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Post-orogenic mafic rocks from Northeast China consist of swarms of dolerite dikes. We report a new U–Pb zircon age, as
well as whole-rock geochemical and Sr–Nd–Hf isotopic data. Laser ablation inductively coupled plasma mass spectrometry
(LA–ICP–MS) U–Pb zircon analysis yielded an age of 210.3 ± 1.5 million years (i.e. Triassic) for these mafic dikes. Most
Dalian mafic rocks exhibit low K2O + Na2O contents, and span the border between alkaline and calc-alkaline rock associ-
ations in the total alkali–silica diagram. The investigated dikes are also characterized by relatively high (87Sr/86Sr)i ratios
(0.7061–0.7067) and negative εNd (t) (−4.7 to −4.3) and εHf (t) values (−4.1 to −1.1), implying that they were derived from
an enriched lithospheric mantle source. The mafic dikes are characterized by relatively low MgO (4.65–5.44 wt.%), Mg#

(41–44), and compatible element content [such as Cr (89.9–125 ppm) and Ni (56.7–72.2 ppm)], which are the features of an
evolved mafic magma. No evidence supports the idea that the mafic rocks were affected by significant assimilation or crustal
contamination during emplacement. We conclude that the dolerites formed in a post-orogenic extensional setting, related to
lithospheric delamination or ‘collapse’ of the Central Asian Orogenic Belt (CAOB), also termed the Xingmeng Orogenic
Belt in China.

Keywords: post-orogenic; Triassic magmatism; mafic dikes; lithospheric delamination; crustal extension; Northeast China

1. Introduction

Mesozoic mafic dikes are widespread in Northeast China.
These dolerites formed as a result of important extension
of the continental lithosphere (Hall 1982; Hall and Fahrig
1987; Tarney and Weaver 1987; Zhao and McCulloch
1993). Studies of these rift-related dikes are essential
for an enhanced understanding of the generation of such
widespread episodes of mafic magmatism, providing valu-
able information concerning the Mesozoic lithospheric
evolution beneath the North China Craton (NCC) (Liu et al.
2004, 2006, 2008a, 2008b, 2009, 2010b, 2010c) in this part
of East Asia.

Despite a number of investigations of mafic dikes
present in east Jilin and Heilongjiang provinces, contro-
versy remains concerning their origins and significance
(e.g. Qin 1995; Wu et al. 2004; Zhu et al. 2009; Liu et al.
2010b). Moreover, while a few investigations of Mesozoic
mafic dikes in the eastern NCC (i.e. Liaoning Province)
have been reported (Yang et al. 2004; Pei et al. 2005; Song
and Qiao 2008; Liu et al. 2010a; Feng et al. 2011), to date

*Corresponding author. Email: liushen@vip.gyig.ac.cn

there are no studies of Mesozoic mafic dikes present in the
vicinity of Dalian.

Accordingly, our study provides an excellent oppor-
tunity to further document the ages and chemical and
isotopic characteristics of Mesozoic mafic dike swarms in
Northeast China; herein, we present a systematic isotopic
and geochemical investigation of representative mafic
dolerite dikes from Dalian. In addition, we report new
ages and Sr–Nd–Hf isotopic data to help constrain their
petrogenesis. These data are then used to discuss the
Mesozoic evolution of the mantle sources that provided
these NCC mafic magmas.

2. Geological setting and petrology

The Nenjiang and Mudanjiang faults divide Northeast
China into three contrasting microcontinental blocks: the
Jiamusi Block in the east, the Songliao Block in the cen-
tral part, and the Xing’an Block in the northwest (Ye
et al. 1994; Wu et al. 1995). The Jiamusi Block is mainly
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composed of two sequences of Precambrian metamorphic
rocks: the Mashan and Heilongjiang groups (Wu et al.
2003a, 2003b). The Mashan Group, which has experi-
enced metamorphism to granulite-facies conditions (Wilde
et al. 2000), comprises granulite, marble, and graphitic
schist, together with gneiss and garnet-bearing granite.
By contrast, the Heilongjiang Group, exposed along the
Mudanjiang Fault zone between the Jiamusi and Songliao
blocks, is characterized by highly deformed, blueschist-
facies rocks, including glaucophane schist, marble, and
chert (Wu et al. 2003a, 2003b). The Songliao Block
consists of the Lesser Xing’an Range in the north, the
Songliao sedimentary basin in the central part, and the
Zhangguangcai Range in the east. Voluminous Phanerozoic
granitic rocks are widespread throughout the Songliao
Block, intruding the mountainous regions (JBGMR 1988;
IMBGMR 1990; HBGMR 1993) and beneath the Songliao
basins (Wu et al. 2001). Furthermore, Proterozoic meta-
morphic rocks with banded iron formation (Dongfengshan
Group) occur within the eastern Lesser Xing’an and north-
ern Zhangguangcai ranges (HBGMR 1993; Wu et al.
2003a, 2003b). The Xing’an Block is located within the
Great Xing’an Range, where extensive Mesozoic volcanic
and granitic rocks are exposed, as are Proterozoic metamor-
phic rocks and Palaeozoic strata (HBGMR 1993; Wu et al.
2003a, 2003b).

