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A B S T R A C T

Over 400 carbonate-hosted Pb-Zn deposits in the western Yangtze block constitute the giant Sichuan-Yunnan-
Guizhou (SYG) Pb-Zn metallogenic province. The majority of Pb-Zn deposits hosted in Devonian carbonates are
characterized by low δ34S values, causing debates on their ore genesis. To address this issue, the Yunluheba Pb-
Zn deposit is chosen as a case study. Ore bodies of this deposit are hosted in middle Devonian carbonates. Ore
minerals are sphalerite, galena and pyrite. Sphalerite Rb-Sr dating yields an isochron age of 206.2 ± 4.9Ma,
consistent with ages of most Pb-Zn deposits in the SYG province, arguing for a regional intensive Pb-Zn mi-
neralization event during the late Indosinian orogeny. Sulfides have Pb isotopic compositions that form a linear
trend above the average crustal Pb growth curve in the 207Pb/204Pb vs. 206Pb/204Pb plot. Moreover, Pb isotopic
ratios are consistent with the Devonian to Permian carbonates’ age-corrected Pb isotopic ratios, suggesting
mixed crustal Pb sources with the majority of Pb derived from country rocks. Combined with initial 87Sr/86Sr
ratios of sphalerite, approximately equal to 87Sr/86Sr200Ma ratios of the D-P carbonates, ore-forming metals are
considered to have been derived mainly from ore-hosting rocks. Sulfides’ δ34SCDT values range mainly from
−2.0‰ to 2.9‰, interpreted to be a result of mixing by syn-sedimentary pyrite originated biogenic S and
thermochemically reduced S. We conclude that the Yunluheba deposit and other Pb-Zn deposits in the SYG
province should belong to Mississippi Valley-type deposits.

1. Introduction

The contiguous Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic
province (Fig. 1) is a major part of the South China low-temperature
metallogenic domain (Hu et al., 2017a, 2017b; Li, 1999; Tu, 1998) and
hosts over 400 carbonate-hosted Pb-Zn deposits with metal resources of
more than 26 million tons, making it an important region for base metal
production in China (Hu et al., 2017a, 2017b; Liu and Lin, 1999; Zhou
et al., 2018b). These Pb-Zn deposits are characterized by high grades of
Pb+Zn (generally > 10%) and are enriched in a variety of elements,
such as Cd, Ga, Ge and In (Li, 2003; Si et al., 2013; Wang et al., 2008).
Among these deposits, the economically important deposits include
those in Huize, Maoping, Daliangzi and Tianbaoshan (Shen et al., 2016;
Wang et al., 2018; Yin et al., 2009; Zhang et al., 2008). Many studies
consider the SYG deposits to be Mississippi Valley-type (MVT) deposits
(e.g., Han et al., 2007; Hu et al., 2017b; Jin and Huang, 2008; Wang

et al., 2001; Zhang et al., 2015; Zhou et al., 2001), which are generally
characterized by epigenetic ore precipitated from dense basinal brines
at approximately 75–200 °C, platform carbonate host rocks and no di-
rect relationship with igneous activity (Leach and Sangster, 1993).
However, other compelling perspectives have also been proposed, in-
cluding Emeishan basalt-related magmatic-hydrothermal origins
(Huang et al., 2004; Xu et al., 2014; Zhou et al., 2018b), sedimentary
exhalation (Tang, 1999), and sedimentary reworking mineralization
(e.g., Liao, 1984; Zhao, 1995). Recent geochronological work has sug-
gested that most of the carbonate-hosted Pb-Zn deposits in the SYG
province could have formed during the late Indosinian orogeny
(230–190Ma, Table 1; Li et al., 2004; Lin et al., 2010; Wu, 2013; Yin
et al., 2009; Zhang et al., 2015; Zhang et al., 2015; Zhang et al., 2014;
Zhou et al., 2013c; Zhou et al., 2013d; Zhou et al., 2015). Furthermore,
the deposits show a general range of δ34S values from 8‰ to 20‰,
indicating that the S was mainly sourced from seawater sulfates in the
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host rocks by thermochemical sulfate reduction (Hu et al., 2017b; Kong
et al., 2018; Li et al., 2006; Liu et al., 2017; Zhou et al., 2018a, 2018b).
However, many of the deposits hosted by the Devonian carbonates have
been found to be characterized by low δ34S values (−7.8‰ to 2.7‰,
Zhu et al., 2016; Zhang et al., 2016), which some have interpreted to be
mantle or igneous in origin (e.g., Zhang et al., 2016). This interpreta-
tion challenges the existing genetic models for the SYG carbonate-
hosted Pb-Zn deposits.

The Yunluheba Pb-Zn deposit is hosted in Devonian carbonate rocks
in the eastern SYG province (Figs. 1 and 2) and has S isotopic compo-
sitions similar to those of the mantle (Zhang et al., 2016). Although no
economically important Pb-Zn deposits have been discovered yet in the

Yunluheba area, whether these low δ34S values of the Pb-Zn deposits
indicate a new type of Pb-Zn mineralization in the SYG province and
provide information on their genesis is worthy of further studies, as
these issues are crucial to understanding the regional metallogenesis
and in guiding future explorations. Previous studies have paid ex-
pended considerable effort to determine the ore deposit geology and to
evaluate the mineral potential (Deng and Yang, 2015; Jin and Huang,
2008; Liao and Deng, 2002; Yang, 2015), but knowledge of the ore
sources and the mineralization age remain limited, hindering the de-
velopment of an accurate genetic model.

