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A B S T R A C T

Arsenic (As) is considered a carcinogenic toxin, and nonferrous metal smelting activities can release significant
quantities of As, causing an increase in As levels in the environment. A total of 221 samples of moss belonging to
5 species in 4 families were collected from the Wanshan District, the world third largest mercury mining area, in
Guizhou Province, southwestern China, for analysis of total As (tAs) concentrations and As speciation. The
results indicated that the tAs concentrations in these mosses ranged from 0.67 to 9.6mg kg−1, with an average of
2.4 ± 1.7mg kg−1. The dominant species of As in these mosses were inorganic forms of arsenite (As(III)) and
arsenate (As(V)) with a total percentage of 87%, whereas the concentrations of organic forms (mono-
methylarsonic acid (MMA) and dimethylarsinic acid (DMA)) were relatively low, with percentages of 11.8% and
6.0%, respectively. A significant correlation (r= 0.766, p < 0.01) was observed between As(V) and tAs. In the
spatial distribution pattern of As, high concentrations of As in mosses were centralized around historical Hg
retorting sites in the town of Wanshan, the villages of Gouxi and Yanwuping and sites downwind of these
locations, suggesting that historical intensive Hg mining activities might be the most possible source of atmo-
spheric As.

1. Introduction

Toxic arsenic (As) and its chemical compounds are considered some
of the most dangerous carcinogens. As is ubiquitous in the natural en-
vironment and can enter the human body through skin absorption,
respiration, and oral intake (Liu et al., 2007). Long-term As exposure
may increase the risks of diabetes, cardiovascular disease, nerve dys-
function, and prostate cancer (Cantor and Lubin, 2007; Coronado-
Gonzalez et al., 2007; Boamponsem et al., 2010). Arsenic poisoning
cases have been reported around the world (IARC, 2004). In China, for
instance, notorious chronic arsenicosis occurred in thousands of in-
habitants in the Hetao Basin of Inner Mongolia Province due to their
drinking of As-contaminated groundwater (Guo et al., 2003). Recently,
in West Bengal, arsenicosis caused by dietary exposure was reported
(Golui et al., 2017).

Both anthropogenic and natural sources can release As into the
environment. The main natural sources are volcanic activity, weath-
ering, and biological activities (Wedepohl, 1991; Chen et al., 2012).
Volcanic activity can release amounts of fine particle-bound As, which

remains in atmospheric aerosols and undergoes long-range transport
(Wang et al., 2010; Chen et al., 2012; Fang et al., 2012). The anthro-
pogenic sources consist of nonferrous metal smelting, fossil fuel com-
bustion, traffic, fertilizers, and pesticides (Qi et al., 2016; Jandacka
et al., 2017; Leclerc and Laurent, 2017; Novillo et al., 2017). Coal-fired
energy production and traffic emissions are generally considered the
major sources of atmospheric As in urban areas (Pacyna and Pacyna,
2002). Due to increasing industrialization, the As levels in soil, water,
air, and biota have increased sharply within the last few decades (Chai
et al., 2015; Boente et al., 2017; Sawidis et al., 2012).

Arsenic exists in both organic and inorganic forms in the environ-
ment. Organic As includes arsenocholine (AsC), arsenobetaine (AsB),
arsenosugars (AsS), monomethylarsonic acid (MMA), and dimethy-
larsinic acid (DMA), and inorganic As includes arsenate (As(V)) and
arsenite (As(III)). The latter exists in the environment highly depends
on pH and redox conditions (Ansari and Sadegh, 2007; Zaccone et al.,
2018). Different chemical forms of As exhibit different toxicity. Gen-
erally, the inorganic As(iAs) forms As(III) and As(V) are more toxic than
organic As (oAs) (Styblo et al., 2000; Mass et al., 2001; Geng et al.,
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2009). In contrast, AsB and AsS are nontoxic forms (Francesconi et al.,
2002; Raml et al., 2005). In neutral solution, As(III), As(V), MMA, and
DMA can occur as anionic species, AsC as a cationic species, and AsB as
a zwitterionic species (Zmozinski et al., 2015).

