•研究成果•

富钴结壳的¹⁰Be、²⁶Al 定年方法初步研究

胡滢¹,董克君^{1*},崔丽峰²杨业¹,张小龙¹,徐胜¹,刘丛强^{1,2}

1. 天津大学 表层地球系统科学研究院 ,天津 300072;
 2. 中国科学院 地球化学研究所 ,环境地球化学国家重点实验室 ,贵阳 550081

摘 要: 大洋富钴结壳的生长速率及其定年测量在研究古大洋环流、古环境及古气候变迁等方面具有重要意义,而宇宙成因 核素¹⁰Be、²⁶Al 因为其测量时间尺度长、精度高,而被视为富钴结壳年代测定的最有效手段之一。本文在前人研究的基础上, 对富钴结壳中¹⁰Be、²⁶Al 定年新方法进行了探究。对采自太平洋的 2 块富钴结壳样品进行连续的淋滤实验,并对其中 1 个样 品 CXD08-1 自生相中的¹⁰Be π^{26} Al 进行分离、纯化及 AMS(Accelerator Mass Spectrometry) 测量分析。利用¹⁰Be 浓度和¹⁰Be/⁹Be 值计算得到 CXD08-1 在 5~10 mm 间的平均生长速率分别为(10.23^{+0.52}_{-0.47}) mm/Ma 和(14.25^{+1.02}_{+0.89}) mm/Ma。而²⁶Al 因为大量衰 变及²⁷Al 载体的加入而未得到可靠的分析结果,因此,²⁶Al 定年须进一步探索。

关 键 词:¹⁰Be;²⁶Al;富钴结壳;定年

中图分类号: P736 文章编号: 1007-2802(2020) 01-0116-09 doi: 10. 19658/j.issn.1007-2802. 2019. 38. 128

Preliminary Research on the ¹⁰Be and ²⁶Al Dating Methods of Cobalt-Rich Crusts

HU Ying¹ , DONG Ke-jun^{1*} , CUI Li-feng² , YANG Ye¹ , ZHANG Xiao-long¹ , XU Sheng¹ , LIU Cong-qiang^{1 2}

1. Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; 2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Abstract: It has been shown that the growth rate and dating of oceanic cobalt-rich crusts are significant for studying paleo-oceanic circulation, paleo-environmental and paleo-elimatic transitions and so on. Cosmogenic nuclides of ¹⁰Be and ²⁶Al, which have advantages of long timescale and high precision, are considered as one of the most effective methods for dating cobalt-rich crusts. Based on previous studies, new methods (¹⁰Be and ²⁶Al) to date cobalt-rich crusts have been explored in this paper. Continuous leaching experiments of two cobalt-rich crust samples which were collected from Pacific Ocean and the ¹⁰Be and ²⁶Al separation, purification and AMS measurement of the cobalt-rich crust sample CXD08–1 were carried out. The average growth rates of the 5–10 mm thick zones of the cobalt-rich crust CXD08–1, calculated by using ¹⁰Be concentrations and ¹⁰Be/⁹Be ratios, are (10.23^{+0.52}_{-0.47}) mm/Ma and (14.25^{+1.02}_{-0.89}) mm/Ma, respectively. However, no reliable result has been obtained due to the fast decay of ²⁶Al and high ²⁷Al concentration. Therefore, the ²⁶Al dating method requires to be further studied in future.

Key words: ¹⁰Be; ²⁶Al; cobalt-rich crusts; dating

0 引言

富钴结壳是一种生长于大洋底部硬质基岩上的"壳状"沉积物,主要分布于大洋深处碳酸盐补偿

深度以上和最低含氧带之下水深 400~4 000 m 处的 平顶海山、海台以及斜坡上(Bogdanov et al., 1995; Hein and Halliday, 2003)。富钴结壳产于大洋深 处,没有受到后期宇宙射线的干扰,处于相对封闭

收稿编号: 2019-103 2019-05-31 收到 2019-06-20 改回

基金项目: 国家自然科学基金资助项目(11775157,11575296 A1603018)

第一作者简介: 胡滢(1994-) ,女 /学士 .研究方向: 宇宙成因核素定年. E-mail: huyingHD@ tju.edu.cn.

^{*} 通信作者简介: 董克君(1972-) ,男 ,博士 ,研究员 ,研究方向: 核技术及其应用. E-mail: kejun.dong@ tju.edu.cn.

