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1  Introduction

The concentration of hydrogen peroxide (H2O2) in natural waters has been 
 determined for the first time in 1925 by Harvey (Harvey 1925), who studied 
inshore and offshore water from the English Channel. The concentration of H2O2 
has been determined in seawater in the 1970’s (van Baalen and Marler 1966) and 
in some Russian freshwaters in the 1980’s (Sinel’nikov 1971; Sinel’nikov and 
Demina 1974). In the same period the occurrence and concentration of H2O2 was 
being studied in air (Penkett et al. 1979; Lazrus et al. 1986; Sakugawa and Kaplan 
1987), rain and cloud water, freshwater and coastal and open ocean waters (Cooper 
and Zika 1983; Draper and Crosby 1983; Helz and Kieber 1985; Lazrus et al. 1985; 
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Zika et al. 1985a, b; Moffett and Zika 1987a; Palenic and Morel 1988; Cooper 
and Lean 1989; Hellpointner and Gäb 1989; Johnson et al. 1989). Starting from 
the 1980’s, organic peroxides (ROOH) have been detected in air (Sakugawa and 
Kaplan 1987; Lazrus et al. 1985; Hellpointner and Gäb 1989; Sauer et al. 2001), 
cloudwater and rain (Kelley and Reddy 1986). The ROOH concentrations have also 
been determined in freshwater (Mostofa 2005; Sakugawa et al. 2006; Mostofa and 
Sakugawa 2009) and seawater (Sakugawa et al. 2000; Gerringa et al. 2004).

Recent studies have demonstrated that natural sunlight or solar radiation is a 
key factor for the generation of H2O2 and ROOH in the atmosphere and in natural 
waters. Microbial processes can produce small amounts of both H2O2 and ROOH 
in living organisms (Kim and Portis 2004; Boveris et al. 2006; Grivennikova et 
al. 2008; Roy and Atreja 2008) as well as in the deeper water layers (i.e., under 
dark conditions) of river, lake and marine environments (Komissarov 2003). 
H2O2 is found to link with the occurrence of oxygenic photosynthesis in both 
higher plants (Komissarov 1994, 1995, 2003) and natural waters (Mostofa  
et al. 2009a, b). Therefore, H2O2 generated mostly by solar radiation and microbial 
processes could simultaneously be important for the occurrence of photosynthe-
sis in terrestrial higher plants and for the production of organic matter (ca. algae, 
cyanobacteria, etc.) in water environments. There is evidence that the microbial 
processing of vascular-plant spoils in the terrestrial soil environment can produce 
humic substances (fulvic and humic acids), which are then released into river, lake 
and marine waters (Mostofa et al. 2009a). The action of sunlight on fulvic and 
humic acids correspondingly produces H2O2 that, by favoring photosynthesis in 
the surface layer of rivers, lakes and oceans, would induce the generation of algae 
and other aquatic organisms. These organisms are then able to produce autochtho-
nous DOM via photorespiration (or photo-assimilations) and microbial respira-
tion or processes (Mostofa et al. 2009b; Collen et al. 1995; McCarthy et al. 1997; 
Rosenstock and Simon 2001; Medina-Sánchez et al. 2006; Nieto-Cid et al. 2006; 
Zhang et al. 2009; Fu et al. 2010). The photoinduced reactions of autochthonous 
DOM also yield H2O2 in natural waters. The production of H2O2 would mostly 
depend on the amount of DOM and on solar irradiance. Global warming with the 
associated increase in water temperature would enhance the production of H2O2, 
simultaneously affecting both the photodegradation of DOM and the photosynthe-
sis (Mostofa et al. 2009b). Photosynthesis in higher plants and in natural waters 
can be significantly increased by rain, also because of the elevated concentration 
of H2O2 and ROOH in rainwater. Therefore, the photoinduced and microbial gen-
eration of H2O2 is a key factor for the occurrence of many photoinduced, biologi-
cal, physical and geochemical processes. Such processes include the production 
of hydroxyl radical and other free radical species, photosynthesis, production of 
chlorophyll and of autochthonous DOM, photodegradation of DOM, CDOM and 
FDOM, and complexation of DOM with trace elements in natural water environ-
ments. On the other hand, production of ROOH could be a marker of microbial 
modification of bulk organic matter and of DOM under dark conditions. A few 
studies have previously been conducted to examine the photoinduced and micro-
bial production of ROOH, their chemical nature and relationships with DOM.
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Despite the universal and unique functions that H2O2 and ROOH may play in 
water ecosystems, their roles on some key biogeochemical functions in natural 
waters have hardly been investigated. This chapter will provide a general overview 
on the biogeochemical functions of H2O2 and ROOH, their production mecha-
nisms and the controlling factors for formation and decay, as well as their signifi-
cance and impact in natural waters.

1.1  Hydrogen Peroxide and its Biogeochemical Functions

Hydrogen peroxide (H2O2) is a simple chemical compound (H–O–O–H) that 
appears like water (H–O–H) in its chemical formula, with an additional oxygen 
atom. Hydrogen peroxide can undergo dismutation into water and oxygen:

H2O2 is a universal constituent of the hydrosphere and occurs in freshwater, 
seawater, mineral water, rain, dew, cloud, snow, air, and in all living organisms. 
H2O2 also finds effective application in experiments as well as in treatment pro-
cesses. It acts as an useful indicator for a variety of photoinduced, biological and 
abiotic processes in the aquatic environment.

The various biogeochemical functions of H2O2 can be classified as follows:  
(i) H2O2 is the most stable reactive oxygen species (ROS) and is used as an indi-
cator of photoinduced activity, because it is for instance photolytically generated 
through irradiation of various dissolved organic matter (DOM) components in nat-
ural waters (Cooper and Zika 1983; Zika et al. 1985a, b; Mostofa and Sakugawa 
2009; Obernosterer et al. 2001; Fujiwara et al. 1993; Moore et al. 1993; Scully et 
al. 1996). (ii) H2O2 and its precursor superoxide (O2

•−) can be both oxidising and 
reducing agents and are, therefore, potentially important for a number of redox 
reactions in natural waters (Moffett and Zika 1987a, b; Petasne and Zika 1987; 
Moffett and Zafiriou 1990; Zafiriou 1990; Zepp et al. 1992; Zafiriou et al. 1998; 
Voelker et al. 2000; Jeong and Yoon 2005). (iii) H2O2 is a natural tracer of the 
surface-water mixing zone or of stratification processes in lake and marine envi-
ronments (Johnson et al. 1989; Sikorsky and Zika 1993a, b; Sarthou et al. 1997; 
Scully and Vincent 1997). (iv) H2O2 is an indicator of the photodegradation of  
dissolved organic matter (DOM) and of organic pollutants in surface natu-
ral waters (Gao and Zepp 1998; Westerhoff et al. 1999; Southworth and Voelker 
2003). (v) H2O2 is involved in oxidative stress in biota/living cells, because of its 
elevated reactivity by both oxidation and reduction (Berlett and Stadtman 1997; 
Paradies et al. 2000; Blokhina et al. 2003; Richard et al. 2007). (vi) H2O2 can be 
helpful in the identification of biological activity, in particular in coastal waters 
where higher biological activity with rapid decay of H2O2 is commonly observed 
compared to the open oceans (Fujiwara et al. 1993; Moffett and Zafiriou 1990; 
Cooper and Zepp 1990; Petasne and Zika 1997). (vii) H2O2 is a useful tracer of 
the vertical advection transport or the convective overturn, which is usually caused 

2H2O2 → 2H2O + O2
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by nocturnal cooling in the upper ocean and can transport significant amounts of 
H2O2 to deep waters (Johnson et al. 1989; Sarthou et al. 1997; Scully and Vincent 
1997; Yuan and Shiller 2001). (viii) H2O2 is thought to play an important role in 
the occurrence of photosynthesis in higher plants (Komissarov 1994, 1995; 2003) 
and in natural waters (Mostofa et al. 2009a, b), by which effect it can induce the 
production of autochthonous DOM in the aqueous environment. (ix) H2O2 can 
react with CO2 under irradiation to produce various organic substances in aqueous 
solution (Lobanov et al. 2004), with a potentially significant role in biogeochemi-
cal processes in natural waters. (x) H2O2 plays an important role in controlling 
the physiology of plants, including the activity of some enzymes and the pho-
tophosphorylation and photorespiration rates; it is also responsible for fungitoxic-
ity of the leaf surface (Lobanov et al. 2008). (xi) H2O2 is generated inside cells 
by peroxisomes and mitochondria; the formation of H2O2 is caused by the reduc-
tion of O2 absorbed in intracellular fluid during the photorespiration (Komissarov 
2003; Lobanov et al. 2008). (xii) H2O2 acts as an oxidant in the conversion of SO2 
to SO4

2− in rainwater, thereby contributing to the acid rain phenomenon that is 
a harmful threat which damages plant tissues and contributes to forest decline 
worldwide (Calvert et al. 1985; Sakugawa et al. 1990, 1993). (xiii) The environ-
mental concentration of H2O2 is influenced by algae, which simultaneously cause 
its decay and induce its photoinduced production by exposure of algal suspensions 
to sunlight (Zepp et al. 1987). (xiv) The photoinduced generation of H2O2 from 
algal suspensions plays a key role in the oxidation of anilines; the latter are able to 
decrease H2O2 production, possibly by consuming it on the surface of algal cells 
(Zepp et al. 1987; Zepp and Schlotzhauer 1983). (xv) Elevated levels of H2O2 
induce damage and cell lysis in microorganisms (Gonzalez-Flecha and Demple 
1997; Weinbauer and Suttle 1999); H2O2 is also implicated as a cause of mortal-
ity of fecal indicator bacteria in marine sewage fields (Mitchell and Chamberlin 
1975; Clark et al. 2008). (xvi) Bioelectrochemical oxidation of wastewater organic 
matter can effectively produce H2O2 on an industrial scale, with an overall 83 % 
efficiency that could be useful for industrial purposes (Rozendal et al. 2009). (xvii) 
H2O2 produced from DOM may contribute approximately 1–50 % of hydroxyl 
radical (HO•), a strong oxidizing agent, which is responsible for indirect photoin-
duced changes in the DOM components in natural waters (Mostofa and Sakugawa 
2009; Takeda et al. 2004; Nakatani et al. 2007; Page et al. 2011).

1.2  Organic Peroxides (ROOH) and Their Biogeochemical 
Functions

Organic peroxides (ROOH) are organic compounds containing the peroxide func-
tional group (–O–O–), and may be considered as derivatives of hydrogen perox-
ide (H–O–O–H) where one or both of the hydrogen atoms have been replaced by 
organic radicals. Organic peroxides can commonly be denoted as ROOH, where 
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R can be CH3–, CH3–CH2–, etc. and H can be H or R. The organic peroxides are 
ubiquitously distributed in air, cloud, dew, rain, mineral water, freshwater and 
seawater (Sakugawa and Kaplan 1987; Lazrus et al. 1985; Hellpointner and Gäb 
1989; Sauer et al. 2001; Kelley and Reddy 1986; Mostofa 2005; Sakugawa et al. 
2006; Mostofa and Sakugawa 2009; Sakugawa et al. 2000; Gerringa et al. 2004).

The major ROOH compounds identified in the aquatic environments are methyl 
hydroperoxide (CH3OOH), hydroxymethyl hydroperoxide (HOCH2OOH), ethyl 
hydroperoxide (CH3CH2OOH), 1-hydroxyethyl hydroperoxide (CH3CH(OH)OOH), 
2-hydroxyethyl hydroperoxide (CH2(OH)CH2OOH), 1-hydroxypropyl hydroperoxide 
(CH3CH2CH(OH)OOH), 2-hydroxypropyl hydroperoxide (CH3CH(OH)CH2OOH), 
3-hydroxypropyl hydroperoxide (CH2(OH)CH2CH2OOH), and bis(hydroxymethyl)
peroxide (HOCH2OOCH2OH) (Hellpointner and Gäb 1989; Hewitt and Kok 1991). 
The concentration levels of ROOH compounds are commonly low (~<390 nM) in 
natural waters, and their concentrations are also low when they are generated in pho-
toexperiments conducted on natural waters or on aqueous solutions of standard DOM 
components.

The various biogeochemical functions of ROOH can be categorized as follows: 
(i) Production of ROOH compounds would be a marker of microbial changes in 
bulk organic matter or DOM under dark conditions, which are usually occurring 
in deeper layers of lake or seawater (Sakugawa et al. 1995, 2000; Hayase and 
Shinozuka 1995; Mostofa et al. 2005). (ii) ROOH compounds are readily decom-
posed and correspondingly generated, so that they reach a steady-state concentra-
tion in natural waters. (iii) ROOH compounds might be important transformation 
intermediates of DOM and may be chemically converted into stable DOM com-
ponents in natural waters. (iv) The photoinduced and thermal decomposition of 
organic peroxides generally yields organic peroxide radicals; they may combine 
with other organic substances to form new compounds, or can form polymeric 
compounds in aqueous solution (Mageli and Kolczynski 1966; Mill et al. 1980; 
Kieber and Blough 1990; Faust and Allen 1992). Future research is expected to 
further highlight the importance of ROOH in natural waters.