Direct dating of hydrothermal deposits is critical for properly
evaluating their relationships with notable geotectonic events;

Fig. 1. (a) Regional geological map of the SYG Pb-Zn metallogenic province showing the spatial relationships among the deep faults, Emeishan flood basalts and
major Pb-Zn deposits (modified from Huang et al. (2004)). The insert (b) is a tectonic map of the South China Craton showing the location of the SYG region at a
larger scale.
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however, this process is challenging due to the lack of suitable minerals
for traditional radioisotope dating (Li et al., 2007; Nakai et al., 1990;
Sangster, 1996). The technique of sphalerite Rb-Sr dating has been
greatly improved in recent decades and has become a promising tool for
the direct dating of ore minerals in Zn-Pb deposits (Christensen et al.,
1995; Nakai et al., 1990; Nakai et al., 1993; Nelson et al., 2002;
Ostendorf et al., 2017; Schneider et al., 2007). Despite continuous
concern about its reliability because of possible contamination by in-
clusions of carbonate, clays or volcanic ash that may impart different
87Sr/86Sr ratios (Brannon et al., 1996b), Pettke and Diamond (1995)
experimentally found the Rb-Sr isotopic compositions of residual solid
samples processed by crushing and cleaning to be feasible for dating a
deposit. The method was applied to the MVT deposits in the Polaris and
Upper Mississippi Valley areas that produced ages identical to their
palaeomagnetic ages and thus were considered to represent the ore
formation ages (Bradley et al., 2004). Currently, Rb-Sr sphalerite geo-
chronology has been widely used to constrain the geodynamic settings
of carbonate-hosted Pb-Zn deposits (e.g., Cao et al., 2015; Feng et al.,
2017; Rosa et al., 2016; Tian et al., 2014; Xiong et al., 2018). Sulfur,
lead and strontium isotopes are powerful tools that can place key
constraints on the sources of ore metals and fluids as well as fluid flow
pathways (e.g., Basuki et al., 2008; Leach et al., 2005; Mirnejad et al.,
2011; Sebastian Staude, 2011; Tang et al., 2017); however, these ele-
ments have rarely been studied in the Yunluheba area.

To determine the genesis of the Yunluheba Pb-Zn deposit and the
relationship with other deposits in the region, this study involved a
comparative analysis of the Yunluheba deposit and equivalents in terms
of ore deposit geology, ore formation ages, fluids and ore-forming
element sources based on sphalerite Rb-Sr isotopic dating and S-Pb-Sr
isotopes. The results provide new insights into the origin of the
Yunluheba Pb-Zn deposit.

2. Regional geology

The Yangtze block, separated from surrounding blocks by faults and
suture zones (Fig. 1), is composed of spatially limited and poorly ex-
posed Archean and Paleoproterozoic basement assemblages that are
unconformably underlain by variably deformed and metamorphosed
Neoproterozoic, Paleozoic and Mesozoic igneous and sedimentary
successions (Gao et al., 1999; Liu and Lin, 1999; Qiu and Gao, 2000;
Wang et al., 2014). The SYG area at the southwestern margin of the
Yangtze block is bounded by the Anninghe-Lvzhijiang fault in the west,
the Kangding-Yiliang-Shuicheng fault in the northeast and the Mile-
Shizong fault in the south. The exposed basement rocks of this region
include the Dongchuan, Kangding and Kunyang Groups, which are
largely composed of tightly folded but weakly metamorphosed gray-
wackes, slates and carbonaceous to siliceous sedimentary rocks (Sun
et al., 2009; Zhao et al., 2010). Paleozoic to early Mesozoic cover se-
quences mainly consist of shallow marine carbonates, including Cam-
brian black shale, sandstone and limestone interbedded with dolostone;
Ordovician thick-bedded limestone and dolostone; and Devonian to
Permian limestone and dolostone interlayered with minor clastic rocks
(Zhou et al., 2001). Widespread Emeishan basalts unconformably lie
atop the Permian carbonate rocks (Maokou Formation) in the SYG area
and were derived from a mantle plume (Xu et al., 2001; Zhong et al.,
2011; Hei et al., 2018). The eruption of the basalts has been dated to
approximately 260Ma (Zhou et al., 2002). The closure of the Paleo-
Tethys ocean was followed by the collision of the South China plate and
the Indochina block in the Early to Middle Triassic (Indosinian orogeny,
250–230Ma; Faure et al., 2014; Qiu et al., 2017), which resulted in the
formation of a series of thrust faults (Maluski et al., 2001; Xia et al.,
2004; Yan et al., 2006) and foreland basins (e.g., Youjiang basins to the
southeast) in the periphery of the SYG area (Jia et al., 2006; Yang et al.,
2012; Yong et al., 2003).

The SYG Pb-Zn deposits are commonly hosted in Neoproterozoic to

Fig. 2. Geological map of northwestern Guizhou Province showing the location of the Yunluheba Pb-Zn deposits (modified from Jin and Huang (2008)).
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Permian carbonate rocks in the form of stratiform, lenticular and vein
orebodies controlled by thrust faults (Table 1). The ore minerals are
mainly sphalerite and galena with minor pyrite, arsenopyrite, chalco-
pyrite and bornite, and the gangue minerals are calcite, dolomite and
quartz. Wall rock alterations include dolomitization, calcification, sili-
cification and ferritization. Faulting structures are abundant in the re-
gion and controlled the distribution of the Pb-Zn deposits (Fig. 1). In the
west of the SYG region, NS-trending faults (e.g., the Xiaojiang and
Anninghe faults) and their secondary structures controlled the locations
of the Daliangzi, Tianbaoshan, Maozu and Chipu deposits, while in the
east, the deposits were mainly influenced by NW- and NE-trending
faults. The intersection sites of faults are the preferred locations for
large to giant deposits. The Huize deposit, the largest Pb-Zn deposit in
the SYG region, contains> 5 Mt of Pb+Zn (at grades of 25–35%, lo-
cally higher than 60%) and 800 tons of Ge (at a grade of 400 ppm; Han
et al., 2007) and is associated with a NE-trending fault (the Dongchuan-
Zhenxiong fault). The studied area of Yunluheba is located at the in-
tersection of the NE-trending Yinchangpo-Yunluhe fault and the NW-
trending Yiliang-Shuicheng fault (Fig. 2).

