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Mechanical and thermodynamic properties of the monoclinic and
orthorhombic phases of SiC2N4 under high pressure

from first principles*
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First principles calculations are preformed to systematically investigate the electronic structures, elastic and ther-
modynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under pressure. The calculated structural
parameters and elastic moduli are in good agreement with the available theoretical values at zero pressure. The elastic
constants of the two phases under pressure are calculated by stress–strain method. It is found that both phases satisfy the
mechanical stability criteria within 60 GPa. With the increase of pressure, the degree of the anisotropy decreases rapidly
in the monoclinic phase, whereas it remains almost constant in the orthorhombic phase. Furthermore, using the hybrid
density-functional theory, the monoclinic and orthorhombic phases are found to be wide band-gap semiconductors with
band gaps of about 2.85 eV and 3.21 eV, respectively. The elastic moduli, ductile or brittle behaviors, compressional and
shear wave velocities as well as Debye temperatures as a function of pressure in both phases are also investigated in detail.

Keywords: SiC2N4,density functional theory, Debye temperature, elastic anisotropy
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1. Introduction
Superhard materials are widely used in the industry for

making various tools and coatings, due to their superior me-
chanical properties.[1–5] Since the “hard” C3N4 was predicted
theoretically in the 1980s, extensive theoretical and experi-
mental efforts have been devoted to finding new superhard
materials.[6–14] In recent years, a new class of ternary sili-
con carbon nitride (Si–C–N) materials have attracted intense
attention.[15–24] Those compounds were originally proposed
theoretically for potential superhard materials,[18–21] then two
crystalline solids in the ternary Si–C–N systems, Si2CN4 and
SiC2N4, were synthesized successfully at ambient pressure
and high temperature.[22] Unfortunately, Wang et al.[23] cal-
culated the Vickers hardness of the two phases and found that
they are not superhard materials. However, they predicted sev-
eral stable phases of SiC2N4 and Si2CN4 compounds under
pressure. Moreover, the Cmmm structured SiC2N4 and C2/m
and P21/m structured Si2CN4 were believed to be potential
superhard materials with a calculated Vickers hardness value
exceeding 50 GPa. Recently, Ding et al.[24] also designed
the ternary nitrides (Si2CN4 and SiC2N4) by the substitution
method and investigated the mechanical and thermodynamic
properties of the ternary nitrides.

Up to now, five structures of SiC2N4 have been reported,
the ambient-pressure structure (space group Pn3m) found in
experiment,[22] the two structures (space groups C2/m and
Cmmm) proposed by Wang et al.[23] and other two struc-
tures (space groups Fd-3m and P4-2m) designed by Ding et
al.[24] Although the enthalpy curves, hardness values, phonon
curves, and electronic structures of C2/m and Cmmm SiC2N4

have been reported,[23] for superhard materials, it is also nec-
essary to examine the pressure influences on their elastic stiff-
ness and thermodynamic properties. The primary purpose of
this work is to investigate the pressure influences on the prop-
erties of the two phases from a thermodynamics point of view.
The structural, electronic properties, elastic and mechanical
properties of the two phases under pressure are investigated in
detail.

2. Computational methods
The calculations in this work were performed using

CASTEP code,[25] which is based on density functional the-
ory (DFT).[26,27] The exchange–correlation functional was de-
scribed within the generalized gradient approximation (GGA)
as parameterized by Perdew, Burke, and Ernzerhof (PBE).[28]

The interactions between electrons and core ions were treated
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with ultrasoft pseudopotentials.[29] The Si: 3s23p2, C: 2s22p2,
and N: 2s22p3 orbitals were explicitly included as valence
electrons. The k point separation in Brillouin zone of the
reciprocal space was 0.03 Å. The tolerances for the ge-
ometry optimization were as follows: the total energy dif-
ference convergent within 5×10−6 eV/atom, the maximum
Hellmann–Feynman force within 0.01 eV/Å, the maximum
stress within 0.02 GPa, and the maximum atom displacement
within 5×10−3 Å. For both phases, a primitive cell of SiC2N4

with 7 atoms was used in all the first-principles calculations.

3. Results and discussion
As we have mentioned above, there are five phases of

SiC2N4 under pressure which have been reported. To investi-
gate the possible phase transition sequence under pressure, we
first calculate the relative enthalpies of Fd-3m, P4-2m, Pn3m,
and Cmmm phases with respect to C2/m phase as a function
of pressure, which are shown in Fig. 1. Both Fd-3m and
P4-2m phases designed by Ding et al.[24] using the substitu-
tion method have very high enthalpies over the whole pressure
range investigated, indicating that they are metastable. The fi-
nal pressure-induced phase transition sequence of SiC2N4 is
the cubic structure (Pn3m), the monoclinic structure (C2/m),
and the orthorhombic structure (Cmmm). The transition from
Pn3m to C2/m phase occurs at around 3.4 GPa, while the
transition from C2/m to Cmmm phase takes place at around
25.0 GPa. These values are close to the previous theoretical
values of 4 GPa and 29 GPa.[23]
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Fig. 1. (color online) Enthalpy differences between Fd-3m, P4-2m,
Pn3m, and Cmmm SiC2N4 relative to C2/m SiC2N4 as a function of
pressure.