Mosses are primitive terrestrial higher plants and are characterized
by a simple structure and large surface area as well as no real root
systems, taking up nutrients mainly from the atmosphere (Pott and
Turpin, 1996; Aceto et al., 2003; Szczepaniak and Biziuk, 2003; Villares
et al., 2016). Due to their special morphological and physiological
characteristics, mosses exhibit a certain ability for ion exchange and
can capture particulate matter from the atmosphere (Perez-Llamazares
et al., 2011; Spagnuolo et al., 2011); therefore, these plants are used for
the monitoring of atmospheric pollution (e.g., Galsomiès et al., 1999;
Ermakova et al., 2004; Donovan et al., 2016; Shotyk et al., 2015).
Currently, utilizing moss to elucidate atmospheric pollutants has be-
come a major global research hotspot (Allajbeu et al., 2016;
Zinicovscaia et al., 2017; Wu et al., 2016; Galhardi et al., 2017). Many
mosses have been used for monitoring atmospheric nitrogen deposition
and heavy metal pollution, such as Sphagnum girgensohnii (Vuković
et al., 2015), Isothecium stoloniferum (Pott and Turpin, 1996), Pleur-
ozium schreberi (Goltsova and Vasina, 1995), Polytrichum juniperinum
(Wolterbeek et al., 1995), and Haplocladium microphyllum (Dong et al.,
2017), and Sphagnum moss (Shotyk et al., 2015). Shotyk et al. (2015,
2016) reported that species of Sphagnum could well retain the atmo-
spheric Pb from high temperature combustion and found that the
concentrations of Pb in Sphagnum were far below the values reported
within the past decades thanks to the anthropogenic emissions con-
trolling. Recently, Kempter et al. (2017a, b) reported that modeled data
showed the living Sphagnum is a good indicator of atmospheric de-
position, at least in a semi-quantitative manner and certainly reflects
inputs to terrestrial ecosystems.

The Wanshan District is located in Guizhou Province, southwestern
China, and once was the third largest mercury (Hg) mining region in the
world. The history of Hg mining dates back to 221 B.C. (Qiu et al.,
2005) and has caused heavy Hg contamination in the environment
(Horvat et al., 2003; Qiu et al., 2005, 2008; 2012, 2013; Dai et al.,
2013). Because the dominant cinnabar ores are commonly associated
with As present in a wide concentration range of 0.5–28mg kg−1 (Hua
and Cui, 1995), contamination by As has also occurred in the en-
vironment due to its release from the retorting process of cinnabar ores
(Garcia-Ordiales et al., 2018).

To date, no study on the As concentrations and speciation in mosses
has been conducted to reveal the atmospheric As pollution in the en-
vironment impacted by historic intensive Hg retorting activities in the
Wanshan region. The main goal of the present study was to: (1) char-
acterize the total As concentrations and their spatial distribution in
mosses; (2) explore speciation of As and their correlations; (3) elucidate
atmospheric As pollution and its potential source in abandoned Hg
mining areas.

2. Materials and methods

2.1. Study area

The Wanshan District (E: 109º07′-109º24′; N: 27º24′-27º38′) is lo-
cated in eastern Guizhou Province, southwestern China, and covers an
area of 45 km2. This district is hilly and karstic and has a subtropical
humid climate characterized by abundant yearly precipitation of
1200–1400mm and an annual temperature of 15 °C on average. The
major rivers that run through the study area include the Gaolouping,
Aozhai, Huangdao, and Xiaxi (Fig. 1a). All of these rivers belong to
Yuanjiang tributary and afflux into Dongting Lake in Hunan Province.