The study area for our samples is located close to
Dalian, eastern Northeast China (Figures 1A and 1B).
Here, Mesozoic dikes outcrop as dolerite intruding Sinian
sedimentary strata; the studied mafic rocks are nei-
ther deformed nor metamorphosed. The individual mafic
dikes are vertical and NW–NE-trending. They are com-
monly 1.6–6.0 km wide and 10–40 km long (Figure 1B).
Representative photomicrographs of the mafic dikes from
the studied area are provided in Figure 2. The dolerite dike
rocks are typically intermediate to coarse grained and por-
phyritic, comprising 35–45% phenocrysts of clinopyroxene
(3.0–5.5 mm), plagioclase (3.0–4.5 mm), minor K-feldspar
(2.5–5.0 mm) and magnetite in a matrix of clinopyroxene
(0.05–0.8 mm), plagioclase (0.04–0.06 mm), K-feldspar
(0.02–0.04 mm), minor biotite (0.03–0.05 mm), and Ti–Fe
oxides (e.g. magnetite) (0.04–0.06 mm).

3. Analytical methods

3.1. Zircon LA–ICP–MS U–Pb dating

Zircon was separated from one of the Dalian dolerite
dike samples (YJC-1), using conventional heavy liquid and
magnetic techniques, at the Langfang Regional Geological
Survey, Hebei Province, China. Representative grains were
hand-picked under a binocular microscope, mounted in
an epoxy resin disc, and then polished and coated with
a conductive film of gold. Zircon grains were observed
with transmitted and reflected light microscopy as well
as cathodoluminescence (CL) imagery to help reveal their

external and internal structures (Figure 3). Microscopic
observations were undertaken at the State Key Laboratory
of Continental Dynamics, Northwest University, China.
Laser ablation techniques were used for zircon age deter-
minations (Table 1). The analyses were conducted with
an Agilent 7500a inductively coupled plasma–mass spec-
trometer (ICP–MS) equipped with 193 nm excimer lasers,
which is housed at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of
Geoscience in Wuhan, China. Zircon 91500 was used as
a standard and NIST 610 was used to optimize the results.
The spot diameter was 24 µm. Analytical methodology is
described in detail in Yuan et al. (2004). Common Pb cor-
rections were made using the method of Andersen (2002).
Data were processed using the GLITTER and ISOPLOT
(Ludwig 2003) programs. Errors on individual analyses by
LA–ICP–MS are quoted at the 95% (1σ ) confidence level.

3.2. Major and trace elemental analyses

Fifteen mafic dike samples were selected to carry out major
and trace element determinations and Sr–Nd isotopic anal-
yses. Whole-rock samples were trimmed to remove altered
surfaces, and were cleaned with deionized water, crushed,
and powdered with an agate mill.

Major elements were analysed with a PANalytical
Axios-Advanced PW4400 X-ray fluorescence spectrom-
eter (XRF) at the State Key Laboratory of Ore
Deposit Geochemistry, Institute of Geochemistry, Chinese
Academy of Sciences (IGCAS), China. Fused glass discs
were used and the analytical precision, as determined on
the Chinese national geological rock standards GSR-1 and
GSR-3, was better than 3% (Table 2). Loss on ignition
(LOI; Table 2) was obtained using 1 g of powder heated
up to 1100◦C for 1 h.

Trace element concentrations were determined with
an ELAN 6000 ICP–MS at IGCAS following the pro-
cedures described by Qi et al. (2000). The discrep-
ancy between triplicate analyses is less than 5% for
all elements. Analysis of international standard GBPG-1
(plagiogneiss) is in agreement with recommended values
(Table 3).

