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Abstract

Both Mercury (Hg) and Sulfur (S) are ubiquitous elements in the aerosols present as Particle-
Bound Mercury (PBM) and sulfate. Constraining both sources and atmospheric processes
affecting the budget for both Hg and S in the aerosols are important regarding their impacts on
the atmosphere and Human health. This could be achieved using the multiple isotopic
compositions for both elements which have been shown to be powerful sources and processes
tracers in others environments.

We first investigated the sources and processes affecting both the Hg and S in marine aerosols
collected shipboard showing that Hg and S isotopic compositions would not be explained by a
mixing between sources but would rather be explained by atmospheric processes. We then
investigate the sources and processes responsible for the Hg isotopic compositions measured in
Montréal over the year 2015 in two different stations, one urban and one subrural stations. We
identified three possible sources and suspect the implication of an additional atmospheric
process responsible for such isotopic signatures. We finally measured the S isotopic
compositions in aerosols collected in Tianjin and discussed about the potential contributions
of sources and atmospheric processes.

Keywords : Multiple isotopic compositions, sulfur, mercury, aerosols, processes, sources
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1 Introduction

Mercury (Hg) is a toxic element that has the ability to recycle, at a large scale, in the atmosphere
following successive oxidation and reduction reactions. As the Hg main form, elemental mercury (Hg")
is relatively stable and has a lifetime of 0.5 to 1 year that allows it to be transported over long distances
worldwide (Selin, 2009). Hg? can be oxidized into reactive mercury (Hg") via several possible pathways
(see Si and Ariya (2018) review) which could be incorporated into particles (particles bound mercury
PBM). Upon deposition, Hg" could be photoreduced back to Hg® or transformed into methylmercury
which can be bioaccumulated in living aquatics organism and thus impacting the Human health (Giang
and Selin, 2016; Walters et al., 2015). This emphasizes the need to better constrain the different oxidation
pathways that Hg’ undergoes.

However, the dominant oxidation mechanisms for atmospheric Hg are still in debate. Possible oxidants
include OH and Os, which are the main sources of tropospheric oxidization capacity and which have
been suggested to be important Hg® oxidants (Bieser et al., 2017; Cohen et al., 2004; De Simone et al.,
2015; Gencarelli et al., 2014; Travnikov et al., 2017). Halogen species (mainly Br) are also found to be
able to quickly oxidize Hg’ during atmospheric mercury depletion event (AMDEs) in both Arctic and
Antarctic spring when atmospheric Br concentrations are high. This Hg oxidation pathway which has
been suggested to be the major one worlwide would involve a two-step oxidation with a first step
involving an Br- or Cl- atom forming an intermediate Hg species (Hg' ) (Horowitz et al., 2017; Si and
Ariya, 2018; Sun et al., 2016) and a second step oxidation involving NO,, HO,, BrO, ClO, IO into Hg"
(Dibble et al., 2012). Atmospheric models that considered distinct Hg® oxidants (i.e. Br/Cl or OH/ Os)
both showed results in good agreement with the observed Hg’ concentration and wet deposition flux
(De Simone et al., 2015; Horowitz et al., 2017; Travnikov et al., 2017), suggesting that currently available

observations cannot constrain the main Hg’ oxidation pathway .

Another biogeochemical cycle which is important to constrain is the sulfur (S) cycle due to it impacts
on the atmosphere. Sulfates, which could result from the oxidation of SO, and DMS (dimethylsulfide)
following two major chemical oxidation pathways (gaseous and aqueous), play a key role on the climate
change and air pollution (Albrecht, 1989; Lelieveld et al., 2015; Levy et al., 2013; Myhre et al., 2013;
Penner et al., 1992; Penner et al., 2006; Ramanathan et al.,, 2005; Ramanathan et al., 2001). More
specifically SO, aqueous phase oxidation which occurs via several possible oxidants (i.e. O+TMI
(Transition Metal Ion), H,O,, Osand NO, (Alexander et al., 2012; Alexander et al., 2009; Cheng et al.,
2016; Harris et al., 2013a; Harris et al., 2013b; Herrmann, 2003; Lee and Schwartz, 1983; Sarwar et al.,
2013; Seinfeld and Pandis, 2012)) produces sulfates which will be released during the evaporation of
cloud water. These sulfates will condense on pre-existing and different sizes particles present in the cloud
droplets (Mertes et al., 2005a; Mertes et al., 2005b). This would have the effect of reducing the radiative
impact of sulfate aerosols. On the other hand, gaseous phase oxidation, which occurs predominantly via
OH, leads to the formation of new sulfate particles by homogeneous nucleation process (Benson, 2008;
Kulmala et al., 2004; Tanaka et al., 1994). Thus, sulfates resulting from which oxidation pathways it

undergoes will induce different effect on the atmosphere.



