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Abstract
Atmospheric particulate-bound mercury (PBM) plays an important role in the geochemical cycling of mercury (Hg). This 
study reviewed research progress of the PBM, including the possible emission and deposition pathways, measurement meth-
ods and the global distribution. The primary PBM sources are anthropogenic sources, but natural sources could be also a 
considerable contributor, for instance, chemical transport and dust in the arid and desert area. Different filter methods, such 
as quartz fibre filters, have been applied to the PBM measurement, and PBM can also be real-time monitored automatically. 
Generally, the average PBM concentrations were higher in the Northern Hemisphere than in the Southern Hemisphere. 
However, the PBM level of Antarctica is quite high. PBM concentrations were higher in the urban areas than in the remote 
areas, and there was a high PBM level in the developing countries. Moreover, high PBM concentrations were observed in 
the range 20°–60° of northern latitude.
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Mercury (Hg), as a persistent, toxic, bioaccumulative heavy 
metal and a global pollutant, is about 1–5 ng m−3 in the 
atmosphere (Morel et al. 1998; Sprovieri et al. 2016). More 
than 90% of Hg exists in the form of gaseous element mer-
cury (GEM). Less than 10% of Hg usually exists in the form 
of gaseous oxidized mercury (GOM) and particulate-bound 
mercury (PBM) (Rothenberg et al. 2010; Fu et al. 2012; 
Sprovieri et al. 2016). Despite the short atmospheric life-
time, PBM is still important for the distribution and trans-
port of atmospheric Hg due to special chemical and physical 

properties (Murphy et al. 1998; Kim et al. 2012). It is found 
that PBM is mainly associated with aerosols in the atmos-
phere, and resulted from various physical and/or photochem-
ical processes in the atmosphere (Ariya et al. 2015). Hg is 
emitted into the atmosphere from various natural and anthro-
pogenic sources, either as GEM or as GOM and PBM. PBM 
concentrations depend on the direct emission from local and 
regional sources and the situ formation in the atmosphere 
(Pirrone et al. 2010; Ariya et al. 2015).

PBM may be deposited at medium or long distances, the 
deposition depend largely on the size of particles or aero-
sols, and the main meteorological conditions (atmospheric 
stability, relative humidity and wind speed) (Xiu et al. 2009; 
Zhu et al. 2014). To the total PBM deposition, however, fine 
and coarse PBM together only accounted for a small frac-
tion of the total Hg dry deposition (Wang et al. 2006; Fang 
et al. 2010, 2012b). But the relative contributions from Hg 
species were mainly affected by their partitioning in air con-
centrations, emissions from surface, dominant land covers, 
and meteorological conditions (Lindberg and Stratton 1998; 
Fang et al. 2012a).

So far, many previous works have developed ana-
lytical methods for detecting PBM (Lu and Schroeder 
1999; Munthe et al. 2001). However, in the atmosphere, 
PBM concentrations are extremely low, which are at the 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0012​8-019-02663​-5) contains 
supplementary material, which is available to authorized users.

 *	 Hui Zhang 
	 zhanghui1@mail.gyig.ac.cn

1	 State Key Laboratory of Environmental Geochemistry, 
Institute of Geochemistry, Chinese Academy of Sciences, 
Guiyang 550002, China

2	 CAS Center for Excellence in Quaternary Science and Global 
Change, Xi’an 710061, China

3	 University of Chinese Academy of Sciences, Beijing 100049, 
China

4	 College of Resources and Environment, Southwest 
University, Chongqing 400715, China

http://orcid.org/0000-0003-1112-3105
http://crossmark.crossref.org/dialog/?doi=10.1007/s00128-019-02663-5&domain=pdf
https://doi.org/10.1007/s00128-019-02663-5


49Bulletin of Environmental Contamination and Toxicology (2019) 103:48–54	

1 3

picogram level. Thus PBM measurement is quite difficult 
and demands sufficient sample preconcentration and high 
sensitivity of instrument. However, with the continuous 
development of chemical/analytical techniques, some sensi-
tive instruments have made it possible to reliably determine 
PBM using less than 1 ng of samples, allowing sampling 
in a shorter time and/or at a lower flow rate. For exam-
ple, the Tekran Model 1135 Particulate Mercury Unit pro-
vides a direct indication of PBM amount in the atmosphere 
(Sprovieri et al. 2016).