3.3. Sr–Nd isotopic analyses

For Rb–Sr and Sm–Nd isotopic analysis, sample powders
were spiked with mixed isotope tracers, dissolved in Teflon
capsules with HF + HNO3 acids, and separated by conven-
tional cation-exchange techniques. Isotopic measurements
were performed on a Finnigan MAT-261 thermal ioniza-
tion mass spectrometer (TIMS) at the State Key Laboratory
of Geological Processes and Mineral Resources, China
University of Geosciences, China. Procedural blanks
were <200 pg for Sm and Nd and <500 pg for Rb
and Sr. The mass fractionation corrections for Sr and Nd
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International Geology Review 251

Figure 1. (A) Location of the study area (highlighted in (B)), close to the city of Dalian, China. (B) Geological map of the study area
including the sampling localities for the investigated mafic dikes.

isotopic ratios were based on 86Sr/88Sr = 0.1194 and
146Nd/144Nd = 0.7219, respectively. Analyses of standards
during the period of analysis are as follows: NBS987 gave
87Sr/86Sr = 0.710248 ± 12 (2σ , n = 10) and La Jolla
gave 143Nd/144Nd = 0.511856 ± 10 (2σ , n = 10). Our
analytical results for Sr–Nd isotopes are presented in
Table 4.

3.4. In situ zircon Hf isotopic analysis

In situ zircon Hf isotopic analyses were conducted using
a Neptune MC–ICP–MS, equipped with a 193 nm laser, at

the Institute of Geology and Geophysics, Chinese Academy
of Sciences in Beijing, China. During the analysis, a laser
repetition rate of 10 Hz at 100 mJ and spot sizes of 32 and
63 µm were used. Details of the analytical technique used
are given in Xu et al. (2004) and Wu et al. (2006). During
the analysis, the 176Hf/177Hf and 176Lu/177Hf ratios of
the standard zircon (91500) were 0.282300 ± 15 (2σn,
n = 24) and 0.00030, similar to the commonly accepted
176Hf/177Hf ratio of 0.282302 ± 8 and 0.282306 ± 8 (2σ ),
measured using the solution method (Goolaerts et al. 2004;
Woodhead et al. 2004). The analytical results are presented
in Table 5.
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252 S. Liu et al.

Figure 2. Representative photomicrographs of the mafic dikes from Dalian, Northeast China (cross-polarized light). Cpx, clinopyroxene;
Pl, plagioclase feldspar.

Figure 3. Representative cathodoluminescence images and LA–
ICP–MS U–Pb concordia diagrams of zircon grains from the
investigated mafic dike sample YJC-1. The numbers on individual
zircon grains correspond to the locations of spot analyses given in
Table 1. MSWD, mean square of weighted deviates.

4. Results

4.1. Zircon CL imagery and U–Pb data

Zircon is relatively abundant in mafic dike YJC-1. Prior
to LA–ICP–MS zircon U–Pb dating, the surfaces of the
grain mounts were washed in dilute HNO3 and pure alco-
hol to remove any potential lead contamination. Zircons
selected from sample YJC-1 are euhedral, colourless, and
transparent; mostly elongated prismatic; and range up to
100 µm in diameter. The majority of grains exhibited oscil-
latory or planar zoning under CL, a typical feature of
magmatic zircon (see Figure 3). The studied zircon grains

have variable abundances of Th (30.5–526 ppm) and U
(52.7–502 ppm), with variable Th/U ratios (0.52–4.47)
(Table 1), also suggestive of a magmatic origin. On the
basis of petrographic and CL examination and Th/U ratios,
an igneous origin for the zircon from dike YJC-1 is evi-
dent. The U–Pb zircon data are presented in Table 1.
Analyses of zircon grains with oscillatory structures were
concordant and yielded a weighted mean 206Pb/238U age of
210.3 ± 1.5 million years (n = 12) for YJC-1 (Figure 3).
The age is interpreted as the crystallization age of the
dolerite intrusion.