However, both elements are considered relevant anthropogenic tracers and the use of their isotopes
could help to constrain their oxidation pathways. Both Hg and S have multiple isotopes; the mercury
has seven isotopes, “Hg, '*Hg, ”Hg, **Hg, *"'Hg, **Hg and ***Hg whose abundances are 0.15%, 10%,
16.94%, 23.14%, 13.17%, 29.74% and 6.82% while sulfur has four stable isotopes, **S, *°S, **S and **S whose
natural abundances are approximately 95%, 0.75%, 4.2% and 0.015%, respectively (Ding et al., 2001).
For both systems, the isotopic compositions are expressed by §-notation. In particular, Hg-isotopic

compositions are expressed as (Blum and Bergquist, 2007):

XXXy
< g/198H >
g sample

XXXHg
( 198H )
g NIST 3133

where *™Hg is one of the Hg heavy isotopes (‘**Hg, **Hg, **'Hg, **Hg and ***Hg). NIST 3133 is the

international mercury standard. In a similar way, the S-isotopic compositions are expressed as:
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where S is one of the S heavy isotopes (*’S, *'S or *S) and CDT is the Vienna Canyon Diablo Troilite

-1

§XHg =

53*S =

CDT

*$/*S international standard. There is no international standard for the **S/**S and *S/**S. Accuracy of

the measured values is established by direct comparison with data measured by other laboratories.

Generally, the multiple isotope ratios in each system (i.e. Hg and S respectively) are scaled to each other
according to their mass ((1/m;-1/m;)/(1/m;-1/ms)), following a “mass-dependent fractionation” model
(Farquhar et al., 2000). For example, for the S, the isotope fractionation of **S over **S (1 amu difference)
has approximately half the magnitude of the fractionation of the **S over **S (2 amu difference). More
rigorously, mass-dependent fractionation is expressed by (Dauphas and Schauble, 2016; Young et al.,
2002):

Yo = (*a)YP

Where for the Hg system, *a is **a, Ya is either *a, *®a, *'a or **a and B is either '*°B, 2B, *°' or ***f
while for the S system*a is *a, Yo is either *a or **a and ¥ is either **p or **B. The YB-exponent describes
the relative fractionation of YHg/'*Hg and *Hg/'*S for the Hg system it describes the relative
fractionation of ¥S/**S and *S/**S for the S system. Its value depends on the reaction considered (Farquhar
et al., 2001; Harris et al., 2013a; Ono et al., 2013; Watanabe et al., 2009). At high temperature, B, B,
2018 and **B-values are respectively 0.252, 0.502, 0.752 and 1.492 respectively (Blum and Bergquist, 2007).
These deviations of the **B-value from these high temperature values are expressed as follows and called

mass independent fractionation (MIF):

AHg = (6292Hg + 1) — (52025 + 1)***°



A2%Hg = (52°%Hg + 1) — (62°%s + 1)

A2Hg = (52%Hg + 1) — (62°%s + 1)

A2%Hg = (6292Hg + 1) — (62°25 + 1)

At high temperature (> 500°C), the *p and **B -values are respectively 0.515 and 1.889 (Eldridge et al.,
2016; Otake et al., 2008). Deviation of the *B-value from these high temperature values usually leads to
non-zero A*S and A*S values typically in the range of +0.1%o and +1%o, respectively. A*S and A*S are

expressed as follows (Farquhar and Wing, 2003):

4335 = (635 +1) — (6345 +1)™°"°

2365 = (6365 +1) — (6345 +1)"°"