3. Geology of the Yunluheba deposit

The Yunluheba area, situated to the northwestern Weining County
in NW Guizhou Province, is considered a northern extension of the NE-
trending Huize Pb-Zn mineralization belt (Fig. 2; Jin et al., 2016; Zhang
et al., 2016). The Pb-Zn deposits are mainly controlled by the NE-
trending Yinchangpo-Yunluhe fault, which, together with the NW-
trending Yadu-Mangdong and Weining-Shuicheng faults, influenced the
locations of the majority of Pb-Zn deposits in NW Guizhou Province.
The strata cropping out in the Yunluheba area include middle-upper
Devonian, Carboniferous and lower Permian carbonate interbedded
with a lesser amount of clastic rocks. The orebodies are mainly hosted
in coarsely crystallized dolostone and dolomitic limestone of the Middle
Devonian Wangchengpo Formation and Carboniferous Dabu and
Huanglong Formations. The major ore-controlling structure, the
Yinchangpo-Yunluhe fault, is a sinistral transpressional high-angle
thrust fault with a dip direction of 100–150° and a dip angle of 60–70°.
Fault intersections, the dipping ends of anticlines and inversions are the
preferred structures for ore emplacement.

Dozens of small-scale Pb-Zn deposits, including Haoxing, Fuqiang,
Shunda, Tangjiapingzi and Shizidong, have been discovered in the
Devonian dolostone and are spatially restricted to fault zones as well as
derivative branching faults and interlaminar fractures (Fig. 3). Or-
ebodies are present as stratiform and lens-like shapes and run parallel to
the bedding of the wall rocks. These deposits commonly display clear
vertical zoning from oxidized ore at the top to mixed ore in the middle
to primary sulfides at the bottom. The thickness of the oxidized ore
varies from a few meters to more than hundreds of meters, and cur-
rently, only a few deposits (e.g., Haoxing) have been found with a
considerable reserve of sulfides. A wide range of alteration types, in-
cluding dolomitization, ferritization, calcitization and silicification, are
observed in the wall rocks. The primary sulfide minerals include galena,
sphalerite and pyrite, and the gangue minerals are dolomite, calcite and
quartz. Ores are mainly present in massive, spotted, veined, brecciated
and disseminated textures and in certain cases in allotriomorphic
granular, metasomatic relict and crush textures (Fig. 4).

Based on the relationships of crosscutting and paragenetic assem-
blages, the representative of the Haoxing deposit underwent synsedi-
mentation, hydrothermal mineralization and supergene oxidation
(Fig. 5). The syn-sedimentation stage is characterized by fine-grained
disseminated euhedral pyrite (Fig. 4E and G) accompanied by minor
dolomite and calcite. This stage was a major stage for pyrite growth,
which recrystallized later in the hydrothermal stage. The hydrothermal
mineralization is characterized by an early pyrite-sphalerite-quartz
stage and a late pyrite-sphalerite-galena-dolomite-calcite stage
(Fig. 4A–D). Sphalerite mainly formed in the early stage and commonly

exhibits coarse-grained vein and massive textures (Fig. 4A and F). The
sphalerite was fractured and filled with late-stage galena and calcite
(Fig. 4H) and was occasionally replaced or entrapped by galena.
Sphalerite are compositionally homogeneous, and no special textures
(e.g., core-mantle and zoning) have been found (Fig. 4I). Galena is
commonly observed to have been replaced by cerussite. Supergene
minerals, including limonite, smithsonite, hematite and cerussite, are
present as gossan.

4. Samples and analytical methods

Sphalerite samples used for isotopic analysis in this study were
collected from the Haoxing and Fuqiang deposits (Tables 2–4). Those
for Rb-Sr dating are all from the Haoxing deposit. The samples were
crushed to a size of 60–80 mesh for handpicking under a binocular
microscope. The estimated purity of the separates exceeded 99%. The
separates were then ground to less than 200 mesh using an agate mortar
before dissolution.

For the Rb-Sr isotope analysis, sample aliquots were cleaned with
ultrapure water in an ultrasonic bath three times to remove salts from
broken fluid inclusions. Each sample was spiked with mixed isotopic
tracers and dissolved with ultrapure 6mol/L HCl and HNO3 in a sealed
Teflon cup at 200 °C in an oven. The samples were dried on a hot plate
and then redissolved with ultrapure 6mol/L HNO3. These samples were
then transferred to cation exchange resin columns for the separation
and purification of Rb and Sr. For a detailed description of the proce-
dure, refer to Wang et al. (2007) and Wang et al. (1988). The isotopic
ratios were measured on a British VG354 multicollector mass spectro-
meter at the Center of Modern Analysis, University of Nanjing, China.
The total procedural blanks were less than 5×10−9 g for Rb and Sr.
The international standard NBS-987 was analyzed to correct for the
instrumental fractionation of the Sr isotopes. The measured 87Sr/86Sr
value of the standard was 0.710233 ± 6, which is consistent with the
recommended value (0.71023 ± 5; Cao et al., 2015). The errors (σ)
were 1% and 0.005% for the 87Rb/86Sr and 87Sr/86Sr ratios, respec-
tively. The Rb-Sr isochron regression and age calculations were per-
formed using Isoplot/Ex version 3.22 software (Ludwig, 2005).

The sulfur isotope analyses were conducted using a Thermo Fisher
MAT-253 gas-source mass spectrometer at the State Key Laboratory of
Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy
of Sciences (IGCAS). Aliquots of the samples were oxidized to SO2 gas
by Cu2O in a muffle furnace under high-temperature (1000 °C) vacuum
conditions; then, the δ34S values of the resulting SO2 gas were measured
with analytical uncertainties of 0.2‰ (2σ). The sulfur isotope compo-
sitions are reported relative to the Vienna Canyon Diablo Troilite (V-
CDT) standard.

Lead isotope analysis was carried out on a Finnigan MAT 261
Thermo Ionized Mass Spectrometer at the Wuhan Center of Geological
Survey (WCGS), China Geological Survey. All samples were cleaned
with ultrapure water before dissolution by ultrapure HCl and HF. The
separation and purification of Pb were performed with HBr and anion
exchange resin (AG-1×8 200–400 mesh) columns. The internal pre-
cision of Pb isotope ratios was better than 0.1%, and the replicate
analyses were consistent within the error. The measured 207Pb/206Pb
value of the standard NBS-981 was 0.91454 ± 6, which is consistent
with the reference value (0.91464 ± 33). For more details, refer to Lu
et al. (2016).

