A, the Coulomb gauge condition∇ · A = 0 should be
adopted. Substituting Equations (4) and (5) into Equa-
tions (1) and (2), then Equations (6) and (7) are obtained
as follows (see Puzyrev et al. (2013) for details):

∇2A + iωμ0σ̃ (A + ∇ψ) = 0 (6)

∇ · [iωμ0σ̃ (A + ∇ψ)] = 0 (7)

Solving Equations (6) and (7) simultaneously with
proper boundary conditions, then A and ψ can be
obtained.

Finite element analysis

The study domain utilised here, as shown in Figure 2,
is divided into two zones (the air zone and the subter-
ranean zone).

Figure 1. Illustration of basic anisotropic parameters: transformation of conductive dike into general position by successively
applying three elementary Euler’s rotations αS, αD and αL (Pek and Santos 2002).
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Figure 2. The solution domain.

In Cartesian coordinates, themagnetic vector poten-
tial can be written as,

A = Axex + Ayey + Azez (8)

Therefore, Equations (6) and (7) can be written as,

∇2Ax + iωμ0σ̃ (Ax + ∂ψ

∂x
) = 0 (9)

∇2Ay + iωμ0σ̃ (Ay + ∂ψ

∂y
) = 0 (10)

∇2Az + iωμ0σ̃ (Az + ∂ψ

∂z
) = 0 (11)

iωμ0σ̃ (
∂Ax
∂x

+ ∂Ay
∂y

+ ∂Az
∂z
)+ iωμ0∇ · [σ̃∇ψ ] = 0

(12)
A node-based FE method (Jin 2002) is used here to

discretise Equation (6) and Equation (7), and consider-
ing Green’s first identity (Equation 13) and the vector
calculus identity (Equation 14),∫

v

(∇φ · ∇ϕ+φ∇2ϕ)dv =
∮
s
(φ∇ϕ) · ds (13)

∇ · (ϕA) = ϕ(∇ · A)+ A · (∇ϕ) (14)

Volume-integrated equations can be obtained as fol-
lows:

− (∇N,∇Ax)	 + iωμ0σ̃

(
N,Ax + ∂ψ

∂x

)
	

= 0 (15)

− (∇N,∇Ay)	 + iωμ0σ̃

(
N,Ay + ∂ψ

∂y

)
	

= 0 (16)

− (∇N,∇Az)	 + iωμ0σ̃

(
N,Az + ∂ψ

∂z

)
	

= 0 (17)

iωμ0(σ̃∇N,A)	 + iωμ0(σ̃∇N,∇ψ)	 = 0 (18)

where (u,υ)	 = ∫
	
uυd	, (∇u,∇υ)	 = ∫

	
∇u · ∇υd	

and	 is the whole space, andN is the linear nodal basis

function (Jin 2002):

Aex =
8∑

i=1

AexiNi,Aey =
8∑

i=1

AeyiNi,Aez =
8∑

i=1

AeziNi (19)

ψe =
8∑

j=1

ψe
j Nj (20)

After added the boundary conditions, the system equa-
tions can be obtained by the discretization of the differ-
ential equations:

Ku = b (21)

The matrix for a given element can be expressed as:

Ke =
[
K11 K12
K21 K22

]

=
8∑

i=1

8∑
j=1

⎡
⎣ (−(∇Ni,∇Nj)e

+iωμ0(σ̃Ni,Nj)e)I33 iωμ0(σ̃Ni,∇Nj)e
iωμ0(σ̃Ni,∇Nj)

T
e iωμ0(σ̃∇Ni,∇Nj)e

⎤
⎦

(22)

where I33 is the 3× 3 identity matrix. The values of Ke

are given in Appendix A.

Boundary conditions

To obtain a unique solution for Equation (21), proper
conditions must be imposed on the outer boundaries,
including the top surface, the bottom surface and the
four side surfaces of the study spaceutilised in thiswork;
Dirichlet boundaries are adopted here. Assuming the
outer boundaries are far enough from the anomalies,

ψ |� = 0 (23)

and

A|� = E|�
iω

(24)

Where E|� is the solution corresponding to an earth
model without any 2D or 3D conductivity anomalies.
Two orthogonal sources are located on the top surface
(ABCD).