的环境,且具有0.5~10 mm/Ma 缓慢生长的优势 (Wang et al., 2015)。因此,通过分析相关元素(核 素)含量在结壳剖面上的变化规律,可以为海底矿 产资源的开采提供重要的参考数据,还可为古海洋 环境及陆地气候变化的研究提供有意义的年代 信息。

大气成因的¹⁰ Be $[t_{1/2} = (1.386 \pm 0.012)$ Ma ,测 年范围~10 Ma]因其地球化学行为稳定且半衰期相 对较长 .被广泛用于海洋沉积物的年代学研究(Arnold , 1956; Segl et al. , 1984; Bourles and Raisbeck , 1989; Sharma and Church , 1989)。Bourles 等 (1989)研究表明 ,所有深海海域的¹⁰ Be /⁹ Be 值一般 低于(1.0±0.4)×10⁻⁷ ,这与 Ling 等(1997)利用时 间校正方法计算的结果一致 ,即在过去的 10 Ma 里 太平洋海水中¹⁰ Be /⁹ Be 始终低于 1.4×10⁻⁷ (Segl *et al.* , 1984)。

大气成因核素²⁶ Al $[t_{1/2} = (0.705 \pm 0.17)$ Ma] 与¹⁰Be 的产生机制相同、产率比值相对稳定 $[^{26}$ Al/¹⁰ Be = $(3.8\pm0.6) \times 10^{-3}$]、化学性质相似(马配学等, 1998),所以在一般情况下与¹⁰ Be 匹配使用。Lal (1962)提出利用²⁶ Al/¹⁰ Be 值进行沉积物测年的想 法,有效避免了单独使用¹⁰ Be 测年的不确定性。 在²⁶ Al/¹⁰ Be 定年方法研究中,一些研究者证明沉积 物中的²⁶ Al/²⁷ Al 值为 3×10^{-14} (沉积物) ~ 2×10^{-13} (铁 锰结核) (Bourles et al., 1984; Sharma et al., 1987)。近年来,Feige(2014)采用 AMS 技术,对采 自印度洋沉积物中 $1.7 \sim 3.1$ Ma 期间样品中的²⁶ Al/²⁷ Al($1.5\times10^{-14} \sim 5.5\times10^{-14}$)、¹⁰ Be/⁹ Be 进行了分 析,并在此基础上初步进行了²⁶ Al/²⁷ Al 定年方法的 探索。结果表明,使用²⁶ Al/²⁷ Al 方法对选定时间段 (1.7~3.1 Ma)的沉积物定年,其结果要优于 ¹⁰ Be/⁹ Be 方法。

基于此,本研究选取采自太平洋的富钴结壳作 为研究对象,对其中的¹⁰Be、²⁶Al 地质年代学研究进 行了方法探索。

1 材料与方法

1.1 样品信息

2 块富钴结壳样品(CXD08-1 和 MDD46-1) 均由 "大洋一号"科学考察船所执行的 DY105-11 航次 (2011 年 6 ~ 11 月) 采集,其基本信息如表 1 所示。 2 个样品均为板状 表面具有多节纹理,厚度分别约 为 80 mm 和 33 mm。样品 CXD08-1 具有典型的三 层构造,上部为 0~40 mm 厚的黑色致密层,中间为 厚~15 mm 的黄色松散层,但从~55 mm 处到底部为 灰白色的致密层(图 1a)(Ji et al., 2015)。MDD46-1 由于底部致密层(即亮煤层)的缺失而呈两层构 造,上部 0~25 mm 为黑色致密层,下部~25 mm 到 底部为灰黑色致密层,底部未见附着基岩(图 1b) (邢娜 2006)。

表1 富钴结壳样品位置信息

Table 1 The information of sampling sites of

cobalt-crust samples

样品编号	地点	经度	纬度	深度/m
CXD08-1	太平洋	172°55.10′	19°57.90′	1908
MDD46-1	太平洋	150°58. 28´	18°8. 75´	2000

1.2 样品制备

样品制备在天津大学表层地球系统科学研究

(a) CXD08-1; (b) MDD46-1

图1 富钴结壳外观图

(C)1994-2020 China Academic Journey Flephongraphsblishing Henerast All rights reserved. http://www.cnki.net

院的宇宙成因核素实验室进行。样品 CXD08-1 与 MDD46-1 的取样间隔分别为 5 mm 和 0.2 mm ,为满 足 AMS 的测量分析 样品分层取样质量均大于或等 于 40 mg 通过 AMS 进行¹⁰Be/⁹Be 和²⁶Al/²⁷Al 分析 , 实验室本底分别好于 4.9×10⁻¹⁵和 2×10⁻¹⁵。样品制 备流程如图 2 所示。