5. Results

The concentrations and isotopic compositions of Rb and Sr in
sphalerite are shown in Table 2. Seven sphalerite separates exhibited Rb
and Sr concentrations ranging from 0.06 to 0.65 ppm and from 0.23 to
2.55 ppm, respectively. The 87Rb/86Sr ratios varied from 0.15 to 3.46,
and the 87Sr/86Sr ratios varied from 0.71086 to 0.72045. The samples
showed a linear correlation in the 87Rb/86Sr vs. 87Sr/86Sr space
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(Fig. 6A), corresponding to an isochron age of 206.2 ± 4.9Ma with an
MSWD of 1.9 (Model 3 solution; Ludwig, 2005).

Except for an outlier (δ34S=−18.1‰) measured from pyrite
(Table 3), the sulfur isotope compositions of sphalerite and galena are
homogeneous with δ34S values ranging from −2.0 to 2.9‰ and
peaking at 0‰ in the Yunluheba deposit (Fig. 7A). The S isotopic fea-
tures of the Yunluheba deposit are remarkably different from those of
most of the SYG Pb-Zn deposits which show δ34S values in a range of
8‰ to 20‰ (Fig. 7B).

The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios range from
18.196 to 18.658, 15.645 to 15.897, and 38.415 to 39.465, respec-
tively. It is notable that the Pb isotope data plot above the orogenic
evolution curve in a nearly linear array in 207Pb/204Pb vs. 206Pb/204Pb
space (Fig. 8). Moreover, the Pb isotopic compositions show excellent
consistency with the age-corrected Pb isotopic compositions of the
Devonian to Permian carbonate rocks. The Yunluheba deposit has Pb
isotopic compositions comparable to those of the Huize, Yinchangpo,
Shanshulin Shaojiwan and Qingshan deposits, which form linear arrays
extending overall within the range of the Devonian to Permian carbo-
nate rocks. The Pb isotopic compositions of the Tianqiao deposit are
relatively homogenous and fall within the Pb isotopic range of the
basement rocks.

6. Discussion

6.1. Timing of the Pb-Zn mineralization in the Yunluheba deposit

Despite the possibility of exotic Sr involvement, the process of
crushing followed by cleaning for sphalerite separates can greatly di-
minish the interference of fluid inclusions of either primary or sec-
ondary origin; thus, the date obtained from the solid residue more likely
represents the ore formation age (Liu et al., 1998; Pettke and Diamond,
1995). Given that the 87Sr/86Sr and 1/Sr ratios of the sphalerite are not

linearly correlated (Fig. 6B), this indicates that the isochron (Fig. 6A) is
not a pseudo-isochron of two-component mixing and thus should reflect
the timing of the Pb-Zn mineralization (Nakai et al., 1993; Rosa et al.,
2016; Schneider et al., 2003; Xiong et al., 2018). Geologically, the
Yunluheba Pb-Zn deposits are spatially controlled by the NE-trending
Yinchangpo-Yunluhe thrust fault, which implies that the Pb-Zn miner-
alization should have postdated the thrusting; however, no data are
available to constrain the timing of the overthrusting movement. The
youngest strata involved in the foot wall are the Permian Feixianguan
Formation that was deposited at 252–247Ma (Liao and Deng, 2002),
which may provide an upper age limit for the Yunluheba deposit. Thus,
the Pb-Zn ore formation likely took place after the deposition of the
Feixianguan Formation. The sphalerite Rb-Sr dating result
(206.2 ± 4.9Ma) for the Yunluheba deposit agrees with this scenario.
The Yunluheba Rb-Sr age is approximately identical within reasonable
uncertainty to the ages of many other SYG deposits (Table 1 and Fig. 9;
Lin et al., 2010; Zhang et al., 2015; Zhang et al., 2014; Zhou et al.,
2013c; Zhou et al., 2013d; Zhou et al., 2015). For ages acquired by
various isotopic systematics, although many are from Rb-Sr isotopic
dating, the coincidence provides added credibility to the Yunluheba Rb-
Sr date and suggests that the Rb-Sr geochronology is applicable to most
SYG Pb-Zn deposits. Therefore, we conclude that the Yunluheba Pb-Zn
deposit was formed synchronously with most of the SYG Pb-Zn deposits
by a regional hydrothermal event during the late Indosinian orogeny
(Hu et al., 2017b; Zhang et al., 2015; Zhou et al., 2015).

6.2. Ore sources

The Pb isotopic compositions of sulfides in the Yunluheba deposit
vary considerably and form a linear trend in 207Pb/204Pb-206Pb/204Pb
space (Fig. 8). Three possible scenarios may result in a linear array:
analytical errors, a secondary isochron and binary mixing (Franklin,
1983). Leach et al. (2005) documented mass discrimination errors

Fig. 3. Geological map of the Yunluheba area showing the distribution of major Pb-Zn deposits and their relationship with major structures (A) and a cross section
through the Fuqiang (B) and Haoxing deposits (C).
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caused by slight variations in filament temperatures and sample loads
that produce arrays with a constant slope of ~1.4; clearly, this process
does not likely apply to the Yunluheba deposit. The Pb isotope data
(excluding an analysis that deviates from the trend) define a straight
line (with a slope of 0.8171) that yields a two-stage model age of
228Ma at the intersection with the Pb growth curve of the Stacey-
Kramers model (Faure and Mensing, 2005). This date may represent the
time at which the Pb was withdrawn from the second Stacey-Kramers
reservoir; subsequently, the Pb was mixed with radiogenic Pb and de-
posited in the sulfides. Alternatively, the trend was caused by the
mixing of two isotopically distinct sources (high μ and low μ sources,
where μ=Th/U). The majority of Pb isotopic analyses plot above the
crustal Pb evolution curve, indicating that the ore Pb has a pre-
dominantly crustal source (Zartman and Doe, 1981). Moreover, the Pb
isotopic compositions are comparable to those of age-corrected Devo-
nian to Permian carbonate rocks, indicating that the Pb was largely
derived from the carbonates. Carbonates are typically enriched in U but
depleted in Th (Ostendorf et al., 2017; Rosa et al., 2016), thereby po-
tentially accounting for the low μ source. The basement metamorphic
rocks, generally characterized by U loss (high μ) due to high-grade
metamorphism (Dostal and Capedri, 1978; Downes et al., 2001), lie at
the bottom of the data trend. Therefore, the basement rocks probably
represent the other Pb source but contributed only a small amount. This