1.3  Nature and Characteristics of H2O2 and ROOH

In natural waters, H2O2 shows several characteristic properties that can be listed 
as follows: (i) The photoinduced generation of H2O2 follows a regular trend of 
increasing concentration with increasing irradiation time, in photoexperiments 
conducted under a solar simulator (Fig. 1a, b). It suggests that the formation rate 
is higher than the transformation one. (ii) Photogenerated H2O2 is gradually con-
sumed in aqueous media in the absence of solar radiation (Fig. 2a). It suggests that 
H2O2 in aqueous solution is presumably decomposed by chemical and/or enzy-
matic reactions. (iii) The rate of H2O2 photoproduction is higher in filtered than in 
unfiltered natural waters samples (Fig. 2a), suggesting that particulate matter may 
rapidly consume H2O2 in aqueous solution. (iv) The photoinduced generation of 
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H2O2 is highly variable in the presence of various standard organic substances in 
aqueous media (Fig. 1b), which suggests that the concentration of H2O2 depends 
on the nature of the DOM components. (v) The photoinduced generation of 
H2O2 increases with an increase in the contents of fulvic acid in photo- irradiated 
samples under a solar simulator (Fig. 3), which suggests that H2O2 produc-
tion depends on the DOM amount. (vi) When photogenerated H2O2 in unfiltered 
river water is incubated in the dark, it is entirely decomposed in the first day of 
incubation and it is not produced further during the incubation period (Fig. 2b). 
Therefore, microbial reactions may be more effective in consuming than in pro-
ducing H2O2 in river water.

ROOH compounds typically show the following features in natural waters:  
(i) The photoinduced generation of ROOH does not follow a regular trend of 
increasing concentration with increasing irradiation time, in photoexperiments 
conducted using a solar simulator; in contrast, produced ROOH is very low and 
fluctuates heavily without any observable trends (Fig. 1c, d). It is suggested that 
ROOH compounds are readily decomposed in aqueous solution. (ii) The pho-
toinduced generation of ROOH compounds is typically higher in filtered than in 
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unfiltered samples of river water (Fig. 2b), which suggests that particulate mat-
ter (or microbes) in unfiltered river water are susceptible to rapidly degrade 
ROOH. (iii) ROOH compounds were frequently generated under dark incuba-
tion (which followed irradiation) in unfiltered and filtered river waters (Fig. 1b), 

Fig. 2  Production of H2O2 
and ROOH as a result of 
photoinduced and microbial 
incubation on filtered and 
unfiltered river waters. 
Data source Mostofa et al. 
(Manuscript in preparation)

Fig. 3  Production of H2O2 
and ROOH as a result of solar 
irradiation on the aqueous 
solutions of fulvic acid in 
photoexperiments conducted 
using a solar simulator
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which indicates that dark production pathways of ROOH are operational in natural 
waters. (iv) The photoinduced generation of ROOH compounds is typically higher 
for low concentration of fulvic acid (FA, 1 mg L−1), and decreases with increasing 
FA concentration (3 and 5 mg L−1, Fig. 3b). This finding suggests that the for-
mation of ROOH compounds does not depend on DOM concentration which, on 
the contrary, might favor ROOH decomposition. These results indicate that ROOH 
compounds are quickly decomposed, which might be due to their inherently unsta-
ble chemical nature. ROOH compounds are sensitive to acid, alkali, redox and 
light in aqueous solution (Mostofa and Sakugawa 2009).

1.4  Steady State Concentration and Half-Life  
of H2O2 and ROOH

The concentration levels of H2O2 and ROOH are often measured in natural 
waters or in irradiated aqueous solutions, and they are often in a steady state. 
Steady-state concentrations of H2O2 and ROOH compounds in natural waters 
are mostly dependent on three major phenomena. First, enzymes (catalase, 
peroxidase and superoxide dismutase) in microbes, phytoplankton and algae 
present in natural waters are active agents for the rapid decay of peroxides 
(Mostofa 2005; Fujiwara et al. 1993; Moffett and Zafiriou 1990; Petasne and 
Zika 1997). These processes limit the occurrence of organic peroxides in natural 
waters. Second, the incident solar irradiance may be involved into the produc-
tion of peroxides in waters (Cooper and Zika 1983; Moore et al. 1993; Baxter 
and Carey 1983; Mostofa and Sakugawa 2003). Third, the organic peroxides 
may take part to the generation of free radicals (HO• or RO•) by direct pho-
tolysis or photo-Fenton reactions in natural waters (Zepp et al. 1992; Jeong and 
Yoon 2005; Southworth and Voelker 2003; Voelker et al. 1997). The free radi-
cals then cause the photodegradation of DOM (Gao and Zepp 1998; Brezonik 
and Fulkerson-Brekken 1998; Goldstone et al. 2002). A general scheme for 
the steady-state concentration of H2O2 and ROOH in aqueous media can be 
expressed as follows (Fig. 4):

DOM H2O2 + ROOH
hυ

Mn+

Decay by biological 
and any other processes 

Oxidation of transition metal ions or
other processes

HO•/RO•
hυ

DOM Degraded products

Fig. 4  A schematic diagram of steady state concentration of photoinduced generation of H2O2 
and ROOH from DOM in natural waters
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More simply, “PeroxidesSSC = produced peroxides—(decay by microbles 
and any other processes + contribution to DOM photo degradation)”, where 
SSC  = Steady-State Concentration. Therefore, enzymes might be an important fac-
tor in regulating the occurrence of H2O2 and ROOH compounds in natural waters.

The decay rates of H2O2 and ROOH, expressed as half-life times (t1/2), are 
hours to days depending on the presence of enzymes in natural waters (Harvey 
1925; Mostofa 2005; Richard et al. 2007; Cooper and Zepp 1990; Cooper and 
Lean 1992). For example, the half-life of H2O2 is gradually increased from unfil-
tered to filtered lake waters, from 4.4 h for unfiltered water to 4.7 h for 64 μm 
filtered water (zooplakton removed), 6.4 h for 12 μm filtered water (large algae 
removed), 19.1 h for 1.0 μm filtered water (small algae removed), and 58.7 h for 
0.2 μm filtered water (bacteria removed) (Cooper and Lean 1992). Similarly, the 
half-lives are approximately 3 h or less for highly biologically productive coastal 
waters or freshwaters, and hundreds of hours for oligotrophic unfiltered waters 
(Mostofa 2005; Fujiwara et al. 1993; Moore et al. 1993; Richard et al. 2007).

1.5  H2O2 Acts as a Reductant and Oxidant-REDOX

H2O2 acts as a reductant and oxidant (REDOX) in many reactions occurring in 
natural waters (Moffett and Zika 1987a; b; Moffett and Zafiriou 1990; Zepp  
et al. 1992; Jeong and Yoon 2005). When H2O2 acts as a reductant, O from H2O2 
is transformed into O2. When H2O2 acts as an oxidant, O from H2O2 is converted 
into H2O (Moffett and Zafiriou 1990). The chain reactions of H2O2 as reductant 
and oxidant are schematically depicted below (Fig. 5) (Moffett and Zafiriou 1990).

1.6  Concentration Levels of H2O2 and ROOH Compounds  
in Natural Water

The levels of H2O2 and ROOH are greatly variable for a variety of natural waters 
(Table 1) (van Baalen and Marler 1966; Sinel’nikov 1971; Sinel’nikov and 
Demina 1974; Cooper and Zika 1983; Helz and Kieber 1985; Lazrus et al. 1985; 

H2O2 HO2
•— HO2 O2

— O2 : Reductant

H2O2 → OH   +   OH— H2O      

↓
OH— H2O

Oxidant

Fig. 5  Electron transfer and proton transfer reactions in the reduction of O2 from H2O2 to H2O, 
demonstrating the intermediates involved Data source Moffett and Zafiriou (1990)
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Zika et al. 1985a, b; Moffett and Zika 1987a; Palenic and Morel 1988; Cooper 
and Lean 1989; Johnson et al. 1989; Sakugawa et al. 2000, 2006; Mostofa and 
Sakugawa 2009; Gerringa et al. 2004; Obernosterer et al. 2001; Fujiwara et al. 
1993; Moore et al. 1993; Sikorsky and Zika 1993a, b; Sarthou et al. 1997; Richard 
et al. 2007; Petasne and Zika 1997; Lobanov et al. 2008; Sakugawa et al. 1995; 
Cooper and Lean 1992; Moffett and Zika 1983; Szymczak and Waite 1991; Resing 
et al. 1993; Miller and Kester 1994; Amouroux and Donard 1995; Fujiwara et al. 
1995; Kieber and Heltz 1995; Herut et al. 1998; Cooper et al. 2000; Akane et al. 
2004, 2005; Avery et al. 2005; Croot et al. 2005; Miller et al. 2005; O’Sullivan et 
al. 2005; Olasehinde et al. 2008; Boehm et al. 2009; Clark et al. 2010a, b; Rusak 
et al. 2010). H2O2 concentrations in surface freshwater are 6–68 nM in upstream 
rivers and 9–501 nM in rivers in Japan, 1300–3200 nM in rivers and 700–1300 nM 
in reservoirs in Russia, 88–320 nM in rivers in the USA, and 10–1300 nM in 
several lakes in USA and Canada (Table 1). H2O2 concentrations in surface sea-
water are 11–440 nM in estuaries in USA and Japan, 0–496 nM in coastal Bay 
and coastal seawaters in Japan, 25–360 nM in Amazon and Orinoco River plume, 
3–1700 nM in Chesapeake Bay, 22–256 nM in Bay of Biscay (Atlantic Ocean), 
124–275 nM in Biscayne Bay and Gulf Stream, <200 nM in Port Aransas sea-
water, <150 nM in Florida west coast, 8–50 nM in Peru upwelling area (Coastal 
and offshore), 8–100 nM in the Mediterranean (Israeli coastal waters) and the 
Red Sea (Gulf of Aqaba), 20–80 nM in Baltic Sea (German Coastal waters), 
15–110 nM in Great Barrier Reef seawater (Australia), 120–280 nM in Gulf of 
Mexico, 50–420 nM in Caribbean Sea, 95–175 nM in Sargasso Sea and Western 
Mediterranean, 16–220 nM in Atlantic Ocean, and 5–25 nM in Southern Ocean in 
Antarctic regions (Table 1). H2O2 concentrations are remarkably higher in Russian 
rivers and reservoir (700–3200 nM) than in other rivers (6–501 nM) and lakes 
(10–1300 nM) in the freshwater environments. High concentrations (0–420 nM) 
are commonly observed in estuaries, bays and coastal seawaters, and an exception-
ally high concentration (1700 nM) was detected in Cheasapeake Bay. H2O2 con-
centrations are apparently lowest in the Southern Ocean, Antactic (5–25 nM). On 
the other hand, the occurrence of ROOH compounds is not often studied in natural 
waters (Table 1). ROOH concentrations are 9–73 nM in upstreams, 0–200 nM in 
rivers, 32–389 nM in coastal seawaters, and 1–6 nM in the eastern Atlantic Ocean 
(Table 1).

1.7  Production Rates and Sources of H2O2

Production rates of H2O2 are greatly variable among upstreams (245–903 nM h−1), 
groundwater (0–4800 nM h−1), rivers (390–7400 nM h−1), lakes (81–2400 nM h−1), 
coastal waters (4536–35640 nM h−1), and seawaters (0–161 nM h−1) (Table 2) 
(Mostofa and Sakugawa 2009; Obernosterer et al. 2001; Scully et al. 1996; Richard 
et al. 2007; Miller and Kester 1994; Cooper et al. 1988; Moffett and Zafiriou 1993; 
Yocis et al. 2000; Clark et al. 2009; Mostofa KMG and Sakugawa  H, unpublished; 
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Vermilyea et al. 2010).Variations in production rates of H2O2 are likely to be caused 
by the amount and the molecular nature of DOM (Table 2). This fact can be easily 
understood from a significant difference in the production rates of H2O2 estimated 
in the presence of various standard organic substances (Table 2). The major source 
of H2O2 in river water is fulvic acid, which contributed 23–61 % in upstream riv-
ers, 28–63 % in polluted Kurose waters, and 67–70 % in clean Ohta river waters 
(Mostofa and Sakugawa 2009). Tryptophan-like substances are a minor source of 
H2O2 (~1 %) in all river waters. The contribution of the fluorescent whitening agents 
(DAS  + DSBP) to H2O2 production was minor (2 %), although they were dominant 
FDOM components in the downstream waters of the Kurose river. The 4-biphenyl 
carboxaldehyde (4BCA), one photoproduct of DSBP, showed that the percent con-
tribution to total H2O2 production was 2.0–5.0 % in the downstream waters of the 
Kurose river (Mostofa and Sakugawa 2009). Unknown sources of H2O2 (other than 
fulvic acid-like and tryptophan-like substances or FWAs) accounted for 34–68 % of 
H2O2 in the upstream waters of the Kurose, 35–67 % in the upstream areas of the 
Ohta, 14–15 % in the downstream sites of the Ohta, and 51–70 % in the downstream 
sites of the Kurose (Mostofa and Sakugawa 2009). The unknown sources of H2O2 
may be other fluorescent and non-fluorescent substances (Kramer et al. 1996), which 
can originate from forest ecosystems in the upstream regions of a river and from vari-
ous anthropogenic sources affecting the downstream regions. The production rate 
of H2O2 for Suwannee River Fulvic Acid (SRFA) is relatively low (344 nM h−1) 
compared to DSBP (1073 nM h−1), tryptophan (648 nM h−1), and Suwannee River 
Humic Acid, SRHA, (644 nM h−1, Table 2). However, fulvic acids may be impor-
tant H2O2 sources due to their significant occurrence (30–80 % of total DOM) in the 
aquatic environments (Mostofa et al. 2009; Malcolm 1985; Peuravuori and Pihlaja 
1999).