1.2.1 样品淋滤 样品淋滤分为以下几个步骤:
 ①淋滤前,将样品粉末浸泡于水中过夜并蒸干;
 ②向每个样品中加入15 mL 0.04 mol/L NH₂OH•

HCl 的25%(V/V) 乙酸溶液后加热(100 ℃、6 h) 淋 滤,冷却;③将样品转移至离心管,润洗3次并离心 (3500 r/min、15 min);④将上清液转移至离心管, 然后重复2~3步骤,直至所有的自生相 Be、Al 完全 被淋滤出来;⑤从各淋滤液中取4%体积的样品溶 液做 Be、Al 同位素的 ICP-MS(Agilent 7900)测量。 1.2.2 化学分离与纯化 样品的化学分离与纯化 过程是参考已有方法(Fitoussi and Raisbeck, 2007; Feige, 2014)进一步建立的,具体步骤如下:①样品

图 2 富钴结壳中 Al、Be 元素提取流程

(C)1994-2020 China A regemitheoxination proceeding Balalishinger House the Albaighth reserved. http://www.cnki.net

淋滤(过程见 1.2.1); ②将所有样品淋滤液混合蒸 干,再加入浓硝酸溶解并蒸干,重复3次,除去乙酸 盐和氨,并将 Fe²⁺转化成 Fe³⁺; ③用 6 mL 6 mol/L HCl 溶解蒸干样品 离心 防止未溶解的沉淀物在离 子交换过程中堵塞柱子;④向溶解的样品溶液中加 入 25%的 NH3•H2O 调节 pH 为 8~9 沉淀溶液中的 Be、Al、Fe; ⑤用 10 mL 1.2 mol/L HCl 溶解沉淀物, 并用移液枪量取 4%体积的溶液进行 Be、Al 同位素 的 ICP-MS 分析; ⑥将剩余溶液置于电热板上蒸干 后冷却,用6mL6mol/LHCl溶解样品用于离子树 脂交换;⑦将上述溶解液分别通过阴(AG-I X8200~ 400*)、阳(AG 50 W-X8 200~400*)离子交换树脂, 去除里面的干扰元素 B、Fe 等杂质离子; ⑧用 NH₃• H₂O 调节 Be 洗脱液和 Al 洗脱液至 pH 值为 8,得到 Be、Al 的氢氧化物沉淀; ⑨离心舍弃上清液 将沉淀 烘干转移至石英坩埚置于马弗炉(800 ℃、6 h) 灼烧 得到 BeO 和 Al₂O₃; ⑩将得到 BeO 和 Al₂O₃ 样品与一 定量的导电(热)介质混合后用于 AMS 测量分析。

1.3 AMS 测量

样品的 AMS 测试使用天津大学表层地球系统 科学研究院(TJU_ISESS)的 XCAMS(eXtended Compact Accelerator Mass Spectrometry) 完成(Dong et al. (2018)。具体过程如下: ①将制备的 BeO 和 Al₂O₃ 分别与 Nb 粉(重量比 1:6) 和 Ag 粉(重量比 1:2) 均匀混合压入 AMS 专用铜靶锥; ②将铜靶锥 装入 AMS 离子源 通过 Cs⁺离子束溅射样品表面产 生 BeO⁻、Al⁻; ③负离子经加速器加速剥离后,排除 分子本底(如⁹BeH、¹²C¹⁴N)干扰,同时选择Be⁺和 Al⁺; ④通过优化 XCAMS 系统高能端磁、电分析器 参数 最大限度抑制同量异位素(¹⁰B)以及相邻质量 数($\mathbf{u}^{9}Be^{+}$ 、²⁷ Al⁺)的干扰; (5)稳定同位素⁹Be⁺和 ²⁷Al⁺通过法拉第杯进行接收测量,而气体电离室则 对痕量目标核素¹⁰Be 和²⁶Al 进行离子鉴别与计数, 从而得到¹⁰Be/⁹Be 和²⁶Al/²⁷Al 的值。实验室标准样 品(10 Be/ 9 Be 和 26 Al/ 27 Al 比值在 10 ${}^{-12}$ 水平) 的重