Fig. 4. Mineralization features of ore specimens and photomicrographs. A. Early-stage massive sphalerite invaded by late-stage dolomite and galena. B. Late-stage
coarse-grained galena intergrown with calcite and bitumen, which cuts the early-stage sphalerite ore. C. Synsedimentary pyrite was intruded by early-stage brown
sphalerite, which was subsequently cut or included by late-stage dolomite. D. Late-stage vein comprising calcite, pyrite and minor yellowish sphalerite, cutting early-
stage sphalerite ore. E. Early-stage hydrothermal pyrite filling the fractures and cavities of dolostone (reflected light). F. Early-stage massive sphalerite replacing
limestone (transmitted light). G. Early-stage massive sphalerite ore containing relics of earlier fractured pyrite altered by galena (reflected light). H. Late-stage calcite
and galena filling the fractures of early-stage sphalerite. I. Compositionally homogeneous sphalerite is intruded by a galena vein, which has been replaced by
cerussite (SEM image). Abbreviations: Cal-calcite, Cr-cerussite, Dol-dolomite, Gn-galena, Py-pyrite, and Sp-sphalerite.

Fig. 5. Paragenetic sequence of major minerals in the Yunluheba deposit. The
heights of the filled ellipses indicate the abundance of minerals.
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interpretation also applies to the Pb isotopic variations in the Huize,
Yinchangpo, Qingshan and Shanshulin deposits, but there are differ-
ences in the proportions of the contained basement Pb. The Pb of the
Tianqiao deposit may have been derived from a homogenized source of
basement Pb, in consideration of its limited Pb isotopic variations

which are largely characteristic of the basement rocks (Fig. 8). The
Emeishan basalts contributed no significant amount of Pb to any of the
deposits.

The initial 87Sr/86Sr values of the Yunluheba ore fluid range from
0.7103 to 0.7107, slightly lower than the values (0.7107–0.7132) of the
Shanshulin, Shaojiwan, Tianqiao and Jinshachang deposits but very
different from those for the Huize deposit (Fig. 10). The Yunluheba,
Shanshulin, Tianqiao and Jinshachang deposits are generally char-
acterized by low 87Sr/86Sr ratios that are more similar to the range
(0.7073–0.7111) of the Devonian to Permian carbonate rocks, in-
dicating that the Sr was mainly derived from the marine carbonates. No
significant amount of Sr was extracted from either the basement rocks
or the Emeishan basalts. The Yunluheba, Jinshachang and Tianqiao
deposits have very limited variations in initial Sr isotopic values in their
sphalerite residues, implying that the Sr of the ore fluids is isotopically
homogeneous and that the Sr could have been extracted from a specific
source for each deposit, which is likely an important cause of success in
sphalerite Rb-Sr dating in the deposits. The Shanshulin and Shaojiwan
deposits are characteristic of relatively wide ranges of initial Sr ratios,
which indicates that the Sr is likely a mixture of various marine sources.
The Huize deposit, characterized by considerably varied and much
higher 87Sr/86Sr values, likely includes a large amount of Sr from the
basement rocks.

Previous studies have concluded that the sulfur associated with the
formation of the Yunluhede deposits is mantle in origin because the
δ34S values of sulfides are mainly concentrated from −1.5‰ to 2.7‰
(Zhang et al., 2016). In this study, we expanded the quantity of samples

Table 2
Sphalerite Rb-Sr isotopic compositions of the Haoxing Pb-Zn deposit.

Sample Description Rb/ppm Sr/ppm 87Rb/86Sr 87Sr/86Sr 87Sr/86Sr 200Ma

HX14-20-1 Stage-1 massive sphalerite 0.08 1.57 0.15 ± 0.01 0.71086 ± 5 0.7104
HX14-23 Stage-1 vein sphalerite 0.18 2.55 0.21 ± 0.01 0.71089 ± 5 0.7103
HX14-15C Stage-1 tawny sphalerite 0.65 0.55 3.46 ± 0.01 0.72045 ± 5 0.7107
HX14-20-2 Stage-1 brown sphalerite 0.73 1.84 1.83 ± 0.01 0.71573 ± 5 0.7106
HX14-21 Stage-1 massive brown sphalerite 0.06 0.23 0.79 ± 0.01 0.71262 ± 5 0.7104
HX14-16A Stage-1 massive brown sphalerite 0.45 2.37 0.56 ± 0.01 0.71206 ± 5 0.7105
HX14-19 Stage-1 massive brown sphalerite 0.31 2.32 0.39 ± 0.01 0.71136 ± 5 0.7103

Note: (87Sr/86Sr)t = 87Sr/86Sr − 87Rb/86Sr * (eλt − 1), λRb= 1.41 * 10−11t−1, t= 200Ma.

Table 3
Sulfur isotopic compositions of sulfides from the Yunluheba Pb-Zn deposits.