1.8  Diurnal Cycle or Diel Variation of H2O2  
and its Controlling Factors in Natural Waters

A diurnal cycle is a regular and ubiquitous phenomenon of H2O2 production 
and decay. H2O2 concentration in natural waters gradually increases as incident 
solar radiation increases during the period from dawn to noon. The solar radia-
tion reaches a peak at noon time and then the concentration gradually decreases 
with the decrease of sunlight intensity (Fig. 6). The amplitude of the H2O2 
diurnal cycle (highest concentration at noon time minus concentration during 
the period before sunrise) was 35 nM in upstream and 65 nM in Kurose River 
(Fig. 6) (Mostofa and Sakugawa 2009), 790 nM in Jacks Lake (Cooper and 
Lean 1989), 36 nM (February), 173 nM (August), 183 nM (September), and 
56 nM (November) in Patuxent Estuary (Kieber and Heltz 1995), 187 nM in 
Seto Inland Sea (Sakugawa et al. 1995), 305 nM in Hiroshima Bay (Akane et 
al. 2004), 120 nM in Taira Bay and 80 nM in Sesoko Island Bay (Arakaki et al. 
2005), 70 nM in Mediterranean (Israeli) coastal waters, 92 nM in Red Sea in Gulf 
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of Aqaba (Herut et al. 1998), 32 nM in Lagrangian-Atlantic Ocean, 20 nM in 
Underway-Atlantic Ocean (Yuan and Shiller 2001), 59 nM in Bermuda, Atlantic 
Time Series Station (Avery et al. 2005), 491 in a shallow freshwater stream 
(Richard et al. 2007), and 365 nM in marine bathing waters at Huntington State 
Beach (Clark et al. 2010).

The magnitude of the diurnal cycle of H2O2 production shows seasonal and 
spatial variations in natural waters, depending on several factors. First, the solar 
intensity varies greatly among tropical, sub-tropical, Arctic and Antarctic regions. 
The diurnal cycle of H2O2 is in fact the best paradigm for the dependence of its 
production on solar intensity. Second, the contents and nature of DOM compo-
nents are widely different for a variety of waters and cause correspondingly 
variable production rates of H2O2. For example, H2O2 concentration is almost 
doubled in waters having high DOC concentration (326–384 μM C) than in 
waters with low DOC (118–239 μM C), even in the presence of similar solar irra-
diance (Mostofa and Sakugawa 2009). A third factor is the presence of catalase 
and peroxidase enzymes associated with microbes or algae. Biological processes 
are widely variable for a variety of natural waters and can control the steady-
state concentration by rapidly decomposing H2O2 (Fujiwara et al. 1993; Petasne 
and Zika 1987; Moffett and Zafiriou 1990; Mostofa (Manuscript in preparation). 
Fourth, iron (Fe) can reduce the steady-state H2O2 concentration by producing 
HO• through the photo-Fenton or other photoinduced reactions in natural waters 
(Moffett and Zafiriou 1990; Zepp et al. 1992; Southworth and Voelker 2003).
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2  Fluorometric Method for Determining H2O2 and ROOH 
in Natural Waters

Theory: The fluorometric method described here has been developed by 
Fujiwara et al. (1993) and Sakugawa et al. (2000) by implementation of ear-
lier methods (Lazrus et al. 1986; Guilbault et al. 1968; Miller and Kester 
1988). The compounds H′OOH (where H′ = H or CH3–, –OCH3, etc.) react 
with p-hydroxyphenyl acetic acid in the presence of peroxidase, to produce the 
6,6′-dihydroxy-3,3′-biphenyldiacetic acid (POPHA dimer: Eq. 2.1). The latter is 
detected using a fluorometer at excitation/emission = 320/400 nm.

A sodium hydroxide solution is used to increase the pH to approximately 12, 
which largely enhances the fluorescence intensity of the POPHA dimer. In this way 
it is possible to detect few nano molar (nM) levels of H2O2 in natural waters. To 
make the analytical blanks and to distinguish H2O2 from ROOH, one should add 
catalase to the samples, which causes the rapid decomposition of H2O2 (Eq. 2.2).

2.1  Chemicals Preparation 

Note: ultrapure water should be used throughout. It should be kept in the dark for 
3 days before use to allow for the decomposition to undetectable levels of H2O2 
and ROOH, which could possibly be present.

Preparation of p-hydroxyphenyl acetic acid solution:

(i) Take potassium hydrogen phthalate (71.48 g) in approximately 650 mL water 
in a 1-L beaker, and dissolve it at approximately 40 °C under gentle stirring.

(ii) Dissolve 12 g NaOH in approximately 50 mL water in a 100 mL beaker.
(iii) The pH of the solution (i) is adjusted to 5.5 upon addition of solution  

(ii) under constant stirring.
(iv)  Add 18.62 g of di-sodium dihydrogen ethylenediamine tetraacetate dehydrate 

(EDTA) to the solution (iii) under constant stirring. The EDTA is added to 
eliminate the effect of metal ions, particularly Fe2+, and to prevent the for-
mation of a Mg(OH)2 precipitate after addition of NaOH to seawater samples 
(Fujiwara et al. 1993). It can be noted that without EDTA, 1 mg/mL Fe2+ can 
reduce the signal intensity by 80 % (Fujiwara et al. 1993).

(v) Add 0.304 g of p-hydroxyphenyl acetic acid to the solution (iv) under con-
stant stirring, then adjust the total solution to 1-L in a volumetric flask.

(2.1)H2O2

CH2COOH

OH

CH2COOH CH2COOH

OH OH

+
peroxidase

2

(2.2)2H2O2
catalase
−→ 2H2O + O2



168 K. M. G. Mostofa et al.

Preparation of the catalase solution: For 50,000 units of catalase solution, 
add 5 mg of catalase to 2 mL water in a 10 mL glass bottle, then mix up by shak-
ing gently. This solution can be used for one week by keeping it in a refrigerator. 
For 500 units of catalase solution, add 100 μL of 50,000 units catalase solution to 
10 mL water. Such a solution must be freshly prepared each time.

Preparation of peroxidase solution: Add 0.022 mg of peroxidase to 5 mL 
water in a 10 mL glass bottle, then mix up by shaking gently. This solution can be 
used for two weeks by keeping it in a refrigerator. Add 250 μL of the peroxidase 
solution to approximately 100 mL of p-hydroxyphenyl acetic acid solution.

NaOH solution: Prepare a fresh 0.6 M NaOH solution.
Preparation of standard H2O2 solution: Original H2O2 (30 %; KANTO 

Chemical Co., Japan) was considered as 10 M, then 1 mL of that H2O2 solution 
was used to prepare 100 mM H2O2. The 100 mM H2O2 solution was then diluted 
to concentrations of 0, 100, 200, 300, 500, and 1000 nM, as standards for H2O2 
determination.

Preparation of standard ROOH solution: Original peracetic acid (9 % in 
diluted acetic acid; KANTO Chemical Co., Japan) was considered as 1 M, then 
10 mL of that peracetic acid solution was used to prepare 100 mM ROOH. The 
100 mM solution was then diluted to concentrations of 0, 100, 200, 300, 500, and 
1000 nM as standards for ROOH determination.

2.2  Analytical Procedure

A flow injection apparatus should be used, of which a scheme is provided in Fig. 6 
(Sakugawa et al. 2000; Fujiwara et al. 1993). The instrument shown consists of 
an auto sampler (TOSOH, model AS8020), fluorescence detector (Shimadzu: 
RF-10AXL), plunger pump (Sanuki Ind. Co., model 4P2U-4016), and recorder 
(Shimadzu: C-R5A Chromatopac) (Fig. 7) (Fujiwara et al. 1993).

0.6 M NaOH

Carrier MQ 
water

Pump (ml/min) Sample (100 µl)

Auto-sampler

Fluorescence detector 
(Ex/Em=320/400 nm)

Triple connector 

Waste

0.12

0.50

Recorder: Chromatopac

Results output

Fig. 7  Modified flow diagram for measuring H2O2 and ROOH concentrations in natural waters. 
Data source Fujiwara et al. (1993)
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The flow lines were made of Teflon tubing (i.d. = 0.5 mm). After filling up with 
carrier ultrapure water and 0.6 M NaOH solution, all flow lines should be freed 
from air bubbles before starting. The fluorescence detector should be set at Ex/
Em = 320/400 nm, and the zero level of fluorescence recorded. After completion 
of the baseline one should set again the fluorescence level to zero, then the analysis 
can be started. After completion of the measurements, before turning off the plunger 
pump, one should wash the flow lines. In particular, the NaOH line should be 
flushed with water and the outgoing flow should be checked for pH until neutrality.

In sample preparation, 1 mL sample in a Teflon or glass container is first 
treated with catalase (20 μL, 500 units mL−1) in order to decompose all the H2O2 
present (Eq. 2.2), shaking well for a few seconds and keeping still for six min-
utes. This solution can be used as a blank. Moreover, 1 mL of the same sample 
where catalase is replaced with 20 μL of ultrapure water is used to obtain the sig-
nal from H2O2. Fluorescence can be induced upon addition (300 μL) of peroxi-
dase mixed with p-hydroxyphenylacetic acid. The difference in the fluorescence 
values (Ex/Em = 320/400 nm) between samples treated with catalase and those 
without the enzyme will provide the estimate of H2O2 concentration. Calibration 
can be carried out by use of the external standards already described (Fig. 8a). 
A typical example of calibration curves for standard H2O2 and peracetic acid 

Fig. 8  A typical example of 
calibration curve for aqueous 
solutions of standards 
H2O2 (a) and peracetic acid 
(CH3OOOH) (b) measured 
using this fluorometric 
method
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(CH3OOOH) is reported in earlier studies (Fig. 8). For ROOH measurement, 
50,000 units mL−1 catalase solution was used to decompose nearly all of the 
ROOH in the samples during the same six minute reaction. In this way it is possi-
ble to provide only the signal of the background DOM or water fluorescence. The 
 fluorescence-developing reagent is peroxidase mixed with p-hydroxyphenylacetic 
acid also in this case. The difference between the fluorescence measurements 
using 500 and 50,000 units mL−1 of catalase (decomposition of H2O2 alone and 
of H2O2 and ROOH, respectively) provides an estimate of the ROOH concentra-
tions in the samples. Also in this case it is possible to use the external standards 
for calibration (Fig. 8b).

The production of H2O2 and ROOH in water samples is normalized as a function 
of natural sunlight using the following (Eq. 2.3) (Mostofa and Sakugawa 2009):

where r(H2 O2,I s) is the rate of H2O2 production, corrected for the intensity of nat-
ural sunlight (at noon under clear-sky conditions, on 6 July 2004 at Hiroshima 
University Campus), in natural water samples and standard DOM materials,  
D(2-NB,Is) and D(2-NB,Ixe) are the degradation rates of 2-NB (2-nitro-benzalde-
hyde) estimated using the intensity of natural sunlight and the adopted irradiation 
device, respectively, and r(H2 O2,I xe) is the observed H2O2 production rate under the 
adopted irradiation device.

The production rate of H2O2 in irradiated water samples can be determined 
from the net production of H2O2 (final concentration minus initial concentration) 
measured for the initial 60 min of the irradiation period. The rate of H2O2 gen-
eration is then normalised to sunlight intensity with (Eq. 2.3). The normalised 
rate of H2O2 production of a specific fluorescent DOM component (identified by 
parallel factor modeling on DOM) is estimated on the basis of its fluorescence 
intensity observed in waters and can be determined using (Eq. 2.4) (Mostofa and 
Sakugawa 2009):

where rFi (DOM) is the normalised production rate of H2O2 of an identified fluo-
rescent DOM component in natural waters, FIFi(DOM) is the fluorescence intensity 
of the identified fluorescent DOM component in natural waters, FIRS is the fluo-
rescence intensity of the relevant standard substance in the aqueous solution, and 
rRS is the normalised production rate of H2O2 of the relevant standard substance 
in solution. Finally, percentages of each identified DOM component contribut-
ing to the rate of production of H2O2 are calculated using the following (Eq. 2.5) 
(Mostofa and Sakugawa 2009):

(2.3)r(H2 O2,I s) =
D(2−N B,I s) × r(H2 O2,I xe)

D(2−N B,I xe)

(2.4)rFi(DO M) =
F IFi(DO M) × rRS

F IRS

(2.5)Fi(DO M) =
rFi(DO M) × 100

rnet (DO M)
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where Fi(DOM) is the contribution percentage to the normalised net H2O2 
 production rate in the water (%) by each identified fluorescent DOM compo-
nent, rFi(DOM) is the normalised H2O2 production rate generated by each identi-
fied DOM component, and rnet(DOM) is the whole, normalised net H2O2 production 
rate in the water samples. The percent contributions of unknown sources of H2O2 
in the water samples are estimated using a simple formula: Funknown = 100—
(FFA + FTRYP + FOTHERS). In the formula, the sum of the normalized H2O2 pro-
duction rate of FA-like substances (FFA), tryptophan-like substances (FTRYP), and 
other organic substances if any (FOTHERS) is subtracted from the normalised, net 
H2O2 production rate that is assumed as 100 %.