复 测试结果表明,两种核素的同位素比值分析精 度可以达到 3%,而对于¹⁰Be/⁹Be 和²⁶Al/²⁷Al 值,仪 器本底均好于 5×10⁻¹⁵。

2 实验结果

ICP-MS的 Be、Al 测试结果见表 2 和图 3。淋滤 实验结果表明,经过 3 次淋滤后,富钴结壳 CXD08-1 和 MDD46-1 淋滤液中提取的 Al 含量分别占对应样 品中总 Al 的~90%和~85%,而 Be 含量均达到样品 中总 Be 的~99%;样品经过 6 次淋滤后 2 个样品淋 滤液中提取的 Al 含量均达到样品总 Al 的~95%,而 Be 几乎全部被淋滤出来,提取率达到了~99.7%。 因此 样品经过 3 次淋滤 即可保证萃取富钴结壳样 品中绝大部分的自生相 Be、Al 等元素。

表 3 为结壳 CXD08-1 的样品量和归一化后计 算的¹⁰Be、²⁶Al 同位素结果,¹⁰Be、²⁶Al 在结壳剖面上 的分布如图 4 所示。样品 CXD08-1 的¹⁰Be、²⁶Al 浓 度范围分别为 8. 91×10⁸ ~ 2. 44×10⁹ atom/g 和 1. 04× $10^6 \sim 9. 47 \times 10^6$ atom/g,¹⁰Be/⁹Be 和²⁶Al/²⁷Al 值变化 范围分别为 3. 71×10⁻⁹ ~ 7. 68×10⁻⁹和 1. 00×10⁻¹⁴ ~ 5. 96×10⁻¹⁴,由于样品中¹⁰Be/⁹Be 值比实验本底高 2 ~3 个数量级,故¹⁰Be 和⁹Be 的实验误差可以忽略不 计。而对于²⁶Al/²⁷Al值,本底干扰导致的测量误差却 高达~70%。

3 分析与讨论

放射性核素定年的前提条件是样品中的测年元 素不发生扩散或扩散速率较低。Henderson 和 Burton (1999) 计算得到 U、Th 等元素在富钴结壳中的有效 扩散系数如表 4 所示。富钴结壳中 Th、Nd 和 Be 等 元素的高度稳定性 保证了测年结果的可靠性。

 基于¹⁰ Be 浓度和¹⁰ Be/⁹Be 的富钴结壳生长 速率

本次研究用 X^2 最优拟合计算并绘制了结壳 CXD08-1 的¹⁰ Be 浓度与¹⁰ Be /⁹Be 随深度变化图

表 2 样品淋滤实验结果及 Al、Be 含量变化

Table 2	The leaching	experimental results of Al and H	Be concentrations varied in solutions	
样只涩度	廿므를	Pa/(a/lia) 讲读	A1 // mm/ltm) 計速次数	

样只给是	样品量	Be/ (µg/kg) 淋滤次数						Al /(mg/kg) 淋滤次数						
作十日日 5月 5	/mm	/mg	1	2	3	4	5	6	1	2	3	4	5	6
CXD08-1-4	10~15	99.6	5.30	0.29	0.07	0.01	0.03	0.02	2.07	0.83	0.59	0.70	0.39	0.36
CXD08-1-7	30~35	99.6	4.08	0.19	0.06	0.02	0.02	0.02	1.97	0.51	0.35	0.21	0.21	0.17
CXD08-1-8	$35 \sim 40$	100.0	3.06	0.32	0.08	0.03	0.01	0.01	1.59	0.70	0.34	0.17	0.17	0.15
MDD46-1-1	0~0.28	15.0	0.38	0.01	0.00	0.00	0.00	0.00	0.42	0.05	0.07	0.05	0.16	0.09
MDD46-1-6	1.4~1.7	30.0	0.89	0.01	0.01	0.00	0.00	0.00	1.28	0.38	0.30	0.20	0.17	0.12
MDD46-1-11	2.1~2.3	45.0	1.49	0.03	0.01	0.01	0.00	0.01	2.54	1.28	0.81	0.48	0.30	0.29
MDD46-9-9.6_2	20 320-C3h6 n	a 🌮 ado	enhi % J	oulenest	El@02ro	n % 9 4ul	ol ß191 ng	PIOlise	3,452	right26re	served.	0. <u>45</u> tr		.ch49.ne

图 3 溶液中 Be (a) 和 Al (b) 浓度与淋滤次数之间的关系

Fig.3 Relationships between respective concentrations of Be (a) and Al (b) in solutions and leaching times