Both Hg and S isotopes have been shown to be good tracers of atmospheric processes as they are sensitive
to the different oxidation pathways they undergo (Au Yang et al., 2018; Harris et al., 2013a; Sun et al.,
2016). However, the observation of aerosols collected in various environments characterized by A'Hg
varying from -1.50 to 1.50%o, A**Hg varying from -0.20 to 1.20%o and A**'Hg varying from -1.50 to 1.50%o
remain unexplained (Das et al., 2016; Fu et al., 2019; Huang et al., 2019; Rolison et al., 2013; Xu et al,,
2017; Xu et al,, 2019; Yu et al,, 2016). Odd-MIF (i.e. A*’Hg and A*°'Hg) are likely related to the magnetic
isotope effect (MIE) and the nuclear volume effect (NVE) (Bergquist and Blum, 2007; Buchachenko,
2013; Cai and Chen, 2016) and are mainly observed during photochemical reduction of Hg**, MeHg
photo-demethylation, abiotic dark reduction and liquid-vapor evaporation (Bergquist and Blum, 2007;
Estrade et al., 2009; Zheng and Hintelmann, 2009, 2010). On the other hand, the mechanism triggering
even-MIF (i.e. A*Hg and A**Hg) that are reported in many atmospherically related samples (Chen et
al., 2012; Sherman et al., 2010; Wang et al., 2015; Yuan et al., 2018; Yuan et al., 2015) remains unknown,
although some studies suggested that it might be related to photochemical oxidation of elemental Hg’
in the tropopause (Chen et al., 2012) or to specific reactions (e.g. self shielding effect in compact
fluorescent lamp; (Mead et al., 2013)). More recently, Sun et al. (2016) also suggested that the oxidation
of Hg® by halogen atoms also produces both odd- and even-MIF. Therefore, oxidation reactions have

also the potential to trigger MIF in Hg isotopes, especially in atmospheric samples such as aerosols.

In another hand, modern aerosols are characterized by A**S-values varying from -0.6 to 0.5%o (Au Yang
et al., 2019; Guo et al., 2010; Han et al., 2017a; Lin et al., 2018b; Romero and Thiemens, 2003; Shaheen
et al., 2014). Origins of such small but significant positive A**S-anomalies remain poorly constrained but
they could result either from sulfate stratospheric aerosol (SSA) inputs and/or secondary sulfates formed
during SO, oxidation (Au Yang et al., 2019; Guo et al., 2010; Han et al., 2017b; Harris et al., 2013a;
Romero and Thiemens, 2003; Shaheen et al., 2014). Origin of such negative A*S-values down to -0.6%o
remains even more speculative where it has been suggested to reflect input of sulfur from incomplete
combustion reactions (Han et al., 2017b; Lin et al., 2018a) in particular in residential stoves during winter
in Beijing (Han et al., 2017b).



Thus, due to the similarities between Hg and O or S (i.e. oxidation of a gaseous phase by OH, Os, and
halogens, presence of MIF associated to the oxidation pathway and presence of S and Hg-MIF in aerosols
which remains unexplained), coupling these isotopic systems would share complementary information
on the atmospheric oxidation mechanisms and provide constrain on the different Hg” and SO,
oxidation pathways although those isotopic compositions are usually analyzed separately because both
sulfate/nitrate and Hg" have different baring-minerals within the aerosols and are usually not correlated
(Beddows et al., 2004).

2 Materials and methods

2.1 S multi-isotope analysis

Aerosols filters were inserted into a reaction vessel heated at 180°C with 20 mL of Thode solution, a
mixture of hydrochloric, hydroiodic and hypophosphorous acids (Thode et al., 1961), for 1.3 hours to
quantitatively reduce sulfate into H,S. The formed gases were purged from the vessel using nitrogen gas,
bubbled through deionized water and subsequently passed through a 0.3 M silver nitrate (AgNOs)
solution to form silver sulfide (Ag.S). This solid Ag,S was then rinsed twice with Millipore water and
dried at 70°C overnight. Ag,S was then loaded into an aluminum foil, weighted and degassed under

vacuum.

Ag,S was subsequently converted to SFs by reacting with approximately 200 Torr of excess fluorine in a
nickel bomb at 250°C. The produced SFs was purified using both cryogenic techniques and gas
chromatography, quantified and subsequently analyzed by dual inlet isotope ratio mass spectrometry
(Thermo-Fisher MAT-253) where m/z = 127, 128, 129 and 131 ion beams were monitored.