4.2. Major and trace elements

Major element concentrations of the studied mafic samples
are presented in Table 2. The mafic dikes have a small range
of chemical compositions, with SiO2 = 47.24–48.50 wt.%,
Al2O3 = 14.87–15.89 wt.%, Fe2O3 = 12.52–13.84 wt.%,
MgO = 4.65–5.44 wt.%, CaO = 9.21–10.43 wt.%,
Na2O = 2.56–3.31 wt.%, K2O = 0.84–1.23 wt.%,
MnO = 0.15–0.20 wt.%, P2O5 = 0.28–0.36 wt.%, and
TiO2 = 2.42–2.93 wt.%, as well as a narrow spread in Mg#

values (41–44). Most mafic rocks fall along the bound-
ary between alkaline and calc-alkaline rock associations in
the total alkali-silica (TAS) diagram (Figure 4A). In addi-
tion, almost all of the samples straddle the intersections
of calc-alkaline and shoshonitic series in the Na2O ver-
sus K2O plot (Figure 4B). In a plot of molar ratios of
Al2O3/(Na2O + K2O) and Al2O3/(CaO + Na2O + K2O),
the mafic rocks are all metaluminous (Figure 4C). Harker
diagrams (Figure 5) show the variation in major elements
as a function of MgO content in the mafic rocks. With
increasing MgO content, Al2O3, TiO2, Na2O, and P2O5

decrease, whereas Fe2O3, CaO, and K2O increase. Trace
element concentrations of the mafic dikes are presented in
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Table 2. Whole-rock determinations of major elements (oxide wt.%) for the mafic dikes in Dalian, China.

Sample no. SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO P2O5 TiO2 LOI Total Mg#

YJC-1 48.05 15.89 13.51 4.77 9.40 2.93 1.23 0.19 0.35 2.59 1.99 100.90 41.4
YJC-2 47.70 15.62 13.44 5.32 10.24 2.73 1.13 0.19 0.33 2.50 1.52 100.72 44.2
YJC-3 47.60 15.41 13.72 5.33 9.89 2.65 1.18 0.19 0.34 2.57 1.87 100.74 43.7
YJC-4 47.24 15.32 13.84 4.96 9.69 3.19 0.98 0.20 0.36 2.91 2.09 100.77 41.8
YJC-5 48.23 15.03 13.48 5.29 10.14 2.76 1.13 0.19 0.33 2.42 1.92 100.91 44.0
YJC-6 47.69 15.33 13.64 5.44 10.43 2.74 1.12 0.19 0.32 2.57 1.51 100.97 44.4
YJC-7 48.50 15.33 13.48 4.91 9.21 3.31 0.94 0.19 0.35 2.66 2.04 100.91 42.1
YJC-8 47.25 15.60 13.54 4.87 9.53 3.19 1.02 0.20 0.34 2.93 2.19 100.66 41.8
YJC-9 48.13 15.54 13.16 4.99 9.89 2.96 0.98 0.19 0.33 2.49 2.09 100.75 43.1
YJC-10 47.88 14.91 12.52 4.65 10.01 2.56 0.84 0.18 0.31 2.58 2.07 98.51 42.6
YJC-11 47.76 15.37 13.34 5.28 10.16 2.67 1.08 0.17 0.31 2.47 1.53 99.88 42.8
YJC-12 47.85 14.87 13.42 5.23 9.93 2.58 1.03 0.15 0.28 2.43 1.48 99.75 42.7
YJC-13 48.26 14.98 13.46 5.26 10.12 2.72 1.11 1.10 0.31 2.86 2.03 99.62 42.7
YJC-14 48.18 15.49 13.13 4.92 9.85 2.93 0.95 0.17 0.32 2.65 2.04 99.49 42.7
YJC-15 47.73 15.57 13.41 5.31 10.21 2.71 1.12 0.18 0.32 2.48 1.47 99.36 42.7
GSR-3 RV∗ 44.64 13.83 13.4 7.77 8.81 3.38 2.32 0.17 0.95 2.37 2.24 99.88
GSR-3 MV∗ 44.68 13.98 13.37 7.75 8.82 3.26 2.31 0.17 0.96 2.36 2.15 99.81
GSR-1 RV∗ 72.83 13.4 2.14 0.42 1.55 3.13 5.01 0.06 0.09 0.29 0.7 99.62
GSR-1 MV∗ 72.76 13.43 2.16 0.43 1.57 3.16 5.02 0.06 0.1 0.29 0.71 99.69

Notes: LOI, loss on ignition; Mg#, 100 × Mg/(Mg + �Fe) atomic ratio; RV∗, recommended values; MV∗, measured values. The recommended values
quoted for standards GSR-1 and GSR-3 are from Wang et al. (2003).