Sample Deposit Mineral δ34SCDT Reference

HX14-20-1 Haoxing Sphalerite 1.7 This study
HX14-23 Haoxing Sphalerite 2.0
HX14-15C Haoxing Sphalerite −0.2
HX14-20-2 Haoxing Sphalerite 1.3
HX14-21 Haoxing Sphalerite 2.9
HX14-16A Haoxing Sphalerite 1.1
HX14-19 Haoxing Sphalerite 0.9
HX14-18 Haoxing Sphalerite 1.5
FQ14-15D Fuqiang Sphalerite −1.6
FQ14-16B Fuqiang Sphalerite −0.9

467-6 Haoxing Galena 2.7 Zhang et al., 2016
467-6 Haoxing Sphalerite −0.1
467-3 Haoxing Galena −1.5
467-9 Haoxing Galena −1.3
467-9 Haoxing Sphalerite 0.5
467-2a Haoxing Galena −2.0
467-2a Haoxing Sphalerite 0.2
467-7 Haoxing Pyrite −18.1
467-7 Haoxing Galena 0.9
467-7 Haoxing Sphalerite −0.3

Table 4
Lead isotopic compositions of sulfides from the Yunluheba Pb-Zn deposits.

Sample Deposit Mineral 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Reference

Ratio 2σ Ratio 2σ Ratio 2σ

HX14-20-1 Haoxing Sphalerite 18.553 0.003 15.775 0.003 39.055 0.004 This study
HX14-23 Haoxing Sphalerite 18.658 0.005 15.897 0.005 39.465 0.011
HX14-15C Haoxing Sphalerite 18.557 0.004 15.767 0.005 39.050 0.009
HX14-20-2 Haoxing Sphalerite 18.529 0.003 15.746 0.003 38.957 0.003
HX14-21 Haoxing Sphalerite 18.541 0.004 15.753 0.004 38.986 0.008
HX14-16A Haoxing Sphalerite 18.570 0.005 15.788 0.004 39.085 0.009
HX14-19 Haoxing Sphalerite 18.556 0.003 15.770 0.002 39.051 0.005
HX14-18 Haoxing Sphalerite 18.537 0.005 15.796 0.005 39.104 0.007
FQ14-15D Fuqiang Sphalerite 18.584 0.007 15.810 0.006 39.191 0.013
FQ14-16B Fuqiang Sphalerite 18.537 0.003 15.770 0.004 39.089 0.006

467-6 Haoxing Galena 18.385 0.003 15.665 0.004 38.713 0.007 Zhang et al., 2016
467-6 Haoxing Sphalerite 18.41 0.003 15.666 0.003 38.757 0.005
467-3 Haoxing Galena 18.196 0.003 15.645 0.003 38.415 0.007
HX14-25d Haoxing Pyrite 18.414 0.003 15.67 0.003 38.769 0.006
FQ14-16d Fuqiang Galena 18.431 0.004 15.676 0.005 38.804 0.009
FQ14-53b Fuqiang Pyrite 18.439 0.002 15.676 0.003 38.838 0.007
FQ14-55 Fuqiang Sphalerite 18.439 0.003 15.686 0.003 38.870 0.003
SD14-9a Shunda Galena 18.459 0.006 15.703 0.002 38.906 0.008
SD14-10a Shunda Galena 18.441 0.004 15.692 0.004 38.876 0.008
SD14-11a Shunda Pyrite 18.496 0.004 15.723 0.004 38.938 0.008
SZD13-30 Shizidong Pyrite 18.513 0.002 15.721 0.002 39.018 0.005
SZD14-43d Shizidong Pyrite 18.525 0.003 15.731 0.003 39.058 0.005
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for sulfur isotope analysis and acquired compositions (−2.0‰ to
2.9‰) similar to those in previous research. With consideration of the
absence of paragenetic sulfates, the δ34S values of sulfides could re-
present the total sulfur isotopic composition (δ34∑S) of the fluid from
which the sulfides precipitated and thus can be used to directly trace
the sulfur sources (Ohmoto and Rye, 1979). Therefore, two possibilities
can be invoked to account for the sulfur source, i.e., a single mantle
source or a mixed source involving sulfur from biogenic and seawater
sources (Machel, 2001; Ohmoto and Rye, 1979). Our dating result
suggests that the Yunluheba deposit, along with most of the SYG car-
bonate-hosted Pb-Zn deposits, formed at approximately 200Ma in re-
sponse to a regional hydrothermal event likely triggered by the late
Indosinian orogeny (Fig. 9). Moreover, the Pb and Sr isotope compo-
sitions of the Yunluheba deposit are clearly similar to those of the host
rocks (as well as to some degree those of the basement rocks), which
acted as sources of ore material, as observed in many other deposits
(Figs. 8 and 10). Under such circumstances, it is difficult to understand
why the Yunluheba deposit obtained sulfur from only the mantle, while
others did not, particularly when no concurrent magmatism has, as yet,
been found in the studied area. Whether a hidden Indosinian magma
exists at depth cannot be determined at present, but there are a few
lines of evidence suggesting Indosinian magmatism (235–204Ma) that
did take place in certain other locations in the SYG province, such as
western Sichuan (Liu et al., 2004; Wang et al., 2012; Xia et al., 2004). In
the SYG province, the main exposure of magmatism is the Emeishan
basalts that formed at 262–256Ma (Zhou et al., 2002), clearly pre-
dating the Pb-Zn mineralization, and the only other magmatic rocks are
postore diabase dikes. Although some studies insist on a genetic link
between the Emeishan basalts and the Pb-Zn deposits either in supply of
ore materials or energy transfer (Huang et al., 2004; Wang et al., 2018;
Xu et al., 2014; Zhou et al., 2018b), such relationships appear un-
convincing based on the evidence currently available (Kong et al.,
2018).