The &°*S-values were measured against our in-house SFs tank that had been previously calibrated with
respect to the IAEA-S1 international standards and expressed versus V-CDT assuming a 8**Ss1= -0.3%o
vs V-CDT isotope composition. To express our A**S and A*S data with respect to V-CDT, we anchored
our data using CDT-data measured previously in the laboratory following Defouilloy et al. (2016). No
further corrections were carried out, other than normalization of the data to CDT. A**S and A*S IAEA-
standards were within values reported elsewhere (Au Yang et al., 2016; Defouilloy et al., 2016; Labidi et
al., 2012). Our analysis (n = 5) of [AEA-SI1 standard yielded: §**S = -0.33 + 0.02%0(20), A*S = 0.074 +
0.010%0(20) and A*S = -0.8 + 0.2%0(20) vs CDT. Analyses of the international sulfate standard NBS-
127 was also performed and gave a 6*S of 20.8 £+ 0.4%o (20; n = 12), consistent with the 20.3 + 0.4%o
value reported by the IAEA.

2.2 Hg multi-isotope analysis

Aerosol filters were combusted using the dual-stage protocol described in Huang et al. (2015) to
concentrate Hg. Briefly, each filter was introduced into a quartz tube that then underwent two successive
combustions at 950°C, followed by a combustion at 1000°C for a total time of 3.5h to decompose the
Hg" present under the form of Hg, into vapor Hg’ (Sun et al., 2013). The combustion products, Hg’ and
other compounds, were purged using Hg-free O,, and bubbled through a 5mL HNOs-HCI-H,O mixture

10



(2:4:9) acid trap (Huang et al., 2015; Sun et al., 2013). The generated solution was then transferred into
a pre-cleaned glass bottle. 50pL of 0.2M BrCl were then added to convert Hg’ into Hg".

Hg" was then converted back into Hg’ by reacting with SnCl, and injected into a multi-collector
inductively coupled plasma mass spectrometer (Neptune plus) simultaneously with T1, which was used
as an internal standard to correct for the instrumental mass bias (Blum and Bergquist, 2007; Yin et al.,
2016). A high concentration of T1 (20ppb) was injected with each sample to prevent the formation of Hg
hybrids during the analysis (Yin et al., 2016). The faraday cups were positioned to collect **Hg (L3),
YHg (L2), *®Hg (L1), *'Hg (C), **Hg (H1), **T1 (H2) and **T1 (H3). Hg multi-isotope compositions
were then determined by standard bracketing using the Hg NIST 3133 international standard. The NIST
3177 standard was also regularly analyzed with concentrations matching those of the aerosol samples
(i.e. 2 ppb) to test the instrument stability and to control the measurement quality (Geng et al., 2018).
Repeated analyses (n=22) of the NIST 3177 standard gave §*”Hg = -0.52 + 0.03%o (20), A'’Hg = -0.02
+0.05%o (20), A**Hg = 0.01 + 0.03%o (20), A*'Hg = -0.01 + 0.02%o (20) vs NIST 3133, consistent with
previous reported values (Chen et al., 2016; Fu et al., 2019; Sun et al., 2016; Wang et al., 2015; Yuan et
al., 2018; Zhang et al., 2020). Analysis of a second certified reference material CRM024 (n=8) gave §*”Hg
=-1.43 + 0.08%o (20), A'Hg = 0.03 + 0.02%o (20), A*Hg = -0.00 = 0.02%o (20), A**'Hg = 0.00 + 0.01%o
(20) vs NIST 313, consistent isotope compositions reported by Huang et al. (2015).

2.3 Major elements concentrations

Concentrations of selected soluble inorganic species (Na**, K*, Ca**, Mg*, NOy’, SO4*, Cl') were
measured using a Dionex®ICS-90 and a Vista MPX Varian ICP-OES after extraction froma 3 cm x 3
cm filter piece in 30 mL Milli-Q water (Paris et al., 2010). Detection limits for these ionic species were
usually in the order of 5 pg.L?, i.e. 0.1 ng.m™ considering our sampling and extraction protocols. Hg
concentrations were measured by cold vapor atomic fluorescence spectroscopy (CVAFS, Tekran 2500)
after reducing an aliquot of the pre-concentrated Hg" into Hg® using SnCL. The Hg® was then collected
on a gold-coated bead trap and analyzed with the CVAFS (Huang et al., 2015).