2.3  Advanced Analytical Method for H2O2 Determination  
in Natural Waters

Theory: This method is based on the Fenton reaction, where H2O2 reacts with 
Fe2+ in acidic solution to yield HO•. The latter is scavenged by an aromatic com-
pound (e.g. benzene) to produce the respective phenolic compound (e.g. phenol) 
according to the following reactions (Eqs. 2.6, 2.7) (Olasehinde et al. 2008; Lee  
et al. 1994; Liu et al. 2003):

where the rate constant of the first reaction (Eq. 2.6) is k = 63 at pH 3, 1.2 × 102 
at pH 4 and 5.7 × 102 M−1 s−1 at pH 5, respectively (Kwan and Voelker 2002). 
Phenol produced by the second reaction (Eq. 2.7) is determined by high perfor-
mance liquid chromatography (HPLC) with fluorescence detector (Olasehinde et 
al. 2008). The amount of phenol produced is directly proportional to the H2O2 
concentration present in the sample solution.

Based on this theoretical framework, Olasehinde and his co-workers 
(Olasehinde et al. 2008) developed a new method for the measurement of H2O2 in 
the aqueous solution, which is highly sensitive and simpler than any other enzy-
matic process applied earlier to natural waters. The chemicals preparation, ana-
lytical procedure and HPLC instrumentation for this method are depicted below 
(Olasehinde et al. 2008):

Chemicals preparation
Benzene stock solution: 2 × 10−2 M benzene solution is prepared by adding 

88.8 μL of 99.7 % benzene in 50 mL of ultrapure water.
Fe2+ solution: A 0.1 M Fe2+ solution is prepared by dissolving 1.39 g ferrous 

sulphate pentahydrate into 50 mL of 0.07 M H2SO4 solution.
H2SO4 solution: A 3.0 M sulphuric acid stock solution is prepared by diluting 

16.3 mL of 98 % H2SO4 to 100 mL with ultrapure water.

(2.6)H2O2 + Fe2+
→ Fe3+

+ HO•
+ OH−

(2.7)HO•
+ C6H6 → C6H5OH
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H2O2 standard solution: A 1 × 10−2 M H2O2 standard stock solution is 
prepared by diluting 1.0 mL of 30 % H2O2 to 100 mL with ultrapure water. The 
concentration of H2O2 is determined based on the molar extinction coefficient at 
240 nm (ε = 38.1 L mol−1 cm−1) (Miller and Kester 1988).

HPLC system: An HPLC-fluorescence system is adopted. The separa-
tion is carried out on a RP-C18 column with acetonitrile–water mixture as elu-
ent. Tentative elution conditions are (CH3CN/H2O 40/60 v/v) at a flow rate of 
1 mL min−1 (note: optimal conditions may vary depending on the actual system 
adopted). For the detection of phenol, the fluorescence detector is operated at 270 
and 298 nm for excitation and emission, respectively.

Analytical procedure: 3.0 mL of water sample (natural water or standard 
H2O2) is first treated with 200 μL of 2 × 10−2 M benzene in a 5 mL amber vial 
and then mixed by gently shaking. It is then added 50 μL of 0.1 M Fe2+ in 0.07 M 
H2SO4 solution, waiting 5 min at room temperature for completion of the Fenton 
reaction. The final pH of the solution should be adjusted to ca. 4 with addition of 
sulphuric acid solution. It can be noted that the rate constant of the Fenton reac-
tion is much higher at pH 4 to 5 than at pH 3, thus the reaction can be conducted 
in these pH ranges. An aliquot of the solution (e.g. 150 μL) is then injected into 
the HPLC system for analysis. Phenol and benzene are separated by reverse-phase 
chromatography. The standard phenol and H2O2 concentrations might be 0, 100, 
200, 300, 500 and 1000 nM, and can be prepared freshly by diluting their stock 
solutions. The H2O2 concentration is determined by calibration of the peak areas 
of phenol produced in each standard solution against the H2O2 concentration of 
the sample. It can be noted that the addition of 10 μM NO2

− to the water samples 
shows no significant interference on the fluorescence intensity of phenol. In con-
trast, addition of 50 μM NO2

− to the samples decreases the fluorescence intensity 
signal of phenol by almost 40 %.

3  Mechanism of Production of H2O2 and ROOH  
in Natural Waters

3.1  Photoinduced Formation of H2O2 and ROOH

H2O2 and ROOH are photolytically produced by several pathways in the aquatic 
environments. First, H2O2 and ROOH are photogenerated by chromophoric or flu-
orescent dissolved organic matter (CDOM or FDOM) in aqueous media (Cooper 
and Zika 1983; Mostofa and Sakugawa 2009; Moore et al. 1993; Richard et al. 
2007; Baxter and Carey 1983; Clark et al. 2009; Cooper et al. 1989a, b; Dalrymple 
et al. 2010). A second pathway is linked with the redox cycling of transition metal 
ions in aqueous media (Moffett and Zika 1983; Moffett and Zika 1987a, b). An 
additional process is the intracellular H2O2 formation in chloropigments in aquatic 
organisms (Lobanov et al. 2008; Hong et al. 1987; Bazanov et al. 1999). Finally, 
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various chemical reactions cause the production of H2O2 and ROOH in the gase-
ous and aqueous phases in the atmosphere.

In the gas phase, H2O2 and ROOH compounds are formed through several 
chain reactions (Eqs. 3.1–3.5) as a combined effect of solar radiation on organic 
substances, nitrogen oxides (NOx), and oxygen (O2) (Sakugawa et al. 1990, 1993; 
Zuo and Hoigné 1992, 1993). The relevant processes are shown below:

In atmospheric waters the formation and decomposition of H2O2 is mechanis-
tically different compared to the gas-phase reactions (Eqs. 3.6–3.9). A general 
scheme can be expressed as follows below (Sakugawa et al. 1990):

H2O2 is also formed by photodecomposition of Fe(III) complexes with oxalic, 
glyoxalic and pyruvic acids, under the typical acidic conditions that can be found in 
atmospheric waters (Zuo and Hoigné 1992, 1993; Faust et al. 1993. A general mech-
anism for the formation of H2O2 via this route is reported below (Eqs. 3.10–3.12) 
(Sakugawa et al. 1990; Kim et al. 2003):

In (Eqs. 3.10, 3.11), Fe(III)-L is a complex of Fe(III) with an organic ligand, 
hυ is the energy of a photon, and L• is the organic radical of L. Superoxide ion 
(O2

•−) is a major intermediate in many O2-mediated oxidations, such as the well-
known Haber–Weiss mechanism of iron oxidation (Haber and Weiss 1934).

In natural waters, the main sources of H2O2 are fulvic acid (FA), humic acid, 
tryptophan amino acid, fluorescent whitening agents (DSBP and DAS1) and their 
photoproducts, as well as various unknown organic substances belonging to DOM 
(Mostofa and Sakugawa 2009). There is evidence that H2O2 may be a photoprod-
uct of reaction chains involving dissolved organic matter (DOM) components in 

(3.1)RCHO + hν
O2
→ 2RO• + CO (R = H, methyl, alkyl, etc)

(3.2)NO3
−

+ HCHO → HNO3 + HO2
•
+ CO

(3.3)HO2
•
+ RO2

•
→ H2O2 + O2

(3.4)HO2
•
+ HO2

•
→ H2O2 + O2

(3.5)HO2
•
+ RO2

•
→ ROOH + O2

(3.6)HO2
•(aq) + O2

H2O
−→H2O2(aq) + O2 + OH−

(3.7)HSO3
−

+ H2O2(aq) + H+
→ SO4

2−
+ 2H+

+ H2O

(3.8)H2O2(aq) + HO•(aq) → H2O + HO2
•(aq)

(3.9)H2O2(aq) + hν → 2HO•(aq)

(3.10)Fe(III)-L + hν → Fe(II) + L•

(3.11)L•
+ O2 → O2

•−
+ oxidized L

(3.12)O2
•−

+ 2H+
→ H2O2 + O2
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the presence of dissolved oxygen under natural sunlight (Eqs. 3.13–3.18) (Mostofa 
and Sakugawa 2009; Moore et al. 1993; Richard et al. 2007; O’Sullivan et al. 
2005; Cooper et al. 1988; Clark et al. 2009; Fischer et al. 1985; Fischer et al. 
1987; Power et al. 1987; Cabelli 1997). In these chain reactions, the functional 
groups of DOM absorb photons and are promoted to the singlet excited states 
(1DOM*). The latter can undergo intersystem crossing (ISC) and be converted into 
the triplet states (3DOM*) (Eq. 3.13). The reaction of oxygen with photo-excited 
DOM might generate the superoxide radical anion (O2

•−) (Eq. 3.14) in equilib-
rium with its conjugate acid perhydroxyl radical (HO2

•) (Eq. 3.15). Both O2
•− 

and HO2
• disproportionate to form H2O2 (Eqs. 3.17 and 3.18, respectively). The 

scheme of the reaction chain is reported below:

The reaction of HO2
• with O2

•− (Eq. 3.28) is faster than that of HO2
• with 

HO2
• (Eq. 3.17), and the termination reaction of two O2

•− radicals is too slow to 
be significant (Clark et al. 2009). The acidic constant of HO2

• (pKa = 4.8) sup-
ports the generation of the perhydroxyl radical (HO2

•) in coastal waters (Clark et 
al. 2009; Cabelli 1997). Therefore, the steady-state concentrations of O2

•− and 
H2O2 (Eq. 3.18) are the result of the photoinduced activity of DOM components 
in sunlit surface freshwater and oceanic environments, as well as in other aque-
ous media (Inoue et al. 1982; Cooper et al. 1994; Millington and Maurdev 2004). 
DOM•+ is susceptible to further photoinduced degradation by photoinduced gen-
eration of hydroxyl radical, and the relevant pathways are depicted in the DOM 
degradation chapter (see chapter “Photoinduced and Microbial Degradation of 
Dissolved Organic Matter in Natural Waters”). It can be noted that the excitation 
of DOM would involve its functional groups (chromophores or fluorophores) that 
are the easiest to be excited. Therefore, the reactivity of DOM toward H2O2 pro-
duction will often resemble that of simple photoactive organic molecules. Recent 
evidence highlights that DOM can form complexes with trace elements by a strong 
π– electron bonding system (Mostofa et al. 2009a, b). The metal-DOM complexes 
are susceptible to undergoing rapid photoinduced excitation that would finally 
result into the production of H2O2.

In studies mimicking the process of intracellular H2O2 formation, it has been 
found that the synthetic analogues of chlorophyll, metal complexes of porphy-
rins and phthalocyanines, act as photoactive species that produce H2O2 under 
irradiation in aqueous solutions saturated with dioxygen (Lobanov et al. 2008; 

(3.13)DOM + hν →
1DOM∗ ISC

→ 3DOM∗

(3.14)3DOM∗
+ O2 → DOM•

+ O2
•−

(3.15)O2
•−

+ H+
→ HO2

• pKa = 4. 8

(3.16)2O2
•−

→ O2
2−

+ O2 pKa =< 0. 35 M−1 s−1

(3.17)HO2
•
+ HO2

•
→ H2O2 + O2 k = 8. 6 × 105 M−1 s−1

(3.18)HO2
•
+ O2

•−
+ H2O → H2O2 + O2 + OH− k = 1. 0 × 108 M−1 s−1

http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_4
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Hong et al. 1987; Bazanov et al. 1999). The highest photoinduced activity has 
been reported for porphyrin and phthalocyanine complexes with metals such as 
Mg, Zn, Al, and Cd (Komissarov 2003; Vedeneeva et al. 2005), which can typi-
cally produce long-lived triplet excited states (lifetimes up to 1 ms) with a high 
quantum yield (60–90 %) (Parmon 1985). Photosynthetically produced organic 
matter (e.g. algae) can enhance the production of H2O2 by natural sunlight in 
aquatic ecosystems (Zepp et al. 1987). It can be hypothesized that the photoin-
duced and microbial assimilation of algae produce autochthonous fulvic acid 
and other DOM components (Mostofa et al. 2009b; Fu et al. 2010; Mostofa et 
al. (Manuscript In preparation), which may induce H2O2 photoproduction by the 
pathways already described for DOM.