图 4 富钴结壳 CXD08-1 中的¹⁰Be、¹⁰Be/⁹Be 和²⁶Al 以及²⁶Al/²⁷Al 深度分布 Fig.4 The variation of ¹⁰Be, ¹⁰Be/⁹Be, ²⁶Al and ²⁶Al/²⁷Al data for a depth profile in the cobalt-rich crust CXD08-1

	0						
		10	Be/ ⁹ Be data ,	and ²⁶ Al and ²⁶ Al	²⁷ Al data		
样已绝是	样品深度	样品量	⁹ Be	¹⁰ Be/	$^{10}\mathrm{Be}/^{9}\mathrm{Be}$	年代 (¹⁰ Be)	年代(¹⁰ Be ^{/9} Be)
	/mm	/mg	/(µg/g)	($\times 10^8$ atom/g)	/(×10 ⁻⁹)	/Ma	/Ma
	5~10	40.0	4.75	24. 41±0. 92	7.68±0.29	0.76±0.12	0. $56^{+0.12}_{-0.15}$
CXD08-1	20~25	174.3	3.91	12.42±0.29	4.75±0.11	2.09±0.11	$1.20^{+0.11}_{-0.14}$
	25~30	127.3	3. 59	8.91±0.39	3.71±0.13	2.74±0.12	$1.98^{+0.12}_{-0.15}$
样只绝是	样品深度	样品量	²⁷ Al	²⁶ Al /	²⁶ Al / ²⁷ Al	年代 (²⁶ Al)	年代 (²⁶ Al/ ²⁶ Al)
"十四 %周 与	/mm	/mg	/(mg/g)	$(\times 10^6 \text{ atom/g})$	/(×10 ⁻¹⁴)	/Ma	/Ma
	5~10	40.0	7.13	9.47±6.76	5.96±4.25	9. $55^{+9.21}_{-0.83}$	0. $51^{+1.41}_{-1.01}$
CXD08-1	20~25	174.3	4.64	1.04 ± 1.61	1.00±1.56	1. $18^{+9.32}_{-0.16}$	2. $18^{+2.01}_{-1.75}$
	25~30	127.3	4.45	3.05±2.33	3.08±2.35	3. $67^{+9.22}_{-0.86}$	$1.01^{+1.44}_{-1.05}$

表 3 基于¹⁰Be,¹⁰Be,¹⁰Be,²⁶Al,²⁶Al,²⁷Al 计算的 CXD08-1 年代信息 Table 3 The ages of various sized zones of the cobalt-rich crust CXD08-1 calculated based on their ¹⁰Be and

表 4 元素在富钴结壳中的有效扩散系数

Table 4 Effective diffusivities of elements in the cobalt-rich crust

元素	Th	Nd	Pb	Be	Os	U	Sr	Li
有效扩散系数/(cm ² a ⁻¹)。	$A c^{2} \times 10^{-12}$	ou2×10 ⁻¹¹	3×10 ⁻¹¹	ish1:x10-10	se 3×10-8 righ	ts 1×10 ⁻⁶	2×10.7/	2×10^{-4} net
				0	0		T	

图 5 ¹⁰Be 浓度(a) 和¹⁰Be/⁹Be 值(b) 与深度的关系

Fig.5 The function relations between the depths and respective concentrations of ${}^{10}Be$ (a) and ratios of ${}^{10}Be/{}^{9}Be$ (b)

(图 5a、5b)。根据 X² 最优拟合以及¹⁰ Be 浓度和¹⁰Be/⁹Be 计算得到 CXD08-1 在 5~30 mm 间的平均 生长速率分别为(10.23^{+0.52}_{-0.47}) mm/Ma 和(14.25^{+1.02}_{-0.89}) mm/Ma 初始¹⁰ Be 浓度和¹⁰ Be/⁹Be 分别为(3.60± 0.18)×10⁹ atom/g 和(1.02^{+0.05}_{-0.07})×10⁻⁸,且平均生长 速率在 2σ 误差范围内重合。

式中, N_0 表示样品中放射性核素初始原子数; N_t 表示 *t* 时刻样品中放射性核素原子数; λ 为放射性核素的衰变常数(λ_{10} =5.10×10⁻⁷),则样品沉积时间 *t* 可以表示为:

 $N_t = N_0 e^{-\lambda t}$

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N} \tag{2}$$

$$t = \frac{1}{\lambda} \ln \left(\frac{R_0}{R_i} \right) \tag{3}$$

式中 R_0 为样品中放射性核素与其同位素原子数的 初始比值; R_i 表示 t 时刻样品中放射性核素与其同 (C)1994-2020 China Academic Journal Electronic 位素的原子数比值。由式(3) 计算得到的结壳 CXD08-1 时间信息如表 3 所示。