Alternatively, a two-component mixing model of sulfur from bio-
genic sources and stratabound thermochemically reduced sulfate seems
more applicable for the interpretation of the sulfur isotopic variation in

the Yunluheba deposit. In many of the SYG Pb-Zn deposits, an episode
of pre-ore pyrite formation characterized by very negative δ34S values
and microbially relevant ore textures (e.g., colloform, framboidal, and
dendritic) have been recognized; these textures are commonly con-
sidered to be products of bacterial sulfate reduction (BSR) from pore
waters during preore synsedimentation or diagenesis (Wang, 1991,
1992; Wu, 2013; Yang et al., 2018). This type of pyrite was observed in
the Yunluheba deposit, and the pyrite has δ34S values of −18.1‰
(Zhang et al., 2016) and shows clear signatures of dissolution and al-
teration by later hydrothermal fluids (Fig. 4C and G). Therefore, pyrite
could have been a favorable source of low δ34S values. In the Yunluheba
area, as well as in the wider SYG province, the universally present
evaporates, such as barite, in the ore-hosting carbonate rocks show δ34S
values ranging from 21.8‰ to 35.4‰ (Liu and Lin, 1999; Zhang et al.,
2016; Zhou et al., 2015). Considering the fluid inclusion homogeniza-
tion temperatures documented for the Yunluheba deposit (164–228 °C,
unpublished data from Guizhou Geological Bureau), thermochemical
sulfate reduction (TSR) is a likely mechanism for the formation of re-
duced sulfur, consistent with the case in most of the SYG Pb-Zn deposits
(Kong et al., 2018; Luo et al., 2019; Zhou et al., 2018b; Zhou et al.,
2018c; Zhu et al., 2018), which yields a fractionation of 15‰ at 150 °C
and 10‰ at 200 °C between reactant sulfate and product H2S (Kiyosu,
1980; Machel, 2001). Thus, the TSR-induced δ34S values of sulfides
might range from 7‰ to 25‰, which exactly overlap the majority of
δ34S data for most of the SYG deposits (Fig. 7B). Zhang et al. (2016)
reported a δ34S value of 21.8‰ measured from sedimentary barite in
Devonian carbonates in the Yunluheba district, which are expected to
produce a variation in δ34S values from 7‰ to 12‰ for H2S via the TSR
mechanism at 150–200 °C. Assuming that the average δ34S value of the
biogenic source from altered synsedimentary pyrite is −18‰, the ad-
dition of TSR-induced sulfur with a fraction of 0.2–0.7 of the total sulfur
may result in a range of δ34S values in the hydrothermal fluid that is
similar to that of the Yunluheba deposit (−2‰ to 2.9‰). A similar
mechanism has also been proposed to interpret the δ34S variation
(−2‰ to 8.1‰) of sulfides in the Tianbaoshan and Daliangzi deposits
(Wang, 1991, 1992).

As shown in Table 1, the Yunluheba Pb-Zn deposits have many
features in common with other SYG carbonate-hosted Pb-Zn deposits.
Thus, the question arises as to why the Yunluheba deposit have distinct
S isotopes from the other deposits. Zhu et al. (2016) considered that the
variations in S isotopic compositions of sulfides from SYG Pb-Zn de-
posits are mainly related to different-aged carbonate host rocks and that
the capability of those host rocks to contribute reduced S (e.g., H2S) is
crucial to the formation of the ore deposits. Some Pb-Zn deposits hosted
by Devonian strata feature low δ34S values (Zhang et al., 2016; Zhou
et al., 2014b; Zhu et al., 2016), which may largely be attributable to the
availability of reduced S in the host rocks. As noted above, the signature
of low δ34S values for Devonian strata-hosted deposits was dominated
by the biogenic S from alteration of synsedimentary pyrite in the strata.
Other deposits hosted by rocks other than the Devonian rocks char-
acterize high δ34S values of sulfides likely due to the shortage of bio-
genic S supply in host rocks. Because carbonate host rocks of different
ages have evaporates with varying δ34S values (Zhou et al., 2014b), this
mainly resulted in the variations of TSR-induced δ34S values of sulfides
among deposits; additionally, the change in temperature for TSR re-
actions might have also affected the S isotopic compositions of sulfides
in the deposits.

6.3. Ore-forming mechanism

Many previous studies suggest that the SYG carbonate-hosted Pb-Zn
deposits are of MVT origin based on consideration of a range of simi-
larities in host rock, tectonic setting and ore fluids (Hu et al., 2017b;
Zaw et al., 2007; Zhang et al., 2015; Zheng and Wang, 1991; Zhou
et al., 2001). Nonetheless, some deposits, such as Daliangzi and Huize,
are thought to have a genetic connection with magmatism based on

Fig. 6. Sphalerite Rb-Sr isochron (A) and 87Sr/86Sr vs. 1/Sr diagrams (B).

Y.-Y. Tang, et al. Journal of Asian Earth Sciences 185 (2019) 104054

9



noble gas isotopic studies (Wang et al., 2018). By comparison, the
Yunluheba deposit shares a series of characteristics, such as fault-con-
trolled ore distributions, platform carbonate host rock, simple ore mi-
neral compositions and stratiform or lenticular ore bodies, which, in
addition to being prevalent in other SYG deposits, are also typical of
MVT deposits (Table 1). The C-O isotope compositions
(δ13CPDB= 0.3‰ to −10.1‰ and δ18OSMOW=20.2‰ to 23.6‰) of
the calcite and dolomite associated with the Yunluheba Pb-Zn miner-
alization suggest that the carbon was derived from a combination of
dissolution of marine carbonates and organic matter dehydroxylation
(Jin et al., 2016). Moreover, the fluid inclusions in the Yunluheba de-
posit have homogenization temperatures that range from 164 to 228 °C
and salinity values that range from 5.5 to 30.5 wt% NaCleq. (un-
published data from Guizhou Geological Bureau), consistent with the
values of the SYG ore fluids (generally Th < 200–250 °C and salinity
values up to 22wt% NaCleq.; Hu et al., 2017b; Wang et al., 2018;
Zhang, 2006). These fluids are considered to have originated from ba-
sinal brine systems that are commonly associated with the formation of
MVT deposits (Leach et al., 2005).