Apparent resistivity and phase

According to Equations (4) and (5), the electric fields and
magnetic fields can be obtained after solving Equation
(21),

Hx = 1
μ0

(
∂Az
∂y

− ∂Ay
∂z

)
,Hy = 1

μ0

(
∂Ax
∂z

− ∂Az
∂x

)
,

Hz = 1
μ0

(
∂Ay
∂x

− ∂Ax
∂y

)
(25)

Ex = iω(Ax + ∂ψ

∂x
), Ey = iω(Ay + ∂ψ

∂y
),

Ez = iω(Az + ∂ψ

∂z
) (26)
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Then, the apparent resistivities and phases can be
obtained (Li 2002).

Numerical experiments

Validating the accuracy

To validate the correctness and accuracy of the algo-
rithm presented in this paper, comparisons were made
with results of the FDmethod (Pek and Verner 1997) for
a 2D anisotropic model, and with solutions of the edge-
based FE method (Xiao et al. 2018) for a 3D arbitrary
anisotropic model, respectively.

2D test model
As shown in Figure 3, there is a 2D anisotropic anomaly
in an anisotropic half-space. For the half-space, the
principal conductivities are 0.005, 0.01 and 1/300 S/m,
and its three Euler’s angles are 30°, 0° and 0°, respec-
tively. For the 2D anomaly, its principal conductivities
are 1/60, 1/30 and 1/80 S/m, and its three Euler’s angles

Figure 3. The 2D test model.

are 10°, 60° and 20°, respectively; it has dimensions of
3600 m× 4400 m and its top depth is 410 m. Although
the A − ψ method presented here is not suitable for
2D models because Dirichlet boundaries are adopted
(ψ |� = 0 should be satisfied at the outer boundaries),
we used a 3D anomaly as an approximation of the 2D
anomaly. Based on the 2D test model, what is different
is that the 3D anomaly has a length of 40 000 m in the
x-direction.

At a frequency of 50Hz, we compared our results
(x = 0m) with the solutions of FD code (Pek and Verner
1997). As shown in Figure 3, the comparison reveals that
the results of the twomethods show very close levels of
agreement.

3D test model
The 3D test anisotropic model is shown in Figure 5. In
an isotropic half-space whose conductivity is 0.01 S/m,
there is a 3D generally anisotropic anomaly whose
dimensions are 600 m× 600 m× 600 m and top depth
is 220 m. Its three Euler’s angles (αS,αD,αL) are 10°, 30°

Figure 5. The 3D test model: (a) the left diagram is the section
view; (b) the right diagram is the plan view.

Figure 4. The comparison of A − ψ method and the FD method (Pek and Verner 1997).
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and 20°, respectively. Its three principal conductivities
(σx , σy and σz) are 0.01, 0.02 and 0.005 S/m, respectively.
The apparent resistivities of the twomethods are shown
in Figure 5. The compute frequency is 10Hz.

In Figure 6, the first and second columns correspond
to the apparent resistivities of the A − ψ method and
edge-based FE method (Xiao et al. 2018), respectively;
the third column corresponds to the relative errors (%);
the first and second rows correspond to ρxy and ρyx ,

respectively. As shown in Figure 6, the results of the two
methods reveal very close levels of agreement as the
relative errors are < 3%.

Sparsity patterns

Although the scale of the 3D test model is not large,
it is suitable to analyse sparsity patterns and solvers.
The sparsity patterns in different conditions are shown

Figure 6. The comparison of the results of A − ψ method and edge-based FE method (Xiao et al. 2018).