然而 Ji 等(2015) 利用¹²⁹I/¹²⁷I 放射性核素计算 得到 CXD08-1 在 5~10 mm 和 25~30 mm 的形成年 代分别为 3.77 Ma 和 18.45 Ma, 与本次研究采用¹⁰ Be/⁹Be 计算所得的(0.56^{+0.12}_{-0.15}) Ma 和(1.98^{+0.12}_{-0.15}) Ma 的结果相差一个数量级。其原因可能是: ①计算方 法不同。将 Ji 等(2015) 测量的¹²⁹ I/¹²⁷ I 利用 χ^2 最 优方法进行拟合 得到其 5~30 mm 间的平均生长速 率为 1.89 mm/Ma,初始¹²⁹I/¹²⁷I 为 1.57×10⁻¹²。而 由式(3) 计算得样品在 5~10 mm 和 25~30 mm 间 的形成年代分别为(4.82±5.37) Ma 和(19.35± 5.43) Ma 占原文计算结果基本一致,说明不同计 算方法对定年的结果影响不大。②半衰期不同。 若以Ji 等(2015) 利用¹²⁹I/¹²⁷I 计算的 18.45 Ma 作为 CXD08-1 在 25~30 mm 间的形成年代 则由¹⁰Be 半 衰期可知该层位的¹⁰ Be 几乎全部衰变,无法满足 AMS 测量极限。而本次实际测量结果比 AMS 的测 量上限~10⁻¹⁵高3个数量级,显然与假设不符。因 此测年结果不同极有可能是¹²⁹ I 的半衰期(15.7

Ma) 比¹⁰Be(1.37 Ma) 的高一个数量级所致,¹²⁹I 较 大的半衰期使其在定年计算中具有更高的误差和 不确定性,导致结壳年代计算结果差一个数量级。 此外,一些研究者利用不同年代学方法,计算的大 洋中富钴结壳的生长速率结果(表 5) 也表明,不同 方法计算的结壳生长速率差异较大,从而导致测年 结果差异较大。③元素的地球化学性质不同。元 素的地球化学性质决定了其在海水及沉 积物中的地球化学行为,Wang 等(2015)的研究表 明,富钴结壳不仅生长速率缓慢,而且比表面积极 高,这促进了微量元素通过主要金属氧化物的清除 作用在富钴结壳中的富集。而金属氧化物对元素 的清除作用控制了其在海水中的滞留时间以及其 同位素的均匀混合程度,使元素浓度及其同位素比 值在不同海盆和不同深度的海水中也不同,从而导 致定年结果存在较大差异(表5)。

表 5 一些研究中的大洋富钴结壳生长速率

		Table 5	The gr	owth rates	of cobalt-	rich crusts	in other site	es of oceans (nm/Ma)
	$^{230}\mathrm{Th}_{\mathrm{ex}}$	$^{230}\mathrm{Th}_{\mathrm{ex}}/^{232}\mathrm{Th}$	$^{231}\mathrm{P}_{\mathrm{aex}}$	$^{234}\rm{U}_{ex}/^{238}\rm{U}$	¹⁰ Be	$^{10}\mathrm{Be}/^{9}\mathrm{Be}$	Co 年代学	资料来源
中十五法	28.64	_	4 00	03.26	2 1 . 2 7	3 5 6 1	2 2620 6	Segl 等(1984); Ling 等(1997); Takayuki
$T \land T \land T$	2.8~0.4		4. 99	0. 5~2.0	2.1~2.7	5. 5~0. 1	2.20~20.0	等(2000);杨惠灵(2012);
赤道太平洋		3.4~6.8	—	_	—	—		Eisenhauer 等(1992) Chabaux(1995) ;
印度洋	1.7~2.5	1.8~4.3	—	—	4.3	—	—	Banakar 等(1991) ; Chabaux(1997) ;
北大西洋	3.05	_		_	_	—	_	Henderson 等(1999)