Table 3. Selected elements are plotted against MgO con-
tent in Figure 6. Rb, Sr, and Zr concentrations decrease,
whereas Ba, Cr, and Ni concentrations increase with
increasing MgO. All samples have moderate total rare earth
element (REE) contents (113–137 ppm). The mafic dikes
have relatively larger variation in (La/Yb)N (4.9–5.8),
(Gd/Yb)N (1.7–1.9), and Eu/Eu∗ (1.01–1.17), and are
characterized by relatively high Nb (18.5–24.5 ppm), Y
(29–36 ppm), Sr (306–392 ppm), Ba (241–349 ppm), and
Sc (30–33 ppm) contents and low Rb (25–36 ppm), Zr
(135–173 ppm), Hf (3.4–4.4 ppm), U (0.4–0.7 ppm), Th
(2.2–2.7 ppm), and Pb (6.6–14 ppm) contents (Table 3).
In primitive mantle-normalized multi-element diagrams
(Figure 7B), the mafic samples exhibit enrichment in Rb,
Ba, U, K, and Pb and significant depletions in Th, Nb, and
Ti (Figure 7B).

4.3. Sr–Nd isotopes

Sr and Nd isotopic compositions of the representative
samples from mafic dikes are presented in Table 4. The
mafic dikes have relatively constant initial 87Sr/86Sr ratios
(0.7061–0.7067) and negative εNd (t) values (−4.7 to
−4.3). Furthermore, in the (87Sr/86Sr)i versus εNd (t) plot
(Figure 8), the mafic dikes fall within the field of an
enriched mantle source.

4.4. Zircon Hf isotopes

One sample of zircon dated by U–Pb methods was also
studied for its Lu–Hf isotopic signature, with analyses

made on the same domains, and the results are pre-
sented in Table 5. Sixteen spot analyses were obtained
for the zircon in sample YJC-1, yielding variable εHf (t)
values of between −4.1 and −1.1 (Figure 9), two-
stage model ages (TDM2) of 1312–1503 million years,
and initial 176Hf/177Hf ratios ranging from 0.282542 to
0.282593.

5. Discussion

5.1. Petrogenesis

5.1.1. Source regions

The Dalian area mafic dikes exhibit lower SiO2 contents
(47.24–48.50 wt.%) than the liquids that would result from
partial melting of any of the crustal rocks (i.e. granitoid
liquids; e.g. Hirajima et al. 1990; Yang et al. 1993; Zhang
et al. 1994; Kato et al. 1997; Gao et al. 1998a, 1998b; Rapp
et al. 2003), suggesting that the dikes are derived from a
mantle rather than a crustal source. Moreover, the high ini-
tial 87Sr/86Sr (0.7061–0.7067) ratios and negative εNd (t)
(−4.7 to −4.3) and zircon εHf (t) (−4.1 to −1.1) values
(Tables 4 and 5; Figures 8 and 9) for the mafic rocks are
consistent with derivation from an enriched, lithospheric,
mantle source.

5.1.2. Crustal assimilation

The investigated mafic dikes display positive Pb and neg-
ative Ti anomalies when plotted on multi-element, nor-
malized spider diagrams (Figure 7B), suggesting that con-
tinental material could have played a role in the magma
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genesis of these rocks. Crustal contamination might cause
significant depletion in Nb–Ta and highly enriched Sr–Nd
isotopic signatures in basaltic rocks (Guo et al. 2004a,
2004b). The mafic dikes are characterized by negative
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Nb anomalies, high and constant initial 87Sr/86Sr ratios,
and negative εNd (t) values (Table 4; Figure 8), implying
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that crustal contamination might, therefore, be signifi-
cant in these rocks. However, crustal assimilation would
induce to a certain extent variation in Sr–Nd isotopes,
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study area. εHf (t) values for the zircons were calculated using
the crystallization ages of the mafic rocks.
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and also result in a positive correlation between MgO and
εNd (t) values and a negative correlation between MgO
and (87Sr/86Sr)i ratios. These features, however, are not
observed in the studied mafic dikes (Figure 10), which
excludes significant assimilation–fractional crystallization
(AFC) processes during the later evolution of the mafic
magmas. This is further supported by similar Ta/La ratios
(0.05–0.07) to that of primitive mantle (i.e. Ta/La = 0.06;
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Wood et al. 1979). In summary, the geochemical (e.g. pos-
itive Pb) and Sr–Nd–Hf isotopic signatures of the Dalian
area mafic rocks appear mainly to have been inherited from
an enriched mantle source.