The Wanshan District, the largest Hg production center in China, is
enriched in cinnabar ore resources. The Hg mining activities ceased in
2001 (Qiu et al., 2005). The dominant ore in the Wanshan Hg mine is
cinnabar. Metacinnabar, selenide Hg compounds and elemental Hg also
occur there. Generally, the cinnabar ore is associated with pyrite,
sphalerite, realgar, and orpiment (Hua and Cui, 1995). The realgar and
orpiment are mainly distributed along the edges of deposits.
Throughout the mining and retorting history, approximately 20× 103

tons of Hg have been produced (Zhang et al., 2004). In the process of
cinnabar ore smelting, both Hg and As are released into the environ-
ment (Garcia-Ordiales et al., 2018).

2.2. Sample collection and preparation

A total of 221 epilithic moss samples were collected from 181 sites
in the Wanshan District in September 2014, of which 144 sites were for
one species (a total of 144), 34 sites for two species (a total of 68), and 3
sites for three species (a total of 9) (Fig. 1). At each sampling site, a final
sample was composed of 3–5 subsamples from several localities within
an area of 100m2. All sampled mosses were naturally growing on
surface of rocks that located in open sites at the least of 500m away
from trees and dwarf shrubs, being sure that all mosses directly exposed
to atmospheric deposition (Shotyk et al., 2015). To guarantee the moss
have same age, only green and healthy parts (top 2–3 cm) of mosses
were collected according to the methodology applied by Xiao et al.
(2011), Kempter et al. (2017a), Shotyk et al. (2015). The samples were
stored in polyethylene bags to avoid cross-contamination. After col-
lection, samples were delivered to the laboratory, thoroughly washed
with Milli-Q water (DW), air-dried and ground with a grinding machine
(IKA-A11, Germany).

Species of mosses were identified according to the atlas “Moss Flora
of China,” and the microstructures of mosses were observed with an
anatomical lens (HWG-1) and a microscope (XSZ-107) (Wu, 2011; Liu
et al., 2018). Samples were classified into 5 species in 4 families.
Among all the mosses in the present study, Hypnum plumaeforme species
were the most widely distributed throughout the study area, followed
by Thuidium kanedae and Brachythecium buchananii, accounting for 90%

Fig. 1. Map of sampling sites and spatial distributions of total concentrations of As in mosses in the study area.
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of the total, and approximately 10% of the total was accounted for by
Entodon acutifolius and Brachythecium glareosum.

2.3. Sample analysis

2.3.1. Total As (tAs)
For total As (tAs) analysis, approximately 0.1 g was digested with

2.5 mL of concentrated subboiling ultrapure HNO3 (Sinopharm,
Shanghai) in a Teflon vessel. The Teflon vessel was placed in a steel can
and heated in an oven at 160 °C for 24 h. After the vessel had cooled,
1mL of H2O2 was added to the digested solution and vaporized on an
electric heating panel. When the solution crystallized, 1mL of sub-
boiling ultrapure HNO3 was added, and the solution was recrystallized.
Next, 3 mL of subboiling ultrapure HNO3 and 2mL of DW were added,
and the solution was heated at 150 °C for 10 h. After cooling, the di-
gestate was centrifuged, filtered through a 0.22 μm cellulose acetate
membrane (Pall, USA) and diluted with DW to 50mL for analysis.

Concentrations of tAs were measured using inductively coupled
plasma mass spectrometry (ICP-MS) (Agilent 7700, USA). Helium gas
was used in the collision cell to reduce interferences with the ICP-MS
measurements, and the gas flow rate was 0.34mL/min. A solution of
103Rh was used as the internal standard.

2.3.2. Species of As
A total of 40 moss samples of all 5 species, H. plumaeforme (n= 11),

T. kanedae (n= 9), B. buchananii (n= 9), E. acutifolius (n= 7), and B.
glareosum (n= 4), were selected for As speciation analysis. Species of
As(III), As(V), MMA, and DMA were extracted according to the ex-
traction process (Pizarro et al., 2003). In brief, 0.5 g of a moss sample
was accurately weighed into a polytetrafluoroethylene (PTFE) vessel
containing 20mL of 1% subboiling ultrapure HNO3 and extracted in a
microwave extractor at 90 °C for 1.5 h. Then, the samples were cen-
trifuged at 9000 rpm for 30min. After filtration through a 0.22 μm
cellulose acetate membrane (Pall, USA), the supernatant was collected
and stored at 4 °C for analysis.