0 5 10

x 10
4

0

5

10

x 10
4

Columns

R
ow

s

nz=7893412

(a)

0 5 10

x 10
4

0

5

10

x 10
4

Columns

nz=7893412

(b):S

0 5 10

x 10
4

0

5

10

x 10
4

Columns

nz=7893412

(c):D

0 5 10

x 10
4

0

5

10

x 10
4

Columns

nz=7893412

(d):L

0 5 10

x 10
4

0

5

10

x 10
4

Columns

R
ow

s

nz=7893412

(e):S\D

0 5 10

x 10
4

0

5

10

x 10
4

Columns

nz=7893412

(f):S\L

0 5 10

x 10
4

0

5

10

x 10
4

Columns

nz=7893412

(g):L\D

0 5 10

x 10
4

0

5

10

x 10
4

Columns

nz=7893412

(a)

R
ow

s

nz=7893412

Figure 7. Sparsity patterns: (a) axial anisotropy; (b) αS �= 0; (c) αD �= 0; (d) αL �= 0; (e) αS �= 0 and αD �= 0; (f ) αS �= 0 and αL �= 0;
(g) αD �= 0 and αL �= 0; (h) αS �= 0, αD �= 0 and αL �= 0.

Figure 8. Convergences plot of QMR, BiCGSTAB and GMRES solvers without pre-conditioners for the data of the test model.
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Figure 9. Convergences plot of QMR, BiCGSTAB and GMRES solvers with pre-conditioners for the data of the test model.

Figure 10. A 3D anisotropic body embedded in a half-space.

in Figure 7. The mesh contains 34 200 elements and
37 479 nodes. The resulting size of the sparse stiffness
matrix is 149 916× 149 916. The nonzero number is
7 893 412. As shown in Figure 7, the patterns change
as the angles change. There are eight cases: (a) αS, αD
and αL all equal 0°; (b) αS is nonzero but the other two
Euler’s angles both equal 0°; (c) αD is nonzero but the
other two Euler’s angles both equal 0°; (d) αL is nonzero
but the other two Euler’s angles both equal 0°; (e) αS
and αD both are nonzero but αL is 0°; (f) αS and αL both
are nonzero but αD equals 0°; (g) αL and αD both are
nonzero but αS is 0°; and (h) none of three Euler’s angles

Figure 11. The apparent resistivities with a different angle αS for the 3D model in Figure 10 at the frequency of 20 Hz.
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is 0°. As shown in Figure 7, (b), (d) and (f) are similar
to each other, and (e), (g) and (h) are similar to each
other, which is in agreement with the theory shown in
Figure 1.

Solvers and preconditioners

Figure 8 shows the convergences plot of quasi-mini
mum residual (QMR), bi-conjugate gradient stabilised
(BiCGSTAB) and generalised minimal residual (GMRES)
solvers without preconditioners for the data of the 3D
test model at the frequency of 10Hz. For both the
xy-mode and yx-mode, it shows clearly that QMR and
BiCGSTAB solvers are more stable compared with the
GMRES solver, and the convergence of GMRES is slower
than that for theQMR solver and BiCGSTAB solver. How-
ever, up to 10 000 iterations, the convergences of the
three solvers are > 10−6.

Figure 9 shows the convergences plot of QMR,
BiCGSTAB and GMRES solvers with symmetric suc-
cessive over-relaxation (SSOR) or incomplete LU (ILU,
where “LU” stands for lower upper) preconditioner. For
both the xy-mode and yx-mode, it shows clearly that

a QMR solver with ILU preconditioner and a BiCGSTAB
solver with ILU preconditioner are more stable and
faster compared with the other schemes. Because the
results of the other models in this paper are similar, we
show only the results of this 3D test model. Comparing
Figure 8 with Figure 9, we find that it is very important
to choose a proper preconditioner.

3D anisotropic model

To study the responses of MT in anisotropic media,
based on previous work (Xiao et al. 2018), a special 3D
anisotropic model is studied. As shown in Figure 10,
a 3D anisotropic anomaly is embedded in an isotropic
half-space of 0.01 S/m. The anomaly has a dimension of
800× 800× 800 m, and a top depth of 170 m. For the
three principal conductivities, σx and σz are both equal
to 0.01 S/m, which is the same as the conductivity of the
half-space, and σy is 0.02 S/m. Three caseswith different
Euler’s angles are studied.