Possible Emission and Deposition Pathways 
of PBM

PBM may originate from direct human activities and some 
types of natural sources or processes (Pirrone et al. 2010). 
Anthropogenic emission is very important, especially, the 
coal-fired utilities and other combustion sources, includ-
ing the fossil fuels, biomass burning, residential coal com-
bustion, municipal waste, ferrous and nonferrous metals 
smelting processes, caustic soda production, fluorescent 
lamp production and miscellaneous industries to PBM 
emissions (Carpi 1997; Li et al. 2007; Obrist et al. 2008; 
Wang et al. 2015; Zhang et al. 2015b). Besides, natural 
processes directly emit PBM to the air or indirectly result 
in the formation of PBM with atmospheric chemical/physi-
cal transport, including outgassing of the earth’s mantle 
crustal or material, evasion from surficial soils, water bod-
ies, vegetation surfaces, wild fires, volcanoes, and geother-
mal sources (Pirrone et al. 2010; Wang et al. 2016). In 
addition, re-emission of previously deposited Hg is also 
important, but only a limited number of published meas-
urements estimated Hg re-emission fluxes (Pirrone et al. 
2010; Ariya et al. 2015).

The total amount of PBM deposited is difficult to quan-
tify. Total wet deposition of Hg is widely measured using 
rain and snow samplers although individual deposition of 
GOM and PBM cannot be measured in this way (Fu et al. 
2016). However, PBM is more important for atmospheric 
Hg deposition due to its higher dry deposition velocities 
and scavenging coefficients than GOM (Sakata and Asakura 
2007; Zhang et  al. 2016). However, there is no widely 
accepted measurement technology for dry deposition of 
PBM, and dry deposition measurements of PBM often have 
large uncertainties because of extremely low PBM concen-
tration in the air, the spatial heterogeneity of ground surface, 
the small vertical gradient of PBM concentration, the influ-
ence of rapid chemical reaction and local source (Ariya et al. 
2015). Therefore, modeling work is usually used to estimate 
dry deposition of Hg using a resistance approach (Zhang 
et al. 2016).

Methods for PBM Measurements

In the last three decades, some manual and automated 
methods have been developed to measure PBM (Xiao 
et al. 1991; Munthe et al. 2001; Sprovieri et al. 2016). 
A variety of different filter methods have been applied to 
collect PBM samples, such as Teflon or quartz fibre filters, 
cellulose-acetate filters (Lu and Schroeder 1999; Qie et al. 
2018). In some early measurements, wet chemical method 
usually was used to digest the filter samples, which were 
pre-treated using a solution of nitric acid and hydrogen 
peroxide in a Teflon vessel, then Hg was determined by 
cold vapour atomic absorbance spectrometry (CVAAS) or 
cold vapour atomic fluorescence spectrometry (CVAFS) 
after pre-concentration on gold trap followed by EPA (U.S. 
Environmental Protection Agency) 1631 method (Munthe 
et al. 2001). However, the wet chemical method is more 
complex. In the later development, a denuder-based system 
was used for sampling PBM and GOM. PBM (defined as 
Hg associated with particles < 2.5 µm) was collected on 
47 mm diameter quartz fibre filter housed in a Teflon filter 
holder downstream of the denuder. Each quartz fibre filter 
was used for one sampling and analysis cycle to prevent 
from possible contamination. Both PBM and GOM sam-
ples were collected every 2 h with a sampling flow rate of 
10 L min−1. The Hg collected on the filter can be released 
thermally at 900°C, followed by gold trap amalgamation 
and CVAFS detection (Zhang et al. 2015a).