Chromatographic separation of As species was performed on a PRP-
X100 anion-exchange column (Hamilton, 4.1× 250mm, 10m). The
mobile phase consisted of 4mM ammonium bicarbonate (NH4HCO3,
≥99.99%) at pH 8.6 as phase A and 40mM ammonium nitrate
(NH4NO3, ≥98.5%) and 4mM ammonium bicarbonate (NH4HCO3,
≥99.99%) at pH 8.6 as phase B. Ammonia solution (NH3H2O,
≥99.99%) was adopted to adjust the pH values. All reagents mentioned
above were purchased from Aladdin Reagent Co. Ltd., Shanghai, China.
Arsenic species were separated by an HPLC system (Agilent 1290,
Germany) and quantified by an Agilent 7700 ICP-MS system. The op-
erating parameters for HPLC-ICP-MS were reported by Ma et al. (2016).

2.4. Contamination factor (CF) calculation

The contamination factor (CF) is considered an index for the qua-
lification of a metal's contamination levels. It is defined as the ratio
between the concentration of an element (CM) and the background
level (CB). The higher the CF is, the greater the contamination level.

Fernández and Carballeira (2001) have categorized CF contamination
levels into 5 groups: CF≤ 1, no contamination; 1 < CF≤2, suspected
contamination; 2 < CF≤3.5, slight contamination; 3.5 < CF≤8,
moderate contamination; 8 < CF≤27, severe contamination, and
CF > 27 extreme contamination (Table 1). In the present study, the
value of CB referred to the data reported by Carballeira and López
(1997) and Carballeira et al. (2002), which was 0.2mg kg−1 in H. cu-
pressiforme in Galicia, NW Spain. The CF of As in the moss was cal-
culated as:

CF CM
CB

=

where

CF is the contamination factor of As
CM is the concentration of As in the samples
CB is the concentration of As in the control samples

2.5. QA/QC

The quality assurance and quality control of the tAs determination
were based on blanks, method blanks, duplicates, and certified re-
ference materials (GBW10020, BCR-482). Approximately 25% of the
samples were analyzed in duplicate to check the total variation due to
the sampling, and the results of duplicates agreed with each other with
an average RSD (%) of 7%. The measured values in the reference
samples GBW10020 and BCR-482 were in agreement with the certified
values, with recoveries ranging between 88% and 101%. The method
blank was below the limit of 0.01 μg L−1 of the ICP-MS detector.

For individual As species, the extraction efficiency was evaluated by
calculating the ratio between the total concentration of As in the ex-
tracted species and the tAs concentration directly measured in samples.
The quality control standard solutions were analyzed after constructing
the calibration curve. The recoveries obtained in this work varied be-
tween 69% and 84%, with an average of 76%. The RSD % value was 6%
for BCR-484, and the extraction efficiency was 97%, which is consistent
with previous studies (Zmozinski et al., 2015).

2.6. Data analysis

The data were statistically analyzed by Excel software (Microsoft
Corp). Significant differences were determined by one-way ANOVA
using SPSS 20.0 software (IBM, Inc.). The correlations of tAs with the
arsenic species concentrations in the moss samples were analyzed by
regression analysis with Origin 8.0 (OriginLab). To better interpret the
overall tAs distribution in the mosses in the study area, we processed
the large data sets available for the overall Wanshan area studied in the
present work using ArcGIS 10.2 (ESRI). The contour map was based on
the mean values, and the data were transformed into continuous sur-
faces by a universal Kriging interpolation technique.

Table 1
Total As concentrations in mosses and their percentages of contamination factors (CF).