For the case of αS = 0◦/30◦/60◦/90◦,αD = 0◦,αL =
0◦, the apparent resistivities are shown in Figure 11. The
anglesαD andαL are both equal to 0°, and the angleαS is

Figure 12. The apparent resistivities with a different angle αD for 3D model in Figure 9 at the frequency of 20 Hz.
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0°, 30°, 60° and 90° from left to right, respectively. There
are three symbols used in Figure 11: the white square
represents the shape and size of the anomalous body
in the horizontal plane; the angles between the purple
solid line and the x direction are 0°, 30°, 60° and 90°
from left to right, respectively; and the angles between
the green solid line and the y direction are 0°, 30°, 60°
and 90° from left to right, respectively. Themeanings of
these three symbols remain unchanged in this paper.
As shown in Figure 11, (1) when αS = 0°, ρxy = 100
	 · m and ρyy = 0	 · m, this is because the conductiv-
ity in the x-direction is 0.01 S/mand remains unchanged
when αS = 0°; (2) because the conductivity in the y-
direction remains unchanged with a value of 0.01 S/m
when αS = 90°, ρyx = 100	 · m and ρxx = 0	 · m; (3)
when αS is 0° or 90°, ρxx , ρxy , ρyx and ρyy all are symmet-
ric; (4) as αS changes, ρxx , ρxy , ρyx and ρyy all can indicate
the position and shape of the anomalous body; (5) as αS
changes, ρxy , ρyx are able to indicate the value of angle
αS.

For the case of αS = 0◦,αD = 0◦/30◦/60◦/90◦,αL =
0◦, the apparent resistivities are shown in Figure 12. The
angles αS and αL are both equal to 0°, and angle αD is 0°,
30°, 60° and 90° from left to right, respectively. As shown
in Figure 12: (1) when αD changes, ρxy = 100	 · m and
ρyy = 0	 · m, this is because the conductivity in the x-
direction remains unchanged with a value of 0.01 S/m;
(2) when αD is 90°, ρyx = 100	 · m and ρxx = 0	 · m,
as the conductivity in the y-direction is 0.01 S/m; (3) in
this case, ρxx and ρyx both can indicate the position of
the anomalous body, however, ρxy and ρyy cannot.

For the case of αS = 0◦,αD = 0◦/30◦/60◦/90◦,αL =
0◦, the apparent resistivities (ρxx , ρxy , ρyx and ρyy) are
the same as the apparent resistivities in Figure 11, this
is because angle αS and angle αL work in the same way
when αD = 0°, which agrees with the theory shown in
Figure 1.

Conclusions

In terms of Coulomb-gauged EM potentials, we devel-
oped a node-based FE algorithm for the MT numerical
modelling in 3D conductivity anisotropic media. The
accuracy of this algorithm was validated by compar-
ing its results with solutions of the FD method for a 2D
anisotropymodel, andwith solutions of the edge-based
FE method for a 3D generalised anisotropy model,
respectively. We then studied different solvers with dif-
ferent preconditioners. A simple 3D anisotropic model
in three different conditions was then studied. Consid-
ering the results and discussion above, we reached four
main conclusions: (1)whenαD andαL both equal 0°, and
αSchanges, the apparent resistivity is able to indicate
the position and shape of the anomalous body, further-
more, ρxy and ρyx can both indicate the value of αS; (2)
when αS and αL both equal 0°, and αD changes, the con-
ductivity in the x-direction remains unchanged, and the

apparent resistivity can still indicate the position and
shape of the anomalous body; (3) if a principal conduc-
tivity is in the x direction, thenρxy andρyy almost remain
the same, namely the conductivity in the y-direction
or z-direction has almost no influence; (4) if a princi-
pal conductivity is in the y-direction, then ρyx and ρxx
remain almost unchanged; (5) if a principal conductiv-
ity is in the z-direction, then it has almost no influence
on the apparent resistivities. In addition, (6) for the total
stiffness equation in this paper, QMR solver with the
ILU preconditioner is more stable and faster comparing
with the other schemes.
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Appendix A: the values of Ke