3.2 基于²⁶ Al 浓度和²⁶ Al /²⁷ Al 的富钴结壳生长 速率

通过 X^2 最优拟合计算并绘制的 CXD08-1 的 ²⁶ Al浓度和²⁶ Al/²⁷ Al 随结壳深度变化图(图 6a、6b) 显示 根据 X^2 最优拟合以及²⁶ Al 浓度和²⁶ Al/²⁷ Al ,计 算的 CXD08-1 在 5~30 mm 之间的生长速率分别为 ($0.80^{+0.20}_{-0.22}$) mm/Ma 和($12.89^{+4.62}_{-3.38}$) mm/Ma ,初 始²⁶ Al 浓度和²⁶ Al/²⁷ Al 分别为($1.00^{+9.00}_{-0.39}$)×10¹¹ atom/g 和($9.77^{+11.42}_{-6.59}$)×10⁻¹⁴。由式(3) (λ_{26} =9.83× 10⁻⁷) 计算的 CXD08-1 时间信息如表 3 所示。

大气初始²⁶ Al/¹⁰ Be = (3.8 ± 0.6) × 10⁻³,则由 ¹⁰Be的初始浓度计算得到 CXD08-1 中²⁶ Al 的初始浓 度为(1.37 ± 0.72) × 10⁷ atom/g,该结果比拟合的初 始²⁶ Al 浓度($1.00^{+9.00}_{-0.39}$) × 10¹¹ atom/g 低 4 个数量级, 不符合实际情况。另外,由²⁶ Al 初始浓度和²⁶ Al/ ²⁷ Al拟合的平均生长速率相差两个数量级。这表 明²⁶ Al 浓度计算的 CXD08-1 的时间信息误差很大, 可信度低,原因可能: ①由¹⁰ Be 与¹⁰ Be/⁹ Be 计算的 CXD08-1 的时间信息推测样品中的²⁶ Al 已大量衰 变,从而使²⁶ Al/²⁷ Al 接近 AMS 测量本底,导致计算 结果误差过大而不可信; ②在样品制备过程中加入 太多的²⁷ Al 载体 稀释了样品中的²⁶ Al/²⁷ Al,故使样 品的 AMS 测量结果误差大、可信度低。

4 结论

(1) 对采自太平洋的 2 个富钴结壳 MDD46-1 和 CXD08-1 进行的连续淋滤实验结果表明,在以 25% (*V/V*) 的 CH₃COOH 为介质的酸溶液中,用 0.04 mol/L NH₂OH•HCl 连续淋滤3次,即可提取出富钴 结壳样品中几乎全部的自生相元素。

(2)根据¹⁰Be浓度及¹⁰Be/⁹Be值采用X²最优拟
合法分别计算得结壳CXD08-1在5~30mm间的平均
生长速率为(10.23^{+0.52}_{-0.47})mm/Ma和(14.25^{+1.02}_{-0.89})mm/
Ma。另外利用¹⁰Be浓度及¹⁰Be/⁹Be值,分别计算得
结壳CXD08-1在5~10mm间的形成年代为(0.76±
0.12)Ma和(0.56^{+0.12}_{-0.15})Ma。

(3)由于²⁶ Al 相对于¹⁰ Be 半衰期较短,而且产 率也较低,所以本次实验并没有得到比较有意义 的²⁶ Al 实验结果。因此,在后续的研究工作中,拟直 接利用富钴结壳样品中的自生相 Al 元素(即不加²⁷ Al 载体)进行 ICP-MS 和 AMS 测量分析。同时,对 于¹⁰ Be 拟选择更理想的结壳样品与层位,进一步验 证本实验方法,同时参照¹⁰ Be /⁹ Be 方法,探索建立²⁶ (CM)94-2020 China Academic Journal Electronic F Al /²⁷ Al 深海沉积物剖面定年方法。

致谢: 富钴结壳样品由中国大洋样品馆提供, 在此表示衷心感谢。

参考文献(References):