Base on the manual denuder-based system, an auto-
mated measurement analyzer of PBM, Tekran 2537-1130-
1135 mercury speciation system (Fig. S1), was developed, 
and make it possible to continuously determine both 
urban and background concentrations of PBM. Fine frac-
tion ( < 2.5 µm) PBM samples were collected on 21 mm 
diameter quartz fibre filters in the Tekran 1135 unit, with 
a flow rate of 10 L min−1 during a sampling period of 
1 h. Following the collection period, PBM was thermally 
decomposed from the 1135 Tekran unit and measured by 
the Tekran 2537A/B/X analyzer within an 1 h desorption 
cycle. Operation, maintenance, calibration and data qual-
ity assurance (QA) procedure are followed by the Global 
Mercury Observation System (GMOS) Standard Operation 
Procedure (SOP) and Data Quality Management (Sprovieri 
et al. 2016).

Global and Regional Distribution of PBM

A summary of PBM dataset based on previous studies is 
presented in Table S1. The data covered most of all the 
data measured by filters in the previous studies. Because 
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we just evaluate the total distribution of PBM, the size 
distributions of PBM is not discussed in this study. To 
study the distribution and potential sources of PBM, PBM 
concentrations have been measured in some developed 
areas such as Northern America and Europe Union (EU) 
from 1990s of last century. However, a small number of 
monitoring sites have been setup to measure PBM in Asia, 
nearly all the PBM data came from China, Japan and South 
Korea. There are several reports of PBM in Turkey, Israel, 
India and Nepal. There are no PBM monitoring data in 
the Southern Hemisphere except for Antarctica. There are 
more PBM monitoring points in remote areas than in urban 
areas. Most of PBM data were from the developed coun-
tries, the PBM data is quite lacking and there is a blank in 
the developing countries except for China.

Global ly,  the mean PBM concentrat ion is 
110.6 ± 98.9  pg  m−3 in this study (Table  S1), and 
PBM concentrations in the Northern Hemisphere 
(113.8 ± 102.1 pg m−3) showed a much higher level than in 
the Southern Hemisphere (53.5 ± 47.4 pg m−3). In general, 
PBM concentrations are closely related to its original areas 
and transport pathways. Because most of industry activi-
ties are in the Northern Hemisphere. Anthropogenic PBM 
emissions in the Northern Hemisphere are higher than that 
in the Southern Hemisphere. China and India are the most 
important mercury emitters in the Northern Hemisphere, and 
the rapid development of industrial activities has released 
large amounts of mercury into the air (Pirrone et al. 2010; 
Fu et al. 2015). Biomass combustion in South and Southeast 
Asia is also an important source of atmospheric Hg (Wang 
et al. 2015). In addition, developed countries and areas such 
as EU and the United States, Japan and South Korea also 
emitted large amounts of mercury into the environment dur-
ing previous industrial developments. The Hg deposited in 
the environment is released into the atmosphere again and 
converted into PBM in the atmosphere, which may also be 
a source of PBM.

However, the PBM level of Antarctica is higher than that 
in the Arctic (Table S1, Fig. 1), the highest mean concentra-
tion of PBM was 166 ± 147 pg m−3 measured in the Antarc-
tica pole, which is higher than the global mean PBM concen-
tration (Arimoto et al. 2004). The Arctic, unlike Antarctica, 
is surrounded by industrialized continents that contribute 
gaseous and particulate pollution (arctic haze). Therefore 
Arctic pollution is caused by both natural and anthropogenic 
pollutants from the Eurasian continent and North America, 
particularly in late winter and spring (Pirrone et al. 2010; 
Zhang et al. 2015b). However, in the Antarctica, the reason 
of high PBM might be resulted from the in-situ physico-
chemical productions, such as the result of gas phase oxida-
tion of GEM and scavenging by aerosol particles (Lin and 
Pehkonen 1999; Sprovieri et al. 2002; Pfaffhuber et al. 2012; 
Ariya et al. 2015).