Ke =
[
K11 K12
K21 K22

]

=
8∑

i=1

8∑
j=1

⎡
⎣ (−(∇Ni ,∇Nj)e

+iωμ0(σ̃Ni ,Nj)e)I33 iωμ0(σ̃Ni ,∇Nj)e
iωμ0(σ̃Ni ,∇Nj)

T
e iωμ0(σ̃∇Ni ,∇Nj)e

⎤
⎦
(A1)

(1) Ke11

Ke11 =
∫
v

8∑
i=1

8∑
j=1

{−[A] + iωμ0[B]}dv (A2)

where

A =

⎛
⎜⎜⎜⎜⎝

[
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y
+ ∂Ni

∂z

∂Nj

∂z

]
0

0
[
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y
+ ∂Ni

∂z

∂Nj

∂z

]

0 0

0
0[

∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y
+ ∂Ni

∂z

∂Nj

∂z

]
⎞
⎟⎟⎠ (A3)

B =
⎛
⎝Ni 0 0
0 Ni 0
0 0 Ni

⎞
⎠

⎛
⎝σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎞
⎠

⎛
⎝Nj 0 0
0 Nj 0
0 0 Nj

⎞
⎠

=
⎛
⎝σxx[NiNj] σxy[NiNj] σxz[NiNj]
σyx[NiNj] σyy[NiNj] σyz[NiNj]
σzx[NiNj] σzy[NiNj] σzz[NiNj]

⎞
⎠ (A4)

Therefore

Ke
11

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− bc

36a
Ke11a − ac

36b
Ke11b

− ab

36c
Ke11c + iωσxx

abc

216
Ke11d iωσxy

abc

216
Ke11d

iωσyx
abc

216
Ke11d − bc

36a
Ke11a − ac

36b
Ke11b

− ab

36c
Ke11c + iωσyy

abc

216
Ke11d

iωσzx
abc

216
Ke11d iωσzy

abc

216
Ke11d

iωσxz
abc

216
Ke11d

iωσyz
abc

216
Ke11d

− bc

36a
Ke11a − ac

36b
Ke11b − ab

36c
Ke11c + iωσzz

abc

216
Ke11d

⎞
⎟⎟⎟⎟⎟⎠

(A5)

where

K11a
e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −4 −2 2 2 −2 −1 1
−4 4 2 −2 −2 2 1 −1
−2 2 4 −4 −1 1 2 −2
2 −2 −4 4 1 −1 −2 2
2 −2 −1 1 4 −4 −2 2

−2 2 1 −1 −4 4 2 −2
−1 1 2 −2 −2 2 4 −4
1 −1 −2 2 2 −2 −4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A6)

Ke11b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 −2 −4 2 1 −1 −2
2 4 −4 −2 1 2 −2 −1

−2 −4 4 2 −1 −2 2 1
−4 −2 2 4 −2 −1 1 2
2 1 −1 −2 4 2 −2 −4
1 2 −2 −1 2 4 −4 −2

−1 −2 2 1 −2 −4 4 2
−2 −1 1 2 −4 −2 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

Ke11c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 1 2 −4 −2 −1 −2
2 4 2 1 −2 −4 −2 −1
1 2 4 2 −1 −2 −4 −2
2 1 2 4 −2 −1 −2 −4

−4 −2 −1 −2 4 2 1 2
−2 −4 −2 −1 2 4 2 1
−1 −2 −4 −2 1 2 4 2
−2 −1 −2 −4 2 1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A8)

Ke11d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 4 2 4 4 2 1 2
4 8 4 2 2 4 2 1
2 4 8 4 1 2 4 2
4 2 4 8 2 1 2 4
4 2 1 2 8 4 2 4
2 4 2 1 4 8 4 2
1 2 4 2 2 4 8 4
2 1 2 4 4 2 4 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A9)