In natural waters, ROOH compounds are formed upon photodegradation of 
DOM (including both CDOM and FDOM) via pathways that also induce the pro-
duction of H2O2 (Mostofa and Sakugawa 2009; Sakugawa et al. 1990; Faust and 
Hoigne 1987; Perkowski et al. 2006). A generalized chain-reaction scheme for 
the formation of ROOH from DOM in natural waters can be depicted as follows 
(Eqs. 3.19–3.24):

First, the photodecomposition of H2O2 generates the hydroxyl radical, HO• 
(Eq. 3.19), which subsequently oxidizes DOM or DOM•+ (the latter is formed by 
3DOM* and O2, see Eq. 3.20) to form the organic radical R• (Eq. 3.20) (Mostofa 
and Sakugawa 2009). Afterwards, R• reacts with O2 to form the organo peroxide 
radical RO2

• (Eq. 3.21). The reduction of RO2
•, e.g. by O2

•−, can form ROOH in 
natural waters (Eq. 3.22) whereas O2

•− is formed using (Eq. 3.14). Organic radi-
cals (R• and RO2

•) can rapidly associate with one another (Eq. 3.23), and organo 
peroxide radicals can combine (Eq. 3.24) to terminate the chain reactions. The ter-
mination reactions (Eqs. 3.23, 3.24) are competitive with (3.21, 3.22), which leads 
to complicated reaction kinetics (Perkowski et al. 2006).

Oxidation–reduction of transition metal ions is an important pathway for the for-
mation of organic peroxides in natural waters. A general mechanistic scheme for these 
oxidation–reduction chain reactions (Eqs. 3.25–3.27) can be expressed as follows:

First, oxidation of the metal ions (Mn+) forms the superoxide radical anion 
(O2

•−) (Eq. 3.25). O2
•− then combines with H+ or with an alkyl ion (R+=H+, 

positively charged alkyl group, etc.) to form an hydro-peroxide or organo-peroxide 
radical (RO2

•, R = H or alkyl group, Eq. 3.26). RO2
• can then associate with H+ 

or a metal ion (M(n+1)+), to form ROOH (where R = H or an alkyl group) and a 

(3.19)H2O2 + hν → 2HO•

(3.20)DOM•+
+ HO•

→ R•
+ H•

(3.21)R•
+ O2 → RO2

•

(3.22)RO2
•
+ O2

•−
+ H+

→ ROOH + O2

(3.23)RO2
•
+ R•

→ ROOR

(3.24)RO2
•
+ RO2

•
→ ROOR + O2
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further oxidized M(n+2)+ ion (Eq. 3.27). Therefore, formation of O2
•− is an impor-

tant step in the generation of organic peroxides in natural waters.

3.2  Microbial Formation of H2O2 and ROOH

H2O2 and ROOH compounds are typically produced under dark incubation by microbial 
activity in natural waters (Fig. 2) (Palenic and Morel 1988; Moffett and Zafiriou 1990; 
Vermilyea et al. 2010a, b). They are susceptible to be formed by several biological pro-
cesses. Biota is thought to be the main source of dark H2O2 and ROOH production in 
natural waters (Fig. 2b) (Paradies et al. 2000; Forman and Boveris 1982). For instance, 
dark production of H2O2 in seawater is particle-dependent and the production rates are in 
the range of 0.8–2.4 nM h−1 (Moffett and Zafiriou 1990). Recent studies demonstrate the 
high dark production rate (29–122 nM h−1) of H2O2 in several lake waters (Vermilyea 
et al. 2010). Moreover, H2O2 and ROOH may be formed extracellularly by marine phy-
toplankton or cyanobacteria (Palenic and Morel 1988; Zepp et al. 1986). Extracellular 
H2O2 can be produced under dark conditions by enzymatic reduction of oxygen at the 
cell surface (Palenic et al. 1987) and upon oxygen reduction by other electron trans-
port chains. The latter include the mitochondrial reduction of oxygen followed by H2O2 
diffusion out of the cell (Forman and Boveris 1982; Frimer et al. 1983). Also the auto- 
oxidation of organic material may produce H2O2 and ROOH in the aquatic environment 
(Stevens et al. 1973). In seawater, H2O2 may be produced by particle-dependent and 
light-independent microbial processes (Moffett and Zafiriou 1990). For example, a net 
H2O2 production (dark production minus dark consumption) of 1–3 nM h−1 has been 
observed at 40–60 m in an in situ experiment conducted in the Sargasso Sea (Palenic 
and Morel 1988). Finally, ROOH compounds are produced in bulk natural-water DOM 
by light-independent microbial processes (Fig. 2) (Sakugawa et al. 2000). For example, 
net ROOH production has been observed in both filtered and unfiltered river waters (2b), 
while H2O2 is merely produced in filtered river waters (Fig. 2a). ROOH compounds are 
typically more concentrated in deep seawaters than in surface waters (Sakugawa et al. 
2000).

4  Factors Controlling the Production and Decay of H2O2 
and ROOH in Natural Waters

Concentration levels of H2O2 and ROOH as well as production rates of H2O2 dif-
fer in a variety of natural waters (Table 1). The magnitude of the H2O2 production 
decreases from coastal waters to open oceans (Zika et al. 1985a, b; Fujiwara et al. 

(3.25)Mn+
+ O2 → M(n + 1)

+ O2
•−(M = Fe2+, Cu+, etc)

(3.26)O2
•−

+ R+
→ RO2

• (R = H+/CH+

3 , etc)

(3.27)RO2
•
+ M(n+1)+

+ H+
→ ROOH + M(n+2)+ (R = H+/CH+

3 )
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1993). The influence of riverine fluxes having high DOM plays an important role 
in the production of H2O2 in coastal seawaters. The lowest H2O2 concentration 
was seasonally detected in southern oceans (5–25 nM), which was 10 to 20 times 
lower compared to other oceanic environments (Table 1). The major factors behind 
the low H2O2 concentration in the southern ocean are thought to be: (i) Low inci-
dent solar intensity and penetration efficiency in the surface water layer (Zika et 
al. 1985), solar irradiance being a major factor for the photoinduced formation of 
H2O2 in natural waters. (ii) Water temperature that is normally below <5 °C in the 
southern ocean. (iii) Vertical mixing (Johnson et al. 1989). (iv) DOC concentration 
(Zika et al. 1985a, b). (v) Distinct latitude or solar zenith angle, considering that 
H2O2 photoproduction decreases with increasing apparent-noon solar zenith angle 
(Sikorsky and Zika 1993a, b).

Therefore, the production and decay of H2O2 and ROOH and their lifetimes 
in the aquatic environment (Table 1) generally depend upon a complex set of fac-
tors, which can be distinguished as: (1) Effects and variation of solar radiation;  
(2) Contents and molecular nature of DOM; (3) Presence of phytoplankton, algae 
and microbes; (4) Photodegradation; (5) Photosynthesis; (6) Photolytic and chemi-
cal processes; (7) Physical processes; and (8) Precipitation (e.g. rain).

4.1  Effects and Variation of Solar Radiation

Solar radiation is one of the key factors in the generation of H2O2 and ROOH in 
natural waters (Mostofa and Sakugawa 2009; Obernosterer et al. 2001; Richard 
et al. 2007; Rusak et al. 2010; Holm-Hansen et al. 1993). The diurnal cycle of 
H2O2, where an increase of solar radiation intensity increases the production of 
H2O2 and vice versa, is a typical example of the strong dependence between solar 
intensity and H2O2 generation (Fig. 6). It has been estimated that the production of 
H2O2 and ROOH is usually higher by several times in the summer season than in 
the winter one. Production of H2O2 is higher in summer by 55–79 % in upstream 
waters, 162–364 % in polluted waters, and 137–146 % in clean river waters. In 
the case of ROOH the summer production is higher by 116–240 %, 521–1322 %, 
and 244–550 %, respectively, compared to the winter one. Such effects are mostly 
considered to be the effect of variation in solar intensity, which is much higher in 
the summer season (by 84 %, 32 %, and 216 %, respectively) compared to win-
ter during a sampling day (Fig. 9) (Mostofa and Sakugawa 2009). Therefore, an 
increase in solar intensity would enhance the production of H2O2 in aqueous solu-
tion (Mostofa and Sakugawa 2009).

The solar intensity is highly variable in different regions. In the subtropical 
zone, ultraviolet (UV) B radiation (280–320 nm) is stable, but it is much higher 
(≈ten fold) than that in the Antarctica (Holm-Hansen et al. 1993). Depletion of the 
stratospheric ozone layer increases the ground-level UV B radiation in the polar 
regions (Crutzen 1992) as well as at temperate latitudes (Stolarski et al. 1992). 
H2O2 formation is largely dependent on the radiation wavelengths (Obernosterer 
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et al. 2001; Richard et al. 2007), and the contribution of UV-B, UV-A and pho-
tosynthetically active radiation (PAR) is 40, 33 and 27 %, respectively (Richard 
et al. 2007). Production of H2O2 at vertical depths depends on the penetration 
of solar radiation, and decreases with an increase in depth of lakes or oceans 
(Obernosterer et al. 2001). A model study on a freshwater stream shows that the 
H2O2 concentrations over time significantly depend on photoinduced production 
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rates from ultraviolet-B (UVB), UVA and photosynthetically active radiation 
(PAR), and loss rates from temperature-dependent and temperature-independent 
processes (Rusak et al. 2010). The retrieved model terms confirm that H2O2 is pro-
duced by both UVB and UVA radiation. These results demonstrate that changes 
in solar radiation reaching the study site are closely correlated with the observed 
seasonal pattern in H2O2 concentrations in the water (Rusak et al. 2010).

4.2  Production and Decay Affected by Contents  
and Molecular Nature of DOM

The production and decay of H2O2 and ROOH in natural waters are signifi-
cantly affected by the total contents and molecular nature of DOM (Mostofa and 
Sakugawa 2009; Scully et al. 1995). An increase in standard Suwannee River 
Fulvic Acid (SRFA) contents in aqueous solution increases the photoinduced pro-
duction of H2O2, but the production of ROOH decreases with an increase in SRFA 
concentration. It is suggested that the photoinduced generation of H2O2 depends 
on the total contents of DOM components in natural waters. It is demonstrated that 
the production rates of H2O2 are greatly different for a variety of waters, and the 
production rates for various standard organic substances are also widely variable 
(Table 2). The photoinduced generation of H2O2 by natural waters and standard 
organic substances is generally much higher at short irradiation times (60 min), 
after which it often decreases. Such an effect has been observed in upstream 
waters as well as in aqueous solutions of Suwannee River Fulvic Acid (SRFA), 
Suwannee River Humic Acid (SRHA), tryptophan, DSBP and DAS1, during photo 
experiments carried out with a solar simulator (Fig. 1a, b) (Mostofa and Sakugawa 
2009). The production of H2O2 and its disappearance for prolonged irradiation 
times has suggested two important phenomena. Firstly, H2O2 is initially generated 
as a consequence of the excitation of highly efficient functional groups of organic 
substances. These groups are effectively excited and transformed by solar radia-
tion, after which the effectiveness of the functional groups to yield H2O2 gradually 
decreases. This effect, combined with consumption processes, causes a decrease of 
H2O2 concentration at the end of the long-term irradiation period. Secondly, H2O2 
produced upon irradiation is photolytically converted to HO•, which can degrade 
the parent organic substances and yields a variety of photoproducts in the aqueous 
solution (Southworth and Voelker 2003; Kramer et al. 1996; Legrini et al. 1993; 
von Sonntag et al. 1993; Corin et al. 1996; Schmitt-Kopplin et al. 1998; Wang et 
al. 2001; Leenheer and Croué 2003). These results suggest that the photoinduced 
generation of H2O2 and ROOH depends on the molecular nature of DOM com-
ponents in natural waters. The relationship between DOC concentration and pro-
duction rates of H2O2 (Fig. 10) shows that the rate is higher for upstreams and 
groundwater, and increases non-linearly with an increase of DOC concentration 
in rivers (Fig. 10) and lakes (Scully et al. 1996). It can be considered that the 
highly reactive DOM is photolytically and rapidly degraded into photoproducts in 
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stagnant lake or seawaters or during the transportation of water from the source 
to the lake or ocean (Moran et al. 2000; Mostofa et al. 2005a, 2007a, b; Wu et al. 
2005). Indeed, previous photoprocessing is a likely reason for the photostability of 
DOM sampled in surface lake environments (Vione et al. 2009). H2O2 production 
is less efficient in the presence of DOM from lake or seawater, which suggests that 
the generation of hydrogen peroxide depends also on the nature and not only on the 
total amount of DOM in natural waters. Therefore, H2O2 production follows the 
order: upstreams  > groundwater > rivers > lake > coastal sea > open ocean.

Fluorescent DOM (FDOM) or chromophoric DOM (CDOM) plays an active 
role in the generation of H2O2 and ROOH in natural waters (Table 1) (Mostofa and 
Sakugawa 2009; Obernosterer et al. 2001; Fujiwara et al. 1993; Moore et al. 1993; 
O’Sullivan et al. 2005). It can be noted that CDOM or FDOM moieties undergo 
rather efficient photoionization under sunlight (Wu et al. 2005; Senesi 1990). For 
example, a significant correlation has been observed between fluorescence inten-
sity (FI) of fulvic acid and the photoproduction of hydrated electrons (Fujiwara 
et al. 1993). Similarly, the production rates of H2O2 are highly correlated with 
the fluorescence of fulvic acid present in river (Mostofa 2005) and lake waters, 
rather than with DOC concentrations (Scully et al. 1996). Moreover, the produc-
tion of H2O2 by a variety of river waters is highly different due to a  variation in 
their DOM components such as fulvic acid, fluorescent whitening agents and 

Fig. 10  Relationship 
between DOC concentration 
and production rates 
of H2O2 generated 
from photoexperiments 
conducted on upstream 
river, groundwater, lake and 
seawaters (a); as well as on 
the waters of the downstream 
river (b)
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tryptophan-like compounds (Mostofa and Sakugawa 2009). Thus, production of 
H2O2 and ROOH significantly depends on the molecular nature and composition 
of FDOM or CDOM rather than on DOC concentration.