2.4 HYSPLIT Calculation

To investigate relationships between the origins of the air masses and the isotopic compositions of S and
Hg measured in marine aerosols, 72h back trajectories at 10m have been modeled using HYSPLIT -
Hybrid Single Particles Lagrangien Integrated Trajectory- for each day. The model used NCEP-NCAR
reanalysis data fields. Back-trajectories for the samples are then incorporated into a map generated by

GMT (Generic mapping tools).

3 Hgand S isotopic compositions in marine aerosols

3.1 Hg Results and comparison with literature data

Isotopic compositions of both Hg and S have been measured in this study. The §*?Hg present a large
variation ranging from -1.7%o to 1.3%o while the A'Hg-values range from -0.89%o to 0.54%o. The
A*Hg-values range from -0.06%o to 0.33%o and the A**'Hg-values present a variation from -0.74%o to

0.63%o. Hg-multiple isotopic compositions measured in this study are compared with the one reported
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in the literature both for urban, rural and coastal aerosols (Figure 1) reported in open grey circles, (Das
etal., 2016; Fu et al., 2019; Huang et al., 2016; Huang et al., 2019; Huang et al., 2018; Rolison et al., 2013;
Xu etal., 2017; Xu et al., 2019; Yu et al., 2016; Yuan et al., 2018).

15 14

1.2

-4 3 2 1 0 1 2 -4 -3 -2 1 o 1 2 -4 -3 2 1 0 1 2

5292Hg (%) 5292Hg(%o) 5292Hg (%)

o @ o Coastal aerosols (This study) o Alltypes of aerosols = Coastal aerosols (Yu et al. 2016) ¢ Coastal aerosols (Rolison et al. 2013) a Coastal aerosols (Fu et al. 2019)

Figure 1: Mercury isotopic compositions in aerosols in a §*?Hg-A*'Hg diagram, §°*Hg-A**Hg diagram

and in a §”Hg-A'"”Hg diagram. Different types of aerosols reported in the literature are also shown.

More specifically, results obtained in this study are compared with aerosols collected in coastal
environments in particular the Grand Bay Mississippi (Rolison et al., 2013) in USA, the Dameishan
Atmosphere Observatory(Yu et al., 2016) and the Huaniao Island(Fu et al., 2019) in China as no study
reports the Hg isotopic compositions on marine aerosols. The Hg isotopic compositions measured on
aerosols sampled during this campaign share some characteristics with similar range of A*°Hg but larger
variations of §%Hg, A**'Hg and A" Hg-values (Figure 1). More precisely, more negative A*'Hg and
A" Hg-values are reported in this study, with the lowest values being the same range of variation as the
one reported in urban area. This suggests that both urban and coastal aerosols might be affected by the

same atmospheric processes.

3.2 Sisotopic compositions results and comparison with literature data

The §S, A*S and A*S-values vs V-CDT are presented in Figure 2. The §*S present a large variation
ranging from -2.3%o to 19.4%o while the A**S-values range from 0.008%o to 0.441%o and the A*S-values
range from -1.2%o to 0.0%o. The presence of A*S-values up to 0.4%o in marine environment is surprising
although no studies reported the S multiple isotopic compositions in marine aerosols in the literature as
positive A*S values have been reported (Figure 2A) to our knowledge only in urban and rural areas up
t0 0.5%o(Au Yanget al., 2019; Guo et al., 2010; Han et al., 2017b; Lin et al., 2018b; Romero and Thiemens,
2003; Shaheen et al., 2014) and in Antarctic ice-cores sulfates up to 2%o (Baroni et al., 2007; Gautier et
al., 2018; Hattori et al., 2013; Savarino et al., 2003). Positive A**S reported in ice-cores could result from
photochemical oxidation of atmospheric SO in the stratosphere that produce high A*S-values up to 15%o
(Farquhar et al., 2000; Farquhar et al., 2001; Whitehill et al., 2015; Whitehill and Ono, 2012; Whitehill
et al., 2013).
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Figure 2 : Sulfur isotopic compositions in a §*'S-A*S diagram and in a A*S-A*S diagram. Urban aerosols
have also been reported(Au Yang et al., 2019; Guo et al., 2010; Lin et al., 2018b; Romero and Thiemens,
2003; Shaheen et al., 2014). No A*S and A*S-values have been reported to our knowledge for marine
aerosols. Slopes for the different atmospheric processes (photooxidation, photolysis, self-shielding),

Archean slope and Phanerozoic slopes have also been reported.