5.1.3. Fractional crystallization

The observed chemistry of the Dalian area mafic dikes
leads to the interpretation that their evolution included
some degree of fractional crystallization, as evidenced by
low MgO (4.65–5.44 wt.%), Mg# (41–44) (Table 2), and
compatible element content [such as Cr (89–125 ppm) and
Ni (56–72 ppm)] (Table 3). The presence of negative cor-
relations between MgO and Al2O3, TiO2, Na2O, and P2O5

(Figures 5B, 5C, 5F, and 5H) and between MgO and Sr and
Zr (Figures 6B and 6D) suggests olivine (ol), clinopyroxene
(cpx), hornblende (hb), plagioclase (pl), Ti-bearing phases
(rutile, ilmenite, titanite, etc.), apatite (ap), and zircon frac-
tionation, while the separation of plagioclase, Ti–Fe oxides,
and apatite might account for the observed negative Nb and
Ti anomalies in primitive mantle-normalized trace element
diagrams (Figure 7B).

5.1.4. Genetic model

Based on the above discussion and results, the mafic dikes
in this study were likely derived through partial melting
of an enriched, lithospheric mantle source. However, the
genetic model of these rocks needs to be investigated.

The Mesozoic mafic dikes from Dalian are almost
exclusively found to intrude felsic rocks (i.e. granites,
granodiorite). Furthermore, these mafic rocks have been
proposed to have formed in an extensional setting (Liu
et al. 2010b). Therefore, in order to account for the genetic
model of the mafic dikes, the origin of huge volumes of fel-
sic, granitic rocks in Northeast China also needs to be eval-
uated. Wu et al. (2003b) proposed that the areal distribution
of granites may relate to post-orogenic extensional col-
lapse of the Central Asian Orogenic Belt (CAOB), which is
called the Xingmeng (Xing’an–Mongolian) Orogenic Belt
in the Chinese literature. In other words, granitoid forma-
tion was related to massive underplating of mafic magma
in an extensional tectonic setting. It has since been sug-
gested that the Central Asian orogeny terminated during
the late Palaeozoic (∼270 Ma), when collapse and crustal
extension occurred (Zhao et al. 2008). As crustal exten-
sion, in turn, would induce upwelling of hot asthenosphere,
it was the high heat flow from this asthenospheric mantle
that triggered intense melting in the pre-existing enriched
lithospheric mantle, producing voluminous basaltic mag-
mas. Subsequently, these mantle-derived magmas ascended
along fractures and faults and arrived into a lower crust;
the voluminous granitic magmas were generated by par-
tial melting of pre-existing mixed sources, heated by the
underplated basaltic magmas during the late Palaeozoic.

Meanwhile, intensive fractionation of the basaltic magma
occurred and resulted in the development and emplacement
of the Mesozoic (Triassic) mafic dike swarms that have
been investigated in this study.

6. Conclusions

Based on the geochronological, geochemical, and Sr–Nd–
Hf isotopic studies presented here, we draw the following
conclusions:

(1) U–Pb zircon dating results indicate that the dolerite
dikes were intruded at 210.3 ± 1.5 Ma. These rocks
all formed in a post-orogenic extensional setting.

(2) Most of the mafic rocks are characterized by low
K2O + Na2O, and belong to intergradational series
(alkaline and calc-alkaline) in the TAS diagram.
In addition, the mafic dikes are characterized by
light REE (LREE) enrichment and heavy REE
(HREE) depletion [(La/Yb)N = (4.9–5.8)]; no Eu
negative anomaly (Eu/Eu∗ = 1.01–1.17); high Nb,
Y, Sr, Ba, and Sc; and low Rb, Zr, Hf, U, Th, and
Pb.

(3) The mafic dikes were derived through partial melt-
ing of an enriched mantle source itself related to
lithospheric delamination. The parental magmas
experienced fractional crystallization of olivine,
clinopyroxene, hornblende, Ti-bearing phases,
apatite, and zircon. Minor, unimportant, crustal
contamination likely also occurred during magma
ascent.
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