Species As concentration Category contamination

Range Mean 2 < CF≤3.5 3.5 < CF≤8 8 < CF≤27 27 < CF

B. buchananii 0.98–9.6 3.48 ± 2.40 – – 100 –
B. glareosum 1.7–3.5 2.48 ± 0.79 – 23 56 21
E. acutifolius 1.4–4.7 2.94 ± 0.99 – 7 93 –
H. plumaeforme 0.67–8.9 1.88 ± 1.29 1 54 41 4
T. kanedae 0.67–6.0 2.32 ± 1.19 2 37 59 2
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3. Results and discussion

3.1. Total As concentrations

The tAs concentration in mosses (n=221) ranged widely from 0.67
to 9.6mg kg−1, with an average of 2.4 ± 1.7mg kg−1. The species H.
plumaeforme, the most widely distributed species, exhibited rather low
As concentrations, ranging from 0.67 to 8.9 mg kg−1, with an average
of 1.9 ± 1.3mg kg−1 (Fig. 2). Among the five moss species, B. bu-
chananii exhibited the highest As concentrations, ranging from 0.98 to
9.6 mg kg−1, with an average of 3.5 ± 2.4mg kg−1, followed by E.
acutifolius (range: 1.4–4.7mg kg−1, average: 2.9 ± 0.99mg kg−1), B.
glareosum (range: 1.7–3.5mg kg−1, average: 2.5 ± 0.79mg kg−1), and
T. kanedae (range: 0.67–6.0 mg kg−1, average: 2.3 ± 1.2mg kg−1)
(Table 1). Significant differences (p < 0.05) were obtained between H.
plumaeforme and B. buchananii, H. plumaeforme and E. acutifolius, as well
as B. buchananii and T. kanedae (Fig. 2). The differences in the tAs
concentrations observed in moss species may suggest their different
abilities for As accumulation (Szczepaniak and Biziuk, 2003; Fernández
et al., 2002). However, an alternative explanation might be attributing
for the variations of atmospheric As concentrations in ambient air
caused by Hg smelting activities.

Compared with the results obtained in other areas of the world
(Table 2), the concentrations of tAs in mosses from Wanshan were
higher than those observed in H. cupressiforme from a pyrite mining
district reported by Bargagli et al. (2002), which contained
1.4 ± 1.3mg kg−1 on average, but were lower than those found in
mosses from abandoned Pyrenees zinc-lead smelting areas in Spain,

which reached up to 34 ± 3.0mg kg−1 (Marques et al., 2003), and
from lead-zinc smelting areas in Sebinkarahisar in Turkey (17mg kg−1)
(Koz, 2014). In contrast, mosses from nonpolluted areas contained low
levels of tAs, with average values ranging from 0.26 to 0.40mg kg−1

(Fernández et al., 2002). In Sphagnum from bogs of Athabasca areas in
Canada, the As concentration was 0.43 ± 0.26mg kg−1 on average
(Shotyk et al., 2016), and from 0.079 to 0.705mg kg−1 in bogs of
southern German (Kempter et al., 2017a). The high concentrations of
tAs found in mosses from Hg mining and lead-zinc smelting areas verify
that nonferrous metals smelting activities are an important anthro-
pogenic source of atmospheric As (Koz, 2014). Furthermore, a sig-
nificant positive correlation (r= 0.82, p < 0.01) was observed be-
tween tAs and Hg (data was unpublished) in moss samples, reflecting a
dominant source of atmospheric As was related to Hg smelting activ-
ities.

3.2. Spatial distribution

Fig. 1b shows that the high concentrations of tAs were generally
centralized around the town of Wanshan and the villages of Gouxi and
Yanwuping. The maximum value was observed at the Gouxi site, and
the minimum value was observed at the Zhongcai site. Evidently, this
reflects the influence of the surroundings, which, at these locations,
were greatly affected by historical intensive Hg mining activities (Qiu
et al., 2005). The northwest direction seems to be the primary direction
of As dispersion in the Wanshan District. Generally, there existed a
decreasing arsenic concentration from northwest to southeast. The low
concentrations of As in mosses were detected southeast of the Wanshan
District, where Hg mining and retorting facilities are located.