Thus, stratospheric sulfate aerosols input into the troposphere could be an explanation but according to
the three-days HYSPLIT back-trajectory analysis for each sample, none of the samples came from
altitudes higher than 2000m for an initial height of 10 or 500m respectively ruling out this hypothesis.
SO, oxidation by O,+TMI, OH, H,0,/O; and NO; are also unlikely involved as these oxidation pathways
cannot account for these positive A**S up to 0.5%o (Au Yang et al., 2018; Harris et al., 2013a). Oxidation
by halogen compounds would have been another potential candidate. However, the fact that positive
A*S have been found in both marine and urban/rural environments suggest that a similar atmospheric
processes would occur in both environment. However oxidation of SO, by halogen compounds would

be important in marine environment, ruling out this hypothesis.

Another study suggested that photooxidation of mineral dust could be responsible for positive A*S
although this remains speculative (Au Yang et al, 2019). This hypothesis is consistent with the
observation of positive A**S-values coupled to positive A**S up to 0.4%o0 where both positive A*S and
A*S could be produced by photooxidation and photolysis(Whitehill and Ono, 2012) (Figure 2).
Moreover, despite conventional crustal references (Fe/Al and K/Al) have not been measured in this
study, and knowing that Ca is mostly a carbonate tracer (Formenti et al., 2011), Ca can be used as a dust
tracer in this study as Ca/Al ratio in Australian dust varies in a narrow range (i.e. 0.1 to 0.74 (Engelbrecht

et al., 2016)). We used the definition of an enrichment factor following :

- SO
([nss 4]/[Ca])particles

EF(S) = —
([nss S0,] /[Ca])

soil
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From this definition, we observed an enrichment during the 13/11/2015 to 17/11/2015 (dates which
correspond to the A¥S positive excursion) with a mean value of 17+7 while the mean EF during the
entire cruise is 3 + 3. This would attest for the implication of dust particles during this period, despite

the fact that their contribution cannot be precisely estimated.

Origins of both Hg and S-MIF are discussed in a paper in preparation and submitted soon (with

Institute of Geochemistry in 1* affiliation). We will thus not discuss it here.

4 Hgisotopic compositions in an rural and subrural areas

4.1 Sampling strategy

PM,, aerosols (particles with an aerodynamical diameter <10 pm) were sampled over a one-year
period in 2015 by the RSQA (Réseau de Surveillance de la Qualité de I’Air) in the city of Montreal (45°N
73°W, Canada) and its vicinity. Two monitoring stations (13 and 98) disseminated onto Montreal island
were selected for their specific environmental conditions (Figure S1). Station 13 referred as
"Drummond" is located downtown and represents the urban background whereas Station 98 referred as
"Sainte-Anne de Bellevue" is located at the most western end of the island, in a semi-rural environment
under the dominant west-east blowing winds, and thus represents a station less impacted by local
anthropogenic atmospheric emissions (Boulet and Melangon, 2012). This sampling strategy was
designed to allow comparing a station affected by local anthropogenic emissions and a station where
aerosols were expected to have a non-local origin (i.e. aerosols transported to Montreal). In parallel,
major pollutant gases, including ozone (Os), sulfur dioxide (SO,), nitrogen dioxide (NO,), as well as
PM,s concentrations were acquired from the Réseau de Surveillance de la Qualité de TAir

(http://ville.montreal.qc.ca/, last access : 02 January 2020).