4.3  Production and Decay Affected by Phytoplankton,  
Algae and Microbes

Production and decay of H2O2 and ROOH are greatly influenced by marine 
 phytoplankton, algae and microbes. Two phenomena are involved. First, marine 
phytoplankton, algae and microbes may produce autochthonous DOM, which is 
then involved into the photoinduced or microbiological (the latter being highlighted 
under dark incubation) generation of H2O2 and ROOH compounds in natural waters. 
Second, the decay of H2O2 and ROOH compounds may be caused by catalase, per-
oxidase and superoxide dismutase produced by phytoplankton, algae and microbes.

A variety of marine organisms or phytoplankton can produce or excrete 
organic compounds such as riboflavin (Dunlap and Susic 1985; Mopper and 
Zika 1987), amino acids including tryptophan, proteins, carbohydrates and satu-
rated and unsaturated fatty acids (McCarthy et al. 1997; Rosenstock and Simon 
2001; Nieto-Cid et al. 2006). All of these organic compounds are photolytically 
reactive. For example, 1 nM riboflavin added to seawater can produce approxi-
mately 10 nM H2O2 (Mopper and Zika 1987), and tryptophan can produce H2O2 
at a rate of 648 nM h−1 in aqueous media (Table 2). The organisms, 105 cocco-
lithophorid cells L−1, can produce H2O2 at a rate of 1–2 nM h−1 in oligotrophic 
waters (Palenic et al. 1987). Production of H2O2 by the eukaryotic phytoplankton 
species Hymenomonas carrterae is induced by amino acid oxidation by cell-sur-
face enzymes (Palenic et al. 1987). The photorespiration cycle of phytoplankton 
involves production of H2O2 during glycolate oxidation (Lehninger 1970), which 
can be expressed as follows (Eq. 4.1):

The rate of photorespiration increases with high light intensity, possibly as a 
way to dissipate the excess light energy (Harris 1979), but its exact role is unclear 
(Ogren 1984).

The exposure of algae suspensions to sunlight can produce H2O2 ((Johnson et 
al. 1989; Collen et al. 1995; Zepp et al. 1987), possibly by photoinduced excita-
tion of DOM released under photo- and microbial assimilation of algae (Mostofa 
et al. 2009b; Medina-Sánchez et al. 2006; Fu et al. 2010; Takahashi et al. 1995; 
Marañòn et al. 2004). This hypothesis is supported by the fact that the H2O2 pro-
duction from algal suspensions is low in the initial two hours of irradiation, and is 
greatly increased with further irradiation (Zepp et al. 1987). It can be assumed that 
the high production of H2O2 after two hours occurs because of the photodegrada-
tion of organic substances newly released from algal suspensions in the reaction 
media during the initial irradiation period. For example, the production rates of 

(4.1)CH2OHCOOH + O2
glycolate oxidase

−→ CHOCOOH + H2O2
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H2O2 due to sunlight effects on algae are 0.04–1.7 × 106 M h−1 for five algae at a 
concentration of 0.097–1.0 × 10−3 mg m−3 Chl a (Zepp et al. 1987).

4.3.1 Mechanism of Microbial Decomposition of H2O2 and ROOH

Decay of peroxides (H2O2 and ROOH) by phytoplankton, algae and microbes is a 
reverse effect of peroxide production in natural waters. Peroxides (H′OOH, H′ = H 
or R) may be decomposed by catalase, peroxidase and superoxide dismutase, pro-
duced by phytoplankton, algae and microbes to generate energy for their growth 
and to eliminate excessive intracellular levels of H2O2 and O2

•− (Fujiwara et al. 
1993; Moffett and Zafiriou 1990; Zepp et al. 1987; Mostofa et al. (Manuscript in 
preparation); Wong et al. 2003). Such a decomposition effect induced by phyto-
plankton, algae and microbes would usually occur constantly, until the concen-
tration of peroxides reaches a minimum level that would afford inefficient further 
decomposition. Catalase enzymatically activates the peroxides (H′OOH*) to use 
them as oxidants (electron acceptors) and reductants (electron donors). Afterwards, 
disproportionation of activated H′OOH* converts them into water or alcohols and 
oxygen. A reaction scheme (Eqs. 4.2, 4.3) for the decomposition of peroxides by 
catalase can be generalized as follows (Moffett and Zafiriou 1990):

where Catalase# is the activated state of catalase.
Peroxidase enzymatically activates the peroxides (H′OOH*) to detoxify them 

to H2O or any other end product. As reducing species it uses organic compounds 
(H2R) other than H′OOH. A reaction scheme (Eqs. 4.4, 4.5) for the decomposition 
of peroxides is presented below (Moffett and Zafiriou 1990):

where Peroxidase# is the activated state of peroxidase. It has been shown that the 
percentage decay of H2O2 was 65–80 % by catalase and 20–35 % by peroxidase, as 
estimated by isotopic measurements in seawater (Moffett and Zafiriou 1990). The 
sources of catalase and peroxidase in natural waters are bacteria and marine phyto-
plankton (Kim and Zobell 1974), but these enzymes are also part of the dissolved 
organic matter (Serban and Nissenbaum 1986). Similarly, chloroplasts have a per-
oxidase-mediated H2O2 scavenging system (Tanaka et al. 1985). Natural marine 
peroxidases are also capable of catalyzing H2O2-mediated halogenation reactions 
in the oceanic environments (Theiler et al. 1978; Baden and Corbett 1980). The 
decay of H2O2 is usually low (12 % after 5 h incubation) in upstream waters due to 
the presence of few bacteria (some 105 cells mL−1), and much higher in polluted 

(4.2)H′OOH + Catalase → H′OOH∗
+ Catalase#

(4.3)2H′OOH∗
+ Catalase#

→ H′
− O − H + O2 + Catalase

(4.4)H′OOH + Peroxidase → H′OOH∗
+ Peroxidase#

(4.5)
H′OOH∗

+ H2R + Peroxidase#
→ H′

− O − H + H − O − H + R + Peroxidase
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rivers (74 %) where the bacteria are more numerous (of order 106 cells mL−1) 
(Fig. 11a). Similarly, the decay of peracetic acid (ROOH) was 40 % and 85 %, 
respectively (Fig. 11b). The initial degradation rate is roughly double for ROOH 
(peracetic acid) than for H2O2, thus the concentrations of ROOH found in rivers 
are generally lower than those of H2O2. It is suggested that ROOH compounds are 
chemically unstable and more reactive than H2O2 in natural waters (Mostofa and 
Sakugawa 2009). Therefore, enzymatic or microbial degradation of peroxides is a 
rapid process that may control the steady-state concentrations of both H2O2 and 
ROOH compounds in natural waters (Fujiwara et al. 1993; Cooper and Zepp 1990; 
Zepp et al. 1987; Serban and Nissenbaum 1986; Tanaka et al. 1985).

It has been shown that the algal-catalyzed decomposition of H2O2 under dark 
conditions is second-order overall, first-order with respect to H2O2 and first-
order with respect to the algal biomass (Petasne and Zika 1997; Zepp et al. 1987; 
Cooper and Lean 1992). The median second-order rate constant for nine algae is 
approximately 4 × 10−3 m3 (mg Chl a)−1 h−1. Natural levels of the blue-green 
Cyanobacterium sp. can greatly increase the decay rates of H2O2, which follow a 
second-order rate constant of 3.5 × 10−10 L cell−1 h−1 (Petasne and Zika 1997). 
Similar kinetics has been observed for Vibrio alginolyticus, in which case the 
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decay of H2O2 was second-order overall, and first-order in both H2O2 concentra-
tion and number of bacterial cells (Cooper and Lean 1992). Such a kinetic can be 
expressed as follows:

where k2 = 1.6 × 10−9 mL cell−1min−1. The freshwater bacterium Enterobacter 
cloaceae showed a similar rate constant, k2 = 1.5 × 10−9 mL cell−1 min−1.

4.4  Production and Decay by DOM Photochemistry

Photodegradation of DOM depends on the incident light intensity, which is 
directly linked to the production of H2O2 and ROOH through photoinduced reac-
tions in natural waters (Cooper and Zika 1983; Moore et al. 1993; Baxter and 
Carey 1983). For example, H2O2 concentration gradually increases with irradia-
tion time in natural waters as well as in aqueous solutions of standard organic sub-
stances (Fig. 3) (Obernosterer et al. 2001; Cooper et al. 1988). Similarly, a 10–20 
times lower H2O2 production was observed in river waters during the cold season 
compared to summer, and in the Southern Ocean in Antarctic regions (5–25 nM) 
compared to other oceanic environments, respectively (Fig. 9; Table 1). The photo-
degradation of DOM is greatly influenced by the stratospheric ozone hole events, 
particularly in Antarctic waters. The ozone hole can increase the fluxes of solar 
ultraviolet radiation (UVR, 280–400 nm), which may substantially enhance the 
photoinduced generation of reactive species (H2O2, ROOH, HO•, etc.) in natu-
ral waters (Yocis et al. 2000; Rex et al. 1997; Qian et al. 2001). For example, a 
decrease in stratospheric ozone from 336 to 151 Dobson units during an ozone 
hole event resulted in an increase by 19–42 % in the production of H2O2 at the sur-
face of Antarctic waters (Yocis et al. 2000). An increase in ozone hole events can 
thus cause a higher degree of DOM photodegradation upon generation of highly 
reactive free radicals.

4.5  Production and Decay by Photosynthesis

As a result of photodegradation of DOM, along with the production of H2O2 and 
ROOH compounds, several other photoproducts such as CO2, CO or other forms 
of dissolved inorganic carbon (DIC  = sum of dissolved CO2, H2CO3, HCO3

−, 
and CO3

2−), low molecular weight (LMW) DOM, and thermal energy, E (±) are 
simultaneously produced in natural waters (Mostofa et al. 2009; Wu et al. 2005; 
Amador et al. 1989; Moran and Zepp 1997; Wang et al. 2009; Xie and Zafiriou 
2009. A general scheme (Eq. 4.7) for the photodegradation of DOM can be 
expressed as follows (Mostofa et al. 2009a, b):

(4.6)Rate = −d [H2O2] /dt = k2 [H2O2] [Number of bacterial cells]

(4.7)DOM + hυ → H2O2 + CO2/CO/DIC + LMW DOM + E (±)
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H2O2 and CO2 that are simultaneously produced by DOM photodegradation 
can take part to photosynthesis, to form carbohydrate-type compounds (Eq. 4.8) 
(Mostofa et al. 2009a, b):

where Cx(H2O)y (Eq. 4.8) represents a generic carbohydrate. In natural waters, 
H2O2 acts as a key component together with carbon dioxide (CO2) to form carbo-
hydrates and oxygen through photosynthesis (Eq. 4.8). The formation of oxygen in 
the photosynthesis process might also occur via either H2O2 disproportionation or 
biological processes (Eq. 4.9) (Komissarov 2003; Moffett and Zafiriou 1990; Liang 
et al. 2006; Buick 2008). Note that the contribution of H2O2 decay is 65–80 % by 
catalase enzyme and 20–35 % by peroxidase enzyme, respectively, as estimated 
by isotopic measurements in seawater (Moffett and Zafiriou 1990). E (±) is the 
energy produced during photosynthesis. The new concept of photosynthesis was 
firstly hypothesized in plants by Komissarov (1994, 2003). He proposed that inter-
action of CO2 in air and H2O2, instead of H2O, may form carbohydrate in plants. It 
is interesting to note that during the diurnal cycle, H2O2 production is the highest 
at noon time, thereby simultaneously causing the maximum production of CO2 or 
DIC due to photodegradation by H2O2 or photoinduced generation of HO•. The 
new reaction mechanim for photosynthesis (Eq. 4.2) will be discussed in details in 
photosynthesis chapter “Photosynthesis in Nature: A New Look”.

It is demonstrated that microbial consumption is the dominant sink of oce-
anic carbon monoxide (CO), and that the rate constant (kCO) of microbial CO 
 consumption is positively correlated with chlorophyll a (Chl a). It is suggested 
that Chl a concentration can be used as an indicator of CO-consuming bacterial 
activity in natural waters (Xie et al. 2005). Photodegradation and photosynthesis 
may be important in natural waters with high contents of DOM; photodegradation 
induces the production of CO2 and peroxides, which would in turn favor photo-
sysnthesis in the aquatic environments. This would lead to the multiplication of 
algae, small aquatic plants and phytoplankton. For example, high algal production 
is operational in some Chinese Lakes during the summer season, which might also 
be an effect of high DOM photodegradation that favor photosynthesis in lake eco-
systems (Mostofa et al. 2009b).