These distribution patterns suggested that historical Hg mining and
retorting activities are the dominant source of the As in the moss.
During the process of intensive cinnabar ore retorting, As could be re-
leased associated with Hg and result in an increase in atmospheric As,
which eventually deposits and is absorbed by moss (Perez-Llamazares
et al., 2011). Numerous abandoned retorting facilities were located in
or near Wanshan town and Yanwuping village. In Gouxi, historical
artisanal Hg retorting sites were observed. Those historical Hg retorting
activities might explain the elevated concentrations of As in mosses
growing within those areas.

In addition, during our study period, several large factories related
to Hg chemical compound manufacturing were in operation at the site
of Zhangjiawan, which may also have released As into the atmosphere
during manufacturing processes that are combined with coal combus-
tion (Coskun et al., 2011; Yan et al., 2016). The fine particle-bound As
emitted to the atmosphere under the influence of the dominant wind in
the northeast direction could lead to a high deposition of As and in-
creased As levels in mosses in the southwest area of the region (Villares
et al., 2016).
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Fig. 2. Total concentrations of As in five species in the study area (Box plot top
with the same letter do not differ for p < 0.05).

Table 2
Comparison of total and speciation As in mosses and peat reported in the other areas worldwide (Unit: mg kg−1).

Species tAs As(V) As(III) DMA MMA Reference

B. buchananii 3.5 ± 2.4 2.8 ± 0.79 0.20 ± 0.05 0.11 ± 0.03 0.09 ± 0.03 This study
B. glareosum 2.5 ± 0.79 1.8 ± 0.61 0.19 ± 0.08 0.07 ± 0.02 0.07 ± 0.04
E. acutifolius 2.9 ± 0.99 2.1 ± 0.19 0.38 ± 0.11 0.17 ± 0.04 0.16 ± 0.03
H. plumaeforme 1.9 ± 1.3 2.8 ± 1.1 0.26 ± 0.13 0.14 ± 0.05 0.08 ± 0.03
T. kanedae 2.3 ± 1.2 2.5 ± 0.82 0.33 ± 0.19 0.20 ± 0.08 0.10 ± 0.04
H. cupressiforme 1.4 ± 1.3 Bargagli et al. (2002)
Pleurocarpus sp 34 ± 3 Marques et al. (2003)
H. sericeum 17.8 Koz, 2014
H. cupressiforme 0.405 ± 0.53 Fernández et al. (2002)
S. purum 0.27 ± 0.27
Sphagnum 0.43 ± 0.26 Shotyk et al. (2016)
Sphagnum 0.08–0.71 Kempter et al. (2017a)
Peat 1.4 ± 1.2 0.13 ± 0.06 0.09 ± 0.03 Zaccone et al. (2018)
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3.3. Species of As

Regarding the concentrations of the different arsenic species, As(V)
ranged from 0.68 to 6.0 mg kg−1 with an average of
2.5 ± 0.85mg kg−1, As(III) from 0.09 to 0.66mg kg−1 with an
average of 0.28 ± 0.14mg kg−1, DMA from 0.03 to 0.36mg kg−1 with
an average of 0.15 ± 0.06mg kg−1, and MMA from 0.01 to
0.21mg kg−1 with an average of 0.1 ± 0.04mg kg−1. As(V) was the
dominant form, with percentages ranging from 75.9% to 87.2% of the
tAs, followed by As(III) with a range of 6.7–12.3%, DMA with a range of
3.2–6.6% and MMA with a range of 2.6–5.7% (Fig. 3). A positive cor-
relation was observed between As(V) and tAs (r= 0.766, p < 0.01),
indicating that the concentration of As(V) in mosses increased sig-
nificantly with the total arsenic concentration. Moreover, significant
positive correlations (p < 0.01) were found among As(III), MMA, and
DMA (Table 3), reflecting a likely common pathway of arsenite and
organic As species transformation. Generally mosses may absorb in-
organic As from atmospheric dry and wet deposition, then the process
of methylation might occur in their body (Nan et al., 2018; Zaccone
et al., 2018); this might be an explanation for the significant correla-
tions among those As species.