(2) Ke12

Ke12 =
∫
v

iωμ0

8∑
i=1

8∑
j=1

[C]dv (A10)

where

C = Ni

⎛
⎝σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Nj

∂x
∂Nj

∂y
∂Nj

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σxx

[
Ni
∂Nj

∂x

]
+ σxy

[
Ni
∂Nj

∂y

]
+ σxz

[
Ni
∂Nj

∂z

]

σyx

[
Ni
∂Nj

∂x

]
+ σyy

[
Ni
∂Nj

∂y

]
+ σyz

[
Ni
∂Nj

∂z

]

σzx

[
Ni
∂Nj

∂x

]
+ σzy

[
Ni
∂Nj

∂y

]
+ σzz

[
Ni
∂Nj

∂z

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A11)

therefore

Ke12 = iωμ0

⎛
⎜⎜⎜⎜⎜⎝

bc

72
σxxKe12a + ac

72
σxyKe12b + ab

72
σxzKe12c

bc

72
σyxKe12a + ac

72
σyyKe12b + ab

72
σyzKe12c

bc

72
σzxKe12a + ac

72
σzyKe12b + ab

72
σzzKe12c

⎞
⎟⎟⎟⎟⎟⎠
(A12)

where

Ke12a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 4 2 −2 −2 2 1 −1
−4 4 2 −2 −2 2 1 −1
−2 2 4 −4 −1 1 2 −2
−2 2 4 −4 −1 1 2 −2
−2 2 1 −1 −4 4 2 −2
−2 2 1 −1 −4 4 2 −2
−1 1 2 −2 −2 2 4 −4
−1 1 2 −2 −2 2 4 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A13)

https://doi.org/10.1046/j.1365-246x.2000.00974.x
https://doi.org/10.1190/1.1543201


EXPLORATION GEOPHYSICS 11

Ke12b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 −2 2 4 −2 −1 1 2
−2 −4 4 2 −1 −2 2 1
−2 −4 4 2 −1 −2 2 1
−4 −2 2 4 −2 −1 1 2
−2 −1 1 2 −4 −2 2 4
−1 −2 2 1 −2 −4 4 2
−1 −2 2 1 −2 −4 4 2
−2 −1 1 2 −4 −2 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A14)

Ke12c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 −2 −1 −2 4 2 1 2
−2 −4 −2 −1 2 4 2 1
−1 −2 −4 −2 1 2 4 2
−2 −1 −2 −4 2 1 2 4
−4 −2 −1 −2 4 2 1 2
−2 −4 −2 −1 2 4 2 1
−1 −2 −4 −2 1 2 4 2
−2 −1 −2 −4 2 1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A15)

(3) Ke
21

Ke21 = Ke12
T (A16)

(4) Ke22

Ke22 =
∫
v

iωμ0

8∑
i=1

8∑
j=1

[D]dv (A17)

where

D =
(
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

) ⎛
⎝σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Nj

∂x
∂Nj

∂y
∂Nj

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠

= (σxx + σyx + σzx)

[
∂Ni

∂x

∂Nj

∂x

]
+ (σxy + σyy + σzy)

[
∂Ni

∂y

∂Nj

∂y

]
+ (σxz + σyz + σzz)

[
∂Ni

∂z

∂Nj

∂z

]
(A18)

therefore

Ke22 = iωμ0

(
σxx

[
∂Ni

∂x

∂Nj

∂x

]
+ σyx

[
∂Ni

∂y

∂Nj

∂x

]
+

σzx

[
∂Ni

∂z

∂Nj

∂x

]
+ σxy

[
∂Ni

∂x

∂Nj

∂y

]
+ σyy

[
∂Ni

∂y

∂Nj

∂y

]

+ σzy

[
∂Ni

∂z

∂Nj

∂y

]
+ σxz

[
∂Ni

∂x

∂Nj

∂z

]