The PBM level of developing countries was higher than 
that in the developed countries. Generally, the PBM level in 
the United States of America (USA), Canada, EU and Japan, 
was lower than that in China, India and Mexico (Chand et al. 
2008) (Table S1, Fig. 2). Due to coal combustion, waste 
incineration, metal smelting, refining and manufacturing as 
well as heavy burning of coal in residential and small indus-
trial settings without particulate matter (PM) controls, PBM 
emissions are high in the developing countries (Wang et al. 
2010; Zikang Cui et al. 2019). In addition, the large amount 
of biomass combustion in some developing countries and 
regions is also the reason for the high PBM in the atmos-
phere (De Simone et al. 2017). Some studies have shown 
that biomass combustion from South Asia, Southeast Asia 
and South America contributes significantly to local high 
PBM concentrations (Wang et al. 2015).

The PBM level in urban areas, particularly in China 
and South Asia, was higher than that in the remote 
areas (Table  S1, Figs.  2, 3). Mean PBM concentra-
tions at urban sites ranged from 2.3 to 1180  ng  m−3 
(mean 225 ± 174.5 ng m−3), significantly higher than the 
PBM concentrations measured at remote sites (mean 
25.3 ± 29.7 ng m−3). In the urban areas, PBM emissions to 
the atmosphere were from anthropogenic sources including 
fossil-fuel power plants and industrial facilities, particularly 
from coal, oil and biomass combustion as well as from solid 
waste incineration (Pirrone et al. 2010). Although PBM resi-
dence time in atmospheric environment is relatively short, 
the release of PBM can rapidly increase PBM concentrations 
near the emission source, resulting in the high PBM level in 
urban areas. However, a small amount of PBM from anthro-
pogenic sources can be transported to remote background 
areas through long-distance transportation. Additionally, 
natural emissions, such as volcanoes, forest fires and phys-
icochemical transformation in the atmosphere, are also the 
sources of PBM (Wang et al. 2016). This could be the main 
factors affecting PBM distribution in remote background 
areas.

In this study, we found that the spatial distribution of 
PBM is linked to latitude, the higher PBM concentrations 
were in the range 20°–60° of northern latitude (Fig. 4). 
Within this latitude range, there are the major population 
and industries, such as China, USA, EU and India, large 
amounts of PBM from anthropogenic sources was emitted 
into the atmosphere, which resulted in a high PBM concen-
trations in the regions (Pirrone et al. 2010; Fu et al. 2015). 
Another reason is that most of the world’s land is in the 
Northern Hemisphere, and most of the mercury emissions 
from land-based natural sources are concentrated in this 
dimension, such as forest fires and other biomass burning. 
Previous studies have found that biomass combustion from 
Southeast Asia and South Asia can increase PBM concen-
trations in the region. In addition, some studies have found 
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that dust and haze weather is also an important reason for the 
increasing of PBM in the atmosphere in these areas (Wang 
et al. 2015; Hong et al. 2016).

PBM has multiple sources and undergoes complex trans-
port and transformation processes in the atmosphere (Ariya 
et al. 2015). Further systematic study is thus needed to bet-
ter quantify the PBM from different sources and get a more 

accurate PBM emission inventory, which is beneficial for 
controlling atmospheric Hg emissions. Additionally, isotope 
analysis technology is very important for the study of atmos-
pheric PBM. Recent studies have focused on the isotope 
composition and fractionation of PBM in atmosphere (Fu 
et al. 2019; Huang et al. 2019). According to these stud-
ies, it is better to study the chemical changes and cycles 
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Fig. 1   The mean PBM concentration in the word and different areas
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Fig. 2   PBM concentrations in 
the remote areas. The data of 
the PBM emission (mg km−2) 
were from AMAP/UNEP 
geospatially distributed mercury 
emissions dataset 2010v1 
(AMAP/UNEP 2013)

Fig. 3   PBM concentrations in 
the urban areas. Data of the 
PBM emission (mg km−2) were 
from AMAP/UNEP geospatially 
distributed mercury emissions 
dataset 2010v1 (AMAP/UNEP 
2013)
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of atmospheric Hg, and recognize and explain the different 
potential source characteristics of atmospheric Hg, so as to 
promote to understand the global biogeochemical cycling 
of Hg.
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