- Arnold J R. 1956. Beryllium-10 produced by cosmic rays. Science , 124 (3222): 584-585
- Banakar V K , Borole D V. 1991. Depth profiles of ²³⁰Th_{excess} , transition metals and mineralogy of ferromanganese crusts of the Central Indian basin and implications for palaeoceanographic influence on crust genesis. Chemical Geology , 94(1): 33–44.
- Bogdanov Y A , Bogdanova O Y , Dubinin A V , Gorand A , Gorshkov A I , Gurvich E G , Isaaeva A B , Ivanov G V , Jansa L F , Monaco A. 1995. Composition of ferromanganese crusts and nodules at north-western pacific guyots and geologic and paleoceanographic considerations. In: Proceedings of the Ocean Drilling Program. College Station , TX: Scientific Results , 144: 745–768
- Bourles D , Raisbeck G M , Yiou F , Loiseaux J M , Lieuvin M , Klein J , Middleton R. 1984. Investigation of the possible association of ¹⁰Be and ²⁶Al with biogenic matter in the marine environment. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 5(2): 365–370
- Bourles D , Raisbeck G M , Yiou F. 1989. 10Be and ⁹Be in marine sediments and their potential for dating. Geochimica et Cosmochimica Acta , 53(2): 443–452
- Chabaux F , Cohen A S , Onions R K , Hein J R. 1995. $^{238}\,U^{-234}\,U^{-230}\,Th$ chronometry of Fe–Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater. Geochimica et Cosmochimica Acta , 59(3): 633–638
- Chabaux F , Unions R K , Cohen A S , Hein J R. 1997. ²³⁸ U-²³⁴ U-²³⁰ Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration? Geochimica et Cosmochimica Acta , 61(17): 3619–3632.
- Dong K J , Lang Y C , Hu N , Zhong J , Xu S , Hauser T M , Gan R. 2018. The new AMS facility at Tianjin University. Radiation Detection Technology and Methods , 2: 30
- Eisenhauer A , Gögen K , Pernicka E , Mangini A. 1992. Climatic influences on the growth rates of Mn crusts during the Late Quaternary. Earth and Planetary Science Letters , 109(1-2): 25-36
- Feige J. 2014. Supernova-produced radionuclides in deep-sea sediments measured with AMS. Fakultät für Physik: Universität Wien , 1- 206
- Fitoussi C , Raisbeck G M. 2007. Chemical procedure for extracting ^{129}I , ^{60}Fe and ^{26}Al from marine sediments: prospects for detection of a \sim 2. 8 My old supernova. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 259(1): 351–358
- Hein J R , Koschinsky A , Halliday A N. 2003. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium.Geochimica et Cosmochimica Acta , 67(6): 1117–1127
- Henderson G M , Burton K W. 1999. Using ($^{234}\rm{U}/^{238}\rm{U})$ to assess diffusion rates of isotope tracers in ferromanganese crusts. Earth and

ublishing House. All rights reserved. http://www.cnki.net Ji S H , Liu G S , Chen Z G , Huang Y P , Xing N , Jiang S , He M. 2015. Measurement of $^{129}\mathrm{I}$ in ferromanganese crust with AMS. Acta Oceanologica Sinica , 34(10) : 31–35.

- Kobayashi T , Nagai H , Kobayashi K. 2000. Concentration profiles of ¹⁰Be in large manganese crusts. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 172(1-4): 579-582.
- Lal D. 1962. Cosmic ray produced radionuclides in the sea. Journal of the Oceanographical Society of Japan. 20th Anniversary Vol ,18: 600 -614
- Ling H F , Burton K W , O'Nions R K , Kamber B S , Von Blanckenburg F , Gibb A J , Hein J R. 1997. Evolution of Nd and Pb isotopes in central pacific seawater from ferromanganese crusts. Earth and Planetary Science Letters , 146(1–2): 1–12
- Segl M , Mangini A , Bonani G , Hofmann H J , Nessi M , Suter M , Wölfli W , Friedrich G , Plüger W L , Wiechowski A , Beer J. 1984. ¹⁰Be– dating of a manganese crust from Central North Pacific and implica– tions for ocean palaeocirculation. Nature , 309(5968) : 540–543
- Sharma P , Church T M , Bernat M. 1989. Use of cosmogenic $^{10}\mathrm{Be}$ and

²⁶Al in phillipsite for the dating of marine sediments in the South Pacific Ocean. Chemical Geology: Isotope Geoscience Section , 73
(4): 279-288

- Sharma P , Klein J , Middleton R , Church T M. 1987. ²⁶ Al and ¹⁰Be in authigenic marine minerals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 29(1–2): 335–340
- Wang G Z , Luba J , Chu F Y , Zou C , Sun G S. 2015. Composition and origin of ferromanganese crusts from equatorial western Pacific seamounts. Journal of Ocean University of China , 14(2): 217–227
- 马配学,穆治国,郭之虞. 1998. 大洋沉积物中¹⁰Be 和²⁶Al 的浓度变 化与定年. 海洋地质与第四纪地质,18(2): 17-25
- 邢娜. 2006. 太平洋富钴结壳生长速率的综合研究. 博士学位论文. 厦门: 厦门大学,1-193
- 杨惠灵. 2012. 太平洋富钴结壳的铀系年代学与元素地球化学. 硕士 学位论文. 厦门: 厦门大学,1-143

(本文责任编辑:刘莹;英文审校:张兴春)