4.6  Production and Decay by Photolytic and Chemical 
Processes

Production of H2O2 and ROOH by photolytic processes may involve their pho-
toinduced formation from DOM under natural sunlight, as explained earlier. The 
decay of peroxides by photolytic processes (Moffett and Zafiriou 1990; 1993; 

(4.8)xCO2(H2O) + yH2O2(H2O) + hυ → Cx (H2O)y + O2 + E (±)

(4.9)
2H2O2+ photo (hυ) or biological processes → O2+ 2H2O or unknown oxidants

http://dx.doi.org/10.1007/978-3-642-32223-5_7
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Petasne and Zika 1997) may follow two pathways. First, photolytic decomposi-
tion of H2O2 can occur in seawater (e.g., filtered Vineyard Sound waters) to 
yield O2. The photodecomposition was approximately 5 % of the correspond-
ing photoproduction (Moffett and Zafiriou 1990). However, H2O2 decomposition 
typically does not occur in oligotrophic seawater after 2 h of irradiation. This sug-
gests that the contaminants associated with H2O2 synthesis in Vineyard Sound 
samples might be susceptible to the photolytic decomposition of H2O2 (Moffett 
and Zafiriou 1990). Second, H2O2 and ROOH can photolytically form free radi-
cals (R′OOH + hυ → RO•′ + HO• where R′ = H or R). For example, ROOH 
compounds are lower in surface seawater than in the deeper layers (Sakugawa  
et al. 2000). The ROOH compounds are negatively correlated with solar intensity 
(Sakugawa et al. 2000). This suggests that ROOH may be decomposed by pho-
tolytic processes in surface seawater. This result can be justified by the observa-
tion of a significant correlation between H2O2 and HO• generated photolytically 
in experiments conducted on river waters, standard Suwannee River Fulvic Acid 
and DAS1 using a solar simulator Mostofa KMG and Sakugawa  H (unpublished), 
which indicates the photoinduced formation of HO• from H2O2. Therefore, decay 
of peroxides by photolytic processes is a typical phenomenon that may signifi-
cantly occur in natural waters.

Formation of H2O2 and ROOH by chemical processes may include several 
chain-reactions among various reactant species (Eqs. (3.2–3.5, 3.10–3.12, 3.27). 
The decomposition of peroxides by chemical processes may involve the Fenton 
reaction (H2O2 + Fe2+ → Fe3+ + HO• + OH−) (Fenton 1894), photo-Fenton 
reaction (H2O2 + Fe2+ + hν → Fe3+ + HO• + OH−) (Zepp et al. 1992), photo-
ferrioxalate reaction (FeII(C2O4) + H2O2 + hν → FeIII(C2O4) + HO• + OH−) 
(Safazadeh-Amiri et al. 1997) and other chain reactions (Eqs. 3.7, 3.8, 3.16). Free 
radical oxidation of H2O2 by transition metal ions is one of the most important 
chemical decomposition processes of H2O2 in natural waters (Jeong and Yoon 
2005; Fenton 1894; Millero and Sotolongo 1989).

4.7  Physical Mixing Processes

The rates of production and decay of peroxides may be influenced by physical pro-
cesses, such as the mixing by strong waves in the surface mixing zone (Mostofa 
KMG and Sakugawa  H, unpublished; Scully et al. 1998). Physical mixing by 
strong waves can facilitate the contact of the reactants and increase the reaction 
rates. For example, the production rate of H2O2 was increased by mechanical stir-
ring during irradiation of seawater (86 nM h−1) and standard Suwannee River 
Fulvic Acid (445 nM h−1) samples, compared to the same samples that were not 
stirred (51 and 211 nM h−1, respectively). The photoexperiments on site were car-
ried out with a solar simulator Mostofa KMG and Sakugawa  H (unpublished). 
Mixing phenomena can contribute to the relatively elevated H2O2 concentration 
that is often observed in the mixing zone or in the upper surface layers of lake or 
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seawater (Johnson et al. 1989; Sakugawa et al. 2000; Sikorsky and Zika 1993a, 
b; Scully et al. 1998). Similarly the vertical convective overturn, which is usu-
ally caused by nocturnal cooling in the upper lake or ocean, may greatly decrease 
the surface H2O2 concentration through distribution in the whole water column 
(Johnson et al. 1989; Sarthou et al. 1997; Yuan and Shiller 2001).

4.8  Salinity Effect on Production of H2O2

The photoproduction of H2O2 significantly increases with salinity in natural 
waters (Osburn et al. 2009). The generation of H2O2 upon irradiation of ultrafil-
tered river DOM substantially increases from 15 to 368 nM h−1 with increasing 
salinity at circumneutral pH values (Osburn et al. 2009). The increase in H2O2 
production with salinity has a linear trend (Eq. 4.10) (Osburn et al. 2009):

The apparent quantum yield of H2O2 photoproduction from ultrafiltered river 
DOM, Qhp, also increases with salinity from 1.64 × 10−4 to 37.02 × 10−4 
(Osburn et al. 2009).

The mechanism of high production of H2O2 with salinity is not well docu-
mented in ealier studies. It is hypothesiszed that hydrated electrons (eaq

−) are con-
siderably formed in ionic (saline) solution under irradiation. This phenomenon can 
substantially increase the production of superoxide radical (O2

•−) and, through 
disproportionation, of H2O2 in aqueous solution. This is evidenced by the pho-
toinduced formation of aqueous electrons (eaq

−) from organic substances and by 
their high production in NaCl-mixed solutions compared to pure (Milli-Q) water 
(Fujiwara et al. 1993; Gopinathan et al. 1972; Zepp et al. 1987b; Nakanishi et 
al. 2002; Assel et al. 1998; Richard and Canonica 2005). In the presence of high 
salinity it was also observed a significant increase of CDOM loss (10–40 %) and 
high photoelectrochemical degradation of methyl orange (~48 % increase in 0.5 M 
NaCl) (Osburn et al. 2009; Zhang et al. 2010). The mechanisms behind the high 
photoinduced reactivity of DOM with salinity are discussed in details in other 
chapters (see chapters “Colored and Chromophoric Dissolved Organic Matter in 
Natural Waters” and “Fluorescent Dissolved Organic Matter in Natural Waters”).

4.9  Production Affected by Precipitation

Precipitation in the form of e.g. rain greatly increases the peroxide concentra-
tions in natural waters (Sakugawa et al. 1995; Avery et al. 2005; Cooper et al. 
1987; Yuan and Shiller 2000). This might be caused by the mixing of highly 

(4.10)

H2O2 (nM) = 83. 15 × salinity − 69. 16
(

r2
= 0 : 99, p = 0 : 001, n = 10

)

http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_6
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concentrated H2O2 in rainwater, where the measured levels are 0–110,600 nM 
in Europe, 17,000–199,000 nM in Brazil, 30–120,000 nM in the USA, 500–
34,000 nM in Canada, 24–56,400 nM in Japan and 3,500–82,000 nM in marine 
areas (Table 1) (Lazrus et al. 1985; Cooper and Lean 1989; Hellpointner and 
Gäb 1989; Sakugawa et al. 1990, 1993, 2006; Hewitt and Kok 1991; Cooper and 
Lean 1992; Yuan and Shiller 2000; Miller et al. 2008). ROOH concentrations in 
rainwater are 400–1600 nM in Europe and 60–6500 nM in the USA (Table 1) 
(Hellpointner and Gäb 1989; Sakugawa et al. 1993; Hewitt and Kok 1991). The 
levels of H2O2 and ROOH in rainwater (Table 1) usually show some common 
trends. First, there are strong diel variations with highest concentrations in the 
afternoon and lowest ones in the night time and in the early morning. Second, 
high variations are observed between summer and winter, which are presumably 
caused by high light intensity in summer that induces elevated H2O2 produc-
tion. Rain drops may scavenge H2O2 and ROOH generated in the gas phase or 
within cloud droplets. Because of the observed diel trend, daytime precipitation 
might be a more important source of peroxides to natural waters compared to the 
nighttime one.

5  Significance of H2O2 and ROOH in the Aquatic 
Environment

H2O2 and ROOH compounds are uncharged, non-radical active oxygen species 
that may act as oxidants and reductants in natural waters. These features of perox-
ides are also of importance for their use in chemical reactions and in our daily life. 
The main effects of H2O2 and ROOH can be distinguished as: (1) Natural puri-
fiers in natural waters; (2) Photo-Fenton reaction for the decomposition of organic 
pollutants; (3) Indicators of microbial changes in bulk DOM; (4) Function as a 
redox agents in aqueous solution, (5) Medical treatment and commercial uses;  
(6) Growth of terrestrial vegetation by rainwater H2O2 and ROOH; and  
(7) Oxygen evolution in photosynthesis.

5.1  Natural Purification in Aquatic Ecosystems

H2O2 and ROOH compounds are powerful oxidants, which can directly oxi-
dize the DOM or other reactants in natural waters (Draper and Crosby 1984; Ho 
1986; Samuilov et al. 2001). Peroxides are formed photolytically from DOM in 
natural water, and their productions reach maximum at noon time. The photoin-
duced generation of HO• from peroxides can degrade organic pollutants or DOM 
(Gao and Zepp 1998; Brezonik and Fulkerson-Brekken 1998; Goldstone et al. 
2002), which accounts for the role of H2O2 and ROOH as purifiers in natural 
waters.
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5.2  Photo-Fenton Type Reaction for Decomposing  
Organic Pollutants

One of the key applications of H2O2 is its use in the degradation of organic pollut-
ants in the wastewater treatment industry by means of Fenton’s reaction (Fe2+ and 
H2O2), photo-Fenton reaction (UV/Visible-Fe2+/H2O2, λ < 580 nm), UV/Visible-
ferrioxalate/H2O2 reaction and ozone with H2O2 (Zepp et al. 1992; Voelker et al. 
1997; Fenton 1894; Safazadeh-Amiri et al. 1997; Glaze and Kang 1989; Tizaoui et 
al. 2007). Among many other applied technologies, these four are major commer-
tialized technologies.

5.3  Indicators for Microbial Modification of Bulk DOM

ROOH compounds are significantly produced in natural waters under dark conditions 
(Figs. 1 and 2) and are more concentrated in deep seawater than in the surface layer 
(Sakugawa et al. 2000). Net ROOH formation (dark production minus dark con-
sumption) is observed in both filtered and unfiltered river waters (Fig. 2). In contrast, 
net H2O2 formation is only observed in filtered waters. The microbial modification 
of bulk DOM can yield ROOH compounds in natural waters. Microbially-induced 
changes in the bulk DOM composition are in agreement with the observation of a red 
shift of the fulvic acid-like fluorescence (peak C) with an increase in fluorescence in 
deeper lake or seawaters (Hayase and Shinozuka 1995; Mostofa et al. 2005; Moran et 
al. 2000). Therefore, dark production of organic peroxides could be a useful indicator 
for the microbial modification of bulk DOM in aquatic environments.

5.4  Function of H2O2 as an Oxidizing-Reducing Agent  
in Aqueous Solution

On the basis of the reduction potential V, the oxidizing agents in aqueous solution can 
be classified according to the following order: Fluorine (V = 3.0) > Hydroxyl radi-
cal (HO•) (V = 2.8) > Ozone (V = 2.1) > Peracetic acid (ROOH) (V = 1.8) > H2O2 
(V = 1.8) > Potassium permanganate (V = 1.7) > Hypochlorite (V = 1.5) > Chlorine 
dioxide (V = 1.5) > Chlorine (V = 1.4) (Buettner 1993).

H2O2 and ROOH compounds act as intermediates in the reduction of oxygen in 
natural waters. They can act as oxidants or reductants in their reactions with metal 
ions (Moffett and Zika 1987a, b). For example, H2O2 and ROOH compounds can 
oxidize Cu(I) and Fe(II) in natural waters (Moffett and Zika 1987a, b), a process 
that can be schematically generalized as follows:

(5.1)Mn+
+ R′OOH → M(n+1)+

+ R′O•
+ OH− (R′

= H or R)
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On the other hand, the reduction of Cu(II) and Fe(III) by H2O2 and ROOH 
compounds (Moffett and Zika 1987a; Moffett and Zika 1987) can be generalized 
in the following scheme:

These reactions have already been verified for various chemical and biochemical 
processes in natural waters.

5.5  Medical Treatment and Commercial Uses of H2O2

H2O2 therapy is commonly used in bio-medical sciences. The singlet oxygen 
atoms produced from H2O2 in the human body (H2O2 → H2O + O1) can kill or 
severely inhibit the growth of anaerobic organisms (bacteria and viruses that use 
carbon dioxide for fuel and leave oxygen as a by-product) (Gorren et al. 1986). 
Bacteria and viruses do not have an enzyme coating, thus they are easily oxidized 
by O1. Application of H2O2 is particularly effective for asthma, leukemia, multi-
ple sclerosis, degenerative spinal disc disease, high blood pressure and wound care 
(Gorren et al. 1986; Nathan and Cohn 1981). In addition, H2O2 is widely used to 
bleach textiles and paper products, in processing foods, minerals, petrochemicals, 
consumer products (detergents), and in some daily uses such as cleaning and sani-
tizing the kitchen, soaking the toothbrush to prevent transfer of germs, cleaning 
vegetables and fruits for freshness and good taste.