Previous studies indicated that the dominant species of As in plants
were As(V) and As(III) (Amaral et al., 2013). Additionally, MMA, DMA,
AsB, and AsC were reported in rice (Zmozinski et al., 2015). Recently,
Zaccone et al. (2018) investigated the methylated arsenic species from a

free-floating peat island, and found that organic As species
(DMA + MA + TMAO + AB) accounted for 28 ± 10% of tAs (range:
6.0–51%), providing the first evidence of methylated As species. The
percentages of inorganic As were high and varied between 88 and 95%
in the present study, suggesting that the inorganic As forms play im-
portant roles in moss. This may related to the existence forms of As in
the environment and inorganic As is the predominant form in water,
soil and air (Ansone et al., 2013; Zaccone et al., 2018; Lin et al., 2013).
This phenomenon was in accordance with those observed in leafy ve-
getables and rice samples, except that the concentrations of As(III) were
much higher than those of As(V) in these other plants (Ma et al., 2017;
Liu et al., 2017), which was attributed to the conversion and transfor-
mation of As(V) to As(III) in plants (Ma et al., 2017). In the present
study, the high percentages of As(V) in moss might be attributed to the
primary pathway of nutrient uptake from the atmosphere by moss
(Sloof, 1993), in which the dominant species was As(V), accounting for
79-73% of the atmospheric tAs (Lin et al., 2013; Widziewicz et al.,
2016).

3.4. Contamination factors

The results indicated that the CF values ranged from 3.4 to 48, with
an average of 12 (Table 1). The CF values of all the samples were
greater than 2, suggesting As contamination in the mosses. Extreme
contamination levels were found in 21% (n= 2) of B. buchananii
samples, followed by 4% (n= 4) of H. plumaeforme samples and 2%
(n= 1) of T. kanedae samples. Approximately 41% and 54% of H.
plumaeforme samples contained in severe and moderate levels, respec-
tively. All As species in B. glareosum and 93% of the As species in E.
acutifolius were detected at severe levels. Usually, in natural habitats,
the CF values of aquatic bryophytes are below 6 (Díaz et al., 2013).
Recently, Allajbeu et al. (2016) reported an average value of 4.8 for As
in moss collected from Albania. Compared with these reported data, our
CF results obtained in the Wanshan District are much higher.
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Fig. 3. Species of As and their percentages in mosses (Bar graph top with the same letter do not differ at the 95% confidence level).

Table 3
Correlations among tAs and As species.

tAs As (V) As (III) DMA MMA

tAs 1
As(V) .766∗∗ 1
As(III) .023 .186 1
DMA .161 .094 .696∗∗ 1
MMA .039 .098 .572∗∗ .485∗∗ 1

**Correlation is significant at the 0.01 level.
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4. Conclusions

The total concentrations and speciation of As in samples of epilithic
moss (n=221) belonging to 5 species in 4 families collected from
abandoned Hg mining regions were investigated. The results revealed
that the mosses in the study area contained highly elevated tAs con-
centrations, as high as 9.6mg kg−1, indicating heavy impacts from
historical Hg smelting activities. The spatial distribution pattern of the
total As in mosses was generally centralized around sites that were
greatly affected by historical intensive Hg mining activities, which
further confirms that the Hg smelting is the dominant source of As in
the moss. Species of As(V) was the dominant form in moss, ranging
between 88% and 94.5% of the tAs, and a significant positive correla-
tion (r= 0.766, p < 0.01) was found between As(V) and tAs.
Moreover, significant positive correlations among As(III), MMA, and
DMA were observed, reflecting a pathway of transformation among
species. Since the moss has a unique structure and taking up nutrients
from atmospheric deposition, the abundance of As in moss samples
might indicate high levels of atmospheric As in the study area, and high
CF values of As obtained in moss also elucidated that the atmosphere in
the present study region was heavily impacted by As. A further precise
characterization of the toxin accumulation in these epilithic mosses and
potential sources of atmospheric As in the study region is required for a
better understanding in the future.
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