The currently available age data for the SYG deposits show a peak of

Pb-Zn ore formation ranging from 230 to 190Ma (Fig. 9), and the age of
the Yunluheba deposit falls within this range, which indicates that they
likely formed as a consequence of an intense hydrothermal event across
the SYG area in the context of the Indosinian postorogenic uplift (Faure
et al., 2014; Qiu et al., 2017; Wang et al., 2010). This event implies a
topographically driven mechanism for fluid migration, which is inter-
preted to have occurred in most MVT deposits elsewhere in the world
(Brannon et al., 1996a; Christensen et al., 1995; Leach et al., 2001;
Nakai et al., 1993). Therefore, the Yunluheba Pb-Zn deposit, as well as
other deposits in the SYG province, might have formed from the long-
term migration of basinal brines driven by Indosinian postorogenic
uplift. The Pb and Sr isotope data suggest that the ore sources were
dominantly the host carbonates, possibly with some contribution from
the basement. However, the Emeishan basalts show little relationship
with the Yunluheba deposit. Therefore, the basinal brine might have
extracted a large amount of metals (e.g., Pb and Zn) from wall rocks as
they passed through during long-distance migration driven by In-
dosinian postcollisional elevated topography, and these brines even-
tually evolved into a metalliferous fluid. It might be interpreted by an
alternate model (Fig. 11) that the Indosinian postorogenic uplift

Fig. 7. Histograms of the sulfur isotopic compositions of sulfides from the Yunluheba deposit and regional analogs. The δ34S data for the Huize, Shanshulin and
Tianbaoshan deposits are from Liang (2017); those for the Qingshan deposit are from Zhang et al. (1999) and Zhou et al. (2013e); those for the Shaojiwan deposit are
from Zhou et al. (2013b); those for the Tianqiao deposit are from Zhou et al. (2013d); those for the Jinshachang deposit are from Bai et al. (2013) and Zhou et al.
(2015); those for the Lvmaoping deposit are from Zhu et al. (2016); those for the Maozu deposit are from Zhang et al. (2008); and those for the Chipu deposit are from
Wu (2013). The δ34S data for sedimentary sulfates are from Kong et al. (2018), Liu and Lin (1999), Zhang et al. (2016) and Zhou et al. (2015). The ranges of S isotopic
compositions of bacterial sulfate reduction (BSR) and thermochemical sulfate reduction (TSR) are delineated according to Warren (1999). The sulfur isotopic range of
mantle sulfur was delineated by Chaussidon et al. (1989) and Ohmoto (1986).

Y.-Y. Tang, et al. Journal of Asian Earth Sciences 185 (2019) 104054

10



(~230–190Ma) drove voluminous basinal brines to migrate through
the basement and country rocks, where they extracted metals. The
Yunluheba ore fluids acquired their metals mainly from the Devonian to
Permian carbonate rocks. When the fluids were transported upward
along a deep fault (e.g., the Yinchangpo-Yunluhe thrust fault in the
Yunluheba area) into secondary faulting zones and encountered a re-
sident H2S-bearing fluid with homogeneously mixed sulfur produced by
the alteration of synsedimentary pyrite and stratabound thermo-
chemically reduced sulfate, the fluids precipitated sulfide minerals.
Alternatively, the metalliferous fluids might bring in necessary heat
that triggered a thermochemical reduction of sedimentary sulfates in

country rocks in the presence of organic matter, which provided the
reduced sulfur required for metal precipitation.

7. Conclusions

Our dating results suggest that the Yunluheba deposit formed at
approximately 200Ma, synchronously with many SYG Pb-Zn deposits,
which indicates that their formation was related to an intense

Fig. 8. Diagram of 207Pb/204Pb vs. 206Pb/204Pb for the Yunluheba deposit. Data
for the plumbotectonic model are from Zartman and Doe (1981); average
crustal Pb evolution is from Stacey and Krammers (1975, S-K). The data for the
Huize deposit are from Huang et al. (2004); those for the Yinchangpo deposit
are from Hu (1999); those for the Qingshan deposit are from Zhang et al. (1999)
and Zhou et al. (2013e); those for the Shanshulin deposit are from Zhou et al.
(2014a); those for the Tianqiao deposit are from Zhou et al. (2013d); and those
for the Shaojiwan deposit are from Zhou et al. (2013b). The age-corrected
isotopic ranges (200Ma) for the Sinian (Z) Dengying Formation dolostone, the
Devonian to Permian (D-P) carbonates, the Proterozoic basement rocks and the
Emeishan basalts are delineated by the data from Zhou et al. (2014b). Ab-
breviations: U-upper crust, O-orogenic, M-mantle, and L-lower crust.

Fig. 9. Ages of some carbonate-hosted Pb-Zn deposits in the SYG metallogenic province and their corresponding geological settings (data from Lin et al., 2010; Shen
et al., 2016; Yin et al., 2009; Zhang et al., 2014; Zhang et al., 2015; Zhou et al., 2013c; 2013d; Zhou et al., 2015; and this study).

Fig. 10. Comparison of 87Sr/86Sr200Ma ratios among the SYG Pb-Zn deposits,
carbonate rocks, basement rocks, Emeishan basalts and upper mantle. The Sr
isotope data are taken from Zhou et al. (2014a) for the Shanshulin deposit, from
Zhou et al. (2013b) for the Shaojiwan deposit, from Zhou et al. (2013d) for the
Tianqiao deposit, from Zhou et al. (2015) for the Jinshachang deposit and from
Yin et al. (2009) for the Huize deposit. The Sr isotopic compositions of the
reservoirs are all calculated back to 200Ma with original data from Faure
(1977) for the upper mantle; from Huang et al. (2004) for the Emeishan basalts;
from Deng et al. (2000), Hu (1999), Zhou et al. (2014a) and Zhou et al. (2013b)
for the sedimentary carbonates; and from Chen and Ran (1992) and Li and Qin
(1988) for the Proterozoic basement rocks.
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hydrothermal event throughout the SYG metallogenic province that
occurred during the late Indosinian orogeny. Pb and Sr isotopic data
suggest that the host carbonate rocks were the major source of metals,
possibly with a small contribution from the basement. The sulfur iso-
topic variation in the Yunluheba deposit is interpreted to likely origi-
nate from the mixing of synsedimentary pyrite derived originally from
biogenic sulfur and thermochemically reduced sulfur from seawater
sulfates in the sedimentary successions. The low δ34S values observed in
the Devonian carbonate-hosted Pb-Zn deposits were constrained by the
availability of synsedimentary pyrite in the host rocks rather than being
a reflection of mantle-derived sulfur.
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