+σyz
[
∂Ni

∂y

∂Nj

∂x

]
+ σzz

[
∂Ni

∂z

∂Nj

∂z

])
(A19)

where

Ke22a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −4 −2 2 2 −2 −1 1
−4 4 2 −2 −2 2 1 −1
−2 2 4 −4 −1 1 2 −2
2 −2 −4 4 1 −1 −2 2
2 −2 −1 1 4 −4 −2 2

−2 2 1 −1 −4 4 2 −2
−1 1 2 −2 −2 2 4 −4
1 −1 −2 2 2 −2 −4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A20)

Ke22b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −6 −6 6 3 −3 −3 3
6 −6 −6 6 3 −3 −3 3

−6 6 6 −6 −3 3 3 −3
−6 6 6 −6 −3 3 3 −3
3 −3 −3 3 6 −6 −6 6
3 −3 −3 3 6 −6 −6 6

−3 3 3 −3 −6 6 6 −6
−3 3 3 −3 −6 6 6 −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A21)

Ke22c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −6 −3 3 6 −6 −3 3
6 −6 −3 3 6 −6 −3 3
3 −3 −6 6 3 −3 −6 6
3 −3 −6 6 3 −3 −6 6

−6 6 3 −3 −6 6 3 −3
−6 6 3 −3 −6 6 3 −3
−3 3 6 −6 −3 3 6 −6
−3 3 6 −6 −3 3 6 −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A22)

Ke22d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 6 −6 −6 3 3 −3 −3
−6 −6 6 6 −3 −3 3 3
−6 −6 6 6 −3 −3 3 3
6 6 −6 −6 3 3 −3 −3
3 3 −3 −3 6 6 −6 −6

−3 −3 3 3 −6 −6 6 6
−3 −3 3 3 −6 −6 6 6
3 3 −3 −3 6 6 −6 −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A23)

Ke22e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 −2 −4 2 1 −1 −2
2 4 −4 −2 1 2 −2 −1

−2 −4 4 2 −1 −2 2 1
−4 −2 2 4 −2 −1 1 2
2 1 −1 −2 4 2 −2 −4
1 2 −2 −1 2 4 −4 −2

−1 −2 2 1 −2 −4 4 2
−2 −1 1 2 −4 −2 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A24)

Ke22f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 3 −3 −6 6 3 −3 −6
3 6 −6 −3 3 6 −6 −3
3 6 −6 −3 3 6 −6 −3
6 3 −3 −6 6 3 −3 −6

−6 −3 3 6 −6 −3 3 6
−3 −6 6 3 −3 −6 6 3
−3 −6 6 3 −3 −6 6 3
−6 −3 3 6 −6 −3 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A25)

Ke22g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 6 3 3 −6 −6 −3 −3
−6 −6 −3 −3 6 6 3 3
−3 −3 −6 −6 3 3 6 6
3 3 6 6 −3 −3 −6 −6
6 6 3 3 −6 −6 −3 −3

−6 −6 −3 −3 6 6 3 3
−3 −3 −6 −6 3 3 6 6
3 3 6 6 −3 −3 −6 −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A26)

Ke22h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 3 3 6 −6 −3 −3 −6
3 6 6 3 −3 −6 −6 −3

−3 −6 −6 −3 3 6 6 3
−6 −3 −3 −6 6 3 3 6
6 3 3 6 −6 −3 −3 −6
3 6 6 3 −3 −6 −6 −3

−3 −6 −6 −3 3 6 6 3
−6 −3 −3 −6 6 3 3 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A27)

Ke22i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 1 2 −4 −2 −1 −2
2 4 2 1 −2 −4 −2 −1
1 2 4 2 −1 −2 −4 −2
2 1 2 4 −2 −1 −2 −4

−4 −2 −1 −2 4 2 1 2
−2 −4 −2 −1 2 4 2 1
−1 −2 −4 −2 1 2 4 2
−2 −1 −2 −4 2 1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A28)
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