5.6  Growth of Terrestrial Vegetation by Rainwater’s H2O2 
and ROOH

High concentrations of H2O2 (0–199000 nM) and ROOH (60–6500 nM) in rain-
water (Table 1) should be able to promote photosynthesis in plants and algae 
(Komissarov 1995, 2003; Mostofa et al. 2009a, b). The detailed mechanism in that 
regard has been discussed in photosynthesis chapter (see chapter “Photosynthesis 
in Nature: A New Look”). The occurrence of H2O2 and ROOH in rainwater could 

(5.2)Mn+
+ R′O•

+ H+
→ M(n+1)+

+ R′OH

(5.3)R′OOH ⇋ H+
+ R′O−

2

(

R′
= H or R

)

(5.4)M(n+1)+
+ R′O−

2 → Mn+
+ R′O2

•

(5.5)HO2
•

⇋ H+
+ O2

•−

(5.6)M(n+1)+
+ O2

•−
→ Mn+

+ O2

http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7
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thus contribute to the good health and efficient growth of plants. However, high 
concentrations of H2O2 (50–100 μM) in the presence of iron (Fe) and oxalate can 
generate HO• that would decrease the plant productivity and growth (Kobayashi et 
al. 2002). Furthermore, the ability of H2O2 and ROOH compounds to act as anti-
bacterial and anti-fungal agents additionally suggests that an optimal level of per-
oxides could play a positive role toward good health and efficient growth of earth’s 
plants.

5.7  Role of H2O2 in Oxygen Production by Photosynthesis

Photosynthetic O2 evolution involves different stages that carry out a gradual accu-
mulation of oxidizing equivalents in the Mn-containing water-oxidizing complex 
(WOC) (Samuilov et al. 2001). The WOC can exist in different oxidation states 
(Sn, where high n indicates the most oxidised states), which can be probed by 
addition of different redox-active molecules. The interaction of H2O2 with the 
S states of the WOC is depicted in the scheme below (Fig. 12) (Samuilov et al. 
2001):

6  Impacts of H2O2 and ROOH in Natural Waters

H2O2 and ROOH compounds are uncharged and non-radical active oxygen spe-
cies, and capable of acting as oxidants and reductants in chemical reactions 
in natural waters. These properties have some impact on the aquatic organisms, 
which can be listed as follows: (1) Acid rain; (2) Inhibition of photosynthetic elec-
tron transport in cells of cyanobacteria; (3) Effect of H2O2 on bacterial growth 
in waters; and (4) Impact of H2O2 on microbial quality of recreational bathing 
waters.

S-1

O2
•– +  2H+ H2O2

E0 = 1.71 V

S0

2H2OH2O2 + 2H+

O2 + 2H+ H2O2 + 2H+

S2 S1

E0 = 0.69 V

E0 = 1.77 V

Fig. 12  Different oxidation states of H2O2 and its interaction with the S states of the water-
oxidizing complex. Data source Samuilov et al. (2001)
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6.1  Acid Rain

H2O2 and ROOH compounds are key components in the conversion of dissolved 
sulfur dioxide (SO2) to sulfate (SO4

2−) or sulfuric acid (H2SO4) in atmospheric 
clouds (Sakugawa et al. 1990; Zuo and Hoigné 1993). Sulfuric acid (SO4

2−) can 
be formed in cloud drops by reaction of HSO3

− with H2O2 (Eq. 3.7) and is a 
major contributor to acid precipitation to the earth surface.

6.2  Inhibition of Photosynthetic Electron Transport in Cells 
of Cyanobacteria

H2O2 can control a large number of stages of cell metabolism, including those 
involved in the induction of programmed cell death (Samuilov et al. 2001). H2O2 
can inhibit growth at concentrations as low as 10−5–10−4 M under the conditions 
of a dialysis culture (Samuilov et al. 2001). H2O2 can inhibit the photosynthetic 
electron transport in cells of cyanobacteria (Samuilov et al. 2001, 2004). It can 
also destroy the function of the oxygen-evolving complex (OEC) in some chlo-
roplasts and photosystem II preparations, causing release of manganese from the 
cyanobacterial cells, which inhibits the OEC activity.

6.3  Impact of H2O2 on Bacterial Growth in Aquatic 
Ecosystems

Bacterial growth has a seasonal variability, reaching the maximum in spring to 
early summer and greatly decreasing in summer, e.g. when water temperature in 
lakes becomes higher than 25.5 °C (Zhao et al. 2003). Sunlight inactivates bacte-
ria in seawater (Fujioka et al. 1981), which suggests that some photoinduced pro-
cesses may be involved. The bacterial abundance is commonly affected by water 
temperature (Zhao et al. 2003; Darakas 2002), but the latter is directly connected 
with solar radiation that can generate strong oxidizing agents such as peroxides 
(H2O2 and ROOH), O2

• – and HO•. These reactive species can reduce the activity 
of the catalase, peroxidase and superoxide dismutase enzymes present in bacterial 
cells, DOM, algae and phytoplankton. Bacterial cells protect themselves from the 
oxidizing species (H2O2, O2

• – and HO•) by adjusting the level of their enzymes 
(Chance et al. 1979). An experimental study conducted on marine invertebrates 
suggests that H2O2-scavenging enzymes can protect against external photodynamic 
effects and internal respiratory by-products (Dykens 1984). It can be assumed that 
the activity of the enzymes in dealing with the external effects would decrease their 
ability to scavenge the internal by-products, with harmful effects for the organisms. 
Low levels of H2O2 (~100 nM) affect oxidative stress to bacteria in coastal waters 
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by increasing the concentration of the catalase enzyme. The diurnal periodicity of 
catalase activity matched the diurnal changes of H2O2 (Clark et al. 2008; Angel et 
al. 1999). The effects of H2O2 and peroxides can be particularly important during 
the summer season when their levels are higher. Moreover, ozone hole events in 
Antarctic waters may greatly increase photodegradation processes that can gener-
ate reactive free radicals and peroxides, with a damaging influence on biogeochem-
ical cycles in Antarctic waters (Diffey 1991; Smith et al. 1992; Randall et al. 2005).

6.4  Impacts of H2O2 on Microbial Quality of Recreational 
Bathing Waters

Microbial water quality is assessed from the concentration of fecal indicator bacteria 
(FIB) because of their adverse health effects (Cabelli et al. 1979; US Environmental 
Protection Agency 2000; Wade et al. 2003. Frequent FIB contamination episodes in 
the surf zone resulted in multiple beach closures in the USA (Boehm et al. 2002). It is 
shown that elevated levels of H2O2, ROOH, superoxide (O2

•−) and hydroxyl radical, 
photolytically produced, can cause damage and cell lysis in microorganisms. This 
may result into high FIB mortality in recreational bathing waters (Gonzalez-Flecha 
and Demple 1997; Weinbauer and Suttle 1999; Mitchell and Chamberlin 1975; Clark 
et al. 2008). It is estimated that approximately ~100 nM of H2O2 can cause oxidative 
stress to bacteria in waters (Angel et al. 1999). Diurnal cycles of FIB mortality in the 
surf zone (Clark et al. 2008; Boehm et al. 2002), which well resemble the diurnal 
cycle of H2O2, suggest that the FIB mortality may be linked to the photoinduced gen-
eration of H2O2 and ROOH in sunlit surface waters.

7  Role of H2O2 in the Origin of Autochthonous DOM  
and of other Oxidising Agents

H2O2 can contribute to the production of autochthonous DOM by different impor-
tant processes. First, it is involved in the photosysthesis process that is a major 
source of organic matter (e.g. algae) (Mostofa et al. 2009a, b). The photoinduced 
and microbial assimilation of organic matter, including algae, can produce autoch-
thonous DOM in natural waters (Mostofa et al. 2009b; Fu et al. 2010; Harvey  
et al. 1995; Carrillo et al. 2002; Coble 2007; Yamashita and Tanoue 2004; 
Yamashita and Tanoue 2008). Coherently, a correlation has been observed between 
production of organic carbon and concentration of photolytically formed H2O2 
(Anesio et al. 2005). The autochthonous production of DOM (Mostofa et al. 2005; 
Yoshioka et al. 2002) is typically observed during the summer season, and a major 
DOM component that is produced is autochthonous fulvic acid, often termed 
sedimentary fulvic acid (Hayase and Tsubota 1985). Other produced compounds 
include marine humic substances (Coble 1996, 2007), carbohydrates and unknown 
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substances (Fu et al. 2010; Mostofa et al. (Manuscript In preparation); Hamanaka 
et al. 2002; Hayakawa 2004; Farjalla et al. 2006).

Second, H2O2, formed photolytically from water using UV radiation, can 
react with CO2 under abiogenic conditions to produce various organic substances 
(CH2O, HCOOH, CH3OH, CH4, and C6H12O6; Eqs. 7.1–7.5, respectively) in the 
aqueous solutions (Lobanov et al. 2004). The reactions between H2O2 and CO2 as 
well as their thermodynamic parameters such as enthalphy changes (ΔH0) and the 
Gibbs free energy changes (ΔG0) are mentioned as follows (Lobanov et al. 2004):

Therefore, these organic substances produced photolytically may play an 
important role in biogeochemical processes in natural waters.

Third, H2O2 can react with nitrous acid to yield peroxynitrous acid, a power-
ful nitrating agent and an important intermediate in atmospheric chemistry (Vione  
et al. 2003). The kinetics of the reaction is compatible with a rate-determining 
step involving either H3O2

+ and HNO2, with rate constant 179.6 ± 1.4 M−1 s−1, 
or H2O2 and protonated nitrous acid, with rate constant 1.68 ± 0.01 × 1010 M−1 
s−1 (diffusion-controlled reaction) (Vione et al. 2003). Thus, H2O2 might be a key 
environmental factor in atmospheric oxidative chemistry.

8  Scope of the Future Challenges

The determination of H2O2 and ROOH as well as their spatial–temporal varia-
tions, sources, production and decay mechanisms have been examined in natural 
waters. Compared to H2O2, relatively little attention is paid to the determination 

(7.1)H2O2 + CO2 → CH2O + 3/2O2

∆H0
= 465 kJ, ∆G0

= 402 kJ
∆H0

= 465 kJ, ∆G0
= 402 kJ

(7.2)H2O2 + CO2 → HCOOH + O2

∆H0
= 172 kJ, ∆G0

= 166 kJ
∆H0

= 172 kJ, ∆G0
= 166 kJ

(7.3)2H2O2 + CO2 → CH3OH + 5/2O2

∆H0
= 530 kJ, ∆G0

= 464 kJ
∆H0

= 530 kJ, ∆G0
= 464 kJ

(7.4)2H2O2 + CO2 → CH4 + 3O2

∆H0
= 649 kJ, ∆G0

= 580 kJ
∆H0

= 649 kJ, ∆G0
= 580 kJ

(7.5)H2O2 + CO2 → 1/6C6H12O6 + 3/2O2

∆H0
= 426 kJ

∆H0
= 426 kJ
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of ROOH compounds and their concentrations in natural waters. Investigations 
based on the detection of ROOH would be crucial to improve the understand-
ing of the photoinduced processes along with H2O2 generation in natural waters. 
Limited attention is also devoted to what fractions of DOM are most involved 
in the photoinduced production of peroxides in freshwater and marine environ-
ments. Other important research demands for future challenges are the following:  
(i) Identification of the DOM components involved into the production of H2O2 in 
freshwater and marine water. (ii) Elucidation of the temperature and pH effect on 
the production of H2O2 and ROOH compounds by aquatic DOM components and 
standard organic substances. (iii) Clarification of the correlation between diurnal 
variations of H2O2 and ROOH levels in natural waters and DOM concentration. 
(iv) Investigation of the role of the photo-Fenton reaction in the production of per-
oxides in iron-rich waters. (v) Elucidation of the relationship between peroxides 
and free radicals. (vi) Study of the dark production of H2O2 and ROOH by phy-
toplankton, algae and bacteria in fresh and marine waters. (vii) Effect of variable 
diurnal levels of H2O2 on bacteria in DOM-rich waters. (viii) Detection of ROOH 
compounds generated photochemically by standard organic substances in aqueous 
solution and by DOM components in natural waters.

Problems

(1) Explain the nature and biogeochemical function of H2O2 and ROOH in natu-
ral waters.

(2) Discuss the steady-state concentration of H2O2 and ROOH in natural waters
(3) Explain how H2O2 acts as REDOX agent.
(4) Explain the mechanisms of photoinduced generation of H2O2 and ROOH in 

the gas phase and in natural waters.
(5) How does fulvic acid photolytically produce H2O2 and ROOH in natural 

waters?
(6) What are the sources of H2O2 in natural waters?
(7) What factors are involved in the diurnal cycle of H2O2 production in natural 

waters?
(8) Explain the controlling factors for the decay of H2O2 and its decay mecha-

nism by biological processes in natural waters.
(9) What is the importance of H2O2 and ROOH?
(10) Which is the impact of H2O2 on organisms?
(11) What is the link between H2O2, photosynthesis and the autochthonous pro-

duction of DOM in natural waters?
(12) How does H2O2 differ chemically from ROOH?
(13) What is the principle of H2O2 and ROOH measurement by the fluorometric 

method?
(14) In a diurnal cycle in river water, the concentration of H2O2 gradually 

increased from 4 to 69 nM in the period from before sunrise to noon and 
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then gradually decreased to 20 nM. What is the concentration of H2O2 
accounted for by diurnal effects in the river waters?

(15) What is the steady state concentration of H2O2 in natural waters? Find out 
the production of H2O2 in a natural water when its steady-state concentration 
is 350 nM, microbial degradation 20 nM, and consumption by DOM photo-
degradation 30 nM.
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