4.2 Results and Comparison with literature data

Hg-isotopes data have been previously published on aerosols collected in a rural environment in India
(Das et al., 2016), in rural, coastal and urban environments in China (Fu et al., 2019; Huang et al., 2016;
Huang et al., 2019; Huang et al., 2015; Huang et al., 2018; Xu et al., 2017; Xu et al.,, 2019; Yu et al., 2016;
Yuan et al., 2018) and in a coastal area in the United States (Rolison et al., 2013)

The Hg multiple isotope compositions we measured in aerosols at both stations in Montreal are within
the isotope ranges reported in the literature for similar samples (Figure 4). It is worth noting that
aerosols in Montreal are characterized by negative §°?Hg and present, to our knowledge, the lowest
§*”Hg ever reported. Aerosols from this study are mainly characterized by low AHg, close to 0%, for
both the urban and subrural stations. Similarly, they are characterized by very low A’Hg, varying from
-0.05 to 0.15%o, which is also within the range reported for urban aerosols. Overall, aerosols from
Montréal present isotope compositions similar to those of most urban aerosols but different from both
rural and coastal aerosols, as they are characterized by an average and 0.29+0.40%o and 0.39+0.43%o

respectively with a highest value of up to 1.50%o.

Origins of Hg are discussed in a paper already submitted (with Institute of Geochemistry in 1*

affiliation). We will thus not discuss it here.
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Figure 3: Odd-MIF and even-MIF time series in aerosols sampled in Montreal. Locally weighted scatter

plot smoothing (LOWESS) for all the Hg isotopic compositions are also shown
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Figure 4 : Variations of (A) A"Hg and (B) A’Hg as a function of §°*Hg in PBM from PMj, aerosols
collected in Montreal (purple square and green diamond). Light gray, gray and black dots represent Hg
isotopic compositions reported for aerosols from the literatures (Das et al., 2016; Fu et al., 2019; Huang
etal.,, 2016; Huang et al., 2019; Huang et al., 2015; Huang et al., 2018; Rolison et al., 2013; Xu et al., 2017;
Xu et al., 2019; Yu et al., 2016; Yuan et al., 2018)
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5 S isotopic compositions in an urban area

5.1 Sampling strategy
Aerosols from different size PM,o , PM,s and PMO.5 (particles with an aerodynamical diameter <10
pum, <2.5 pm and <0.5 pm) were sampled over a one-year period in 2018 in the city of Tianjin at the

Tianjin University.

06 | Literature

-10 0 10 20 30

&3S (%o)

Figure 5 Sulfur isotopic compositions in a §**S-A*S diagram and in a A*S-A*S diagram. Urban aerosols
have also been reported (Au Yang et al., 2019; Guo et al., 2010; Han et al., 2017b; Lin et al., 2018b;
Romero and Thiemens, 2003; Shaheen et al., 2014)

5.2 Sisotopic compositions results and comparison with literature data

The §*S, A¥S vs V-CDT are presented in Figure 5. The §*S present a large variation ranging from -5.6%o
to 22.3%o while the A*S-values range from -0.318%o to 0.328%o. We observe that these isotopic
compositions are within the range of variation reported in the literature although we observe very
negative §**S down to -5.6%o which are scarce (Au Yang et al., 2019; Guo et al., 2010; Han et al., 2017b;
Lin et al., 2018b; Romero and Thiemens, 2003; Shaheen et al., 2014). More importantly, we confirm the
existence of negative A**S down to -0.3%o which have been measured only once by Han et al. (2017b) in
Beijing aerosols. Again, the observation of such negative A**S occurs mainly in December, which is the

same period reported by Han et al. (2017b).

Origin of positive and negative A*S are again not discussed in this report. The paper is in

preparation

6 Supplementary activities

6.1  Publications of the thesis papers (1% author and 2" author)
During this postdoc position, I published two papers from my PhD thesis, one paper is actually in
review (ACPD, see below), and am currently writing another paper from my PhD on aerosols

combustion (to be submitted soon)
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6.2 Publication of papers as coauthor

I also published as a coauthor during my postdoc position (Zhang et al. 2020) and worked with student
from prof Chen group members.
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6.3 Reviewing papers

I also reviewed three papers during this postdoc position
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6.4 Meeting

I also attended at three conferences
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1. AuYang D, Chen JB.,, Zheng W., Widory D. (2019), Multiple mercury isotopic compositions
of aerosols in the atmosphere of Montréal (Canada), American Geophysical Union AGU Fall
Meeting, San Francisco, United-State, December 11* 2019 (Poster)
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aerosols, 5™ Conference on Earth System Science, Shanghai, Chine, June 3 2018 (Oral)
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