In Table 1 listed are the calculated equilibrium lattice pa-
rameters, bulk modulus B, shear modulus G, Young’s modu-
lus E, and Poisson’s ratio υ of C2/m and Cmmm phases at
zero pressure together with the previous results.[23] These cal-
culated values agree reasonably with the previous theoretical
results,[23] indicating the rationality of our selected pseudopo-
tential and exchange–correlation function. Furthermore, the
equilibrium lattice constant ratios a/a0, b/b0, and c/c0 (where

a0, b0, c0 are the equilibrium lattice constants at zero pressure
and temperature respectively) of the two phases as a function
of pressure are plotted in Fig. 2. It is found that the axial com-
pression of both phases can be accurately described by fitting
the calculated data, and we can obtain the following relation-
ships at T = 0 K: (R2 > 0.9999, where R is the correlation
coefficient), for crystal structure of C2/m SiC2N4:

a/a0 = 0.99948−2.21×10−3 ×P

+2.01187×10−5P2 −0.992458×10−7 ×P3, (1)

b/b0 = 1.00005−0.844649×10−3 ×P

+0.235638×10−5 ×P2 −0.747421×10−9 ×P3, (2)

c/c0 = 0.99949−1.63×10−3 ×P

+1.90172×10−5 ×P2 −1.04119×10−7 ×P3, (3)

while for crystal structure of Cmmm SiC2N4,

a/a0 = 0.99997−1.01×10−3 ×P

+0.489096×10−5 ×P2 −0.166999×10−7 ×P3, (4)

b/b0 = 1.00021−0.924733×10−3 ×P

+0.762224×10−5 ×P2 −0.453523×10−7 ×P3, (5)

c/c0 = 0.99998−0.816787×10−3 ×P

+0.375936×10−5 ×P2 −0.125597×10−7 ×P3. (6)

We note that when the pressure increases, the compression
along the a axis is much larger than along the c or b axis in
the basal plane for both phases. For C2/m phase, the b axis
has lower compressibility than the c axis. However, for Cmmm
phase, the compression along the b axis is nearly the same as
along the c axis in the basal plane.

Table 1. Calculated equilibrium lattice parameters a, b, and c (Å), bulk
modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa),
and Poisson’s ratios υ for C2/m and Cmmm SiC2N4 compared with
previous theoretical results at zero pressure.

C2/m Cmmm

This work Other work[23] This work Other work[23]

a 9.233 9.257 4.983 4.974

b 2.615 2.607 7.386 7.372

c 4.365 4.364 2.490 2.488

B 193.0 – 325.0 325.7

G 220.1 – 369.5 367.7

E 448.0 – 753.9 754.3

υ 0.16 – 0.16 0.16

In fact, the superhard materials are often found to be wide
band gap semiconductors. The band gap energy of Cmmm
SiC2N4 in previous work[23] was calculated to be 1.8 eV by
means of the density functional theory (DFT). As is well
known, DFT always underestimates band gap energy, thus in
this paper, we recalculate the band structures and the total den-
sities of states (DOSs) of the two phases using the more ac-
curate hybrid density functional theory (HSE).[30] The band
structures and DOSs of C2/m phase at 4 GPa and Cmmm phase
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at 25 GPa are shown in Figs. 3(a) and 3(b), respectively. The
Fermi energy level Ef is chosen to be located at the position
of 0 eV. For C2/m phase, the top of the valence-band max-
imum (VBM) and the bottom of conduction-band minimum
(CBM) occur at different points, which indicates that it is an
indirect semiconductor. The band gap of C2/m phase is calcu-
lated to be around 2.85 eV. It is also found that Cmmm SiC2N4

is a wide band gap semiconductor with an energy gap of about
3.21 eV. Furthermore, both VBM and CBM occur at T point,
therefore Cmmm phase is a direct band gap semiconductor.

0 20 40 60
0.95

0.97

0.99

1.01

0 20 40 60
0.92

0.96

1.00

X
/
X
0

X
/
X
0

Pressure/GPa

(a)

(b)

Pressure/GPa

C/m

Cmmm

a/a0
b/b0
c/c0

a/a0
b/b0
c/c0

Fig. 2. (color online) Structural parameter ratios a/a0, b/b0, c/c0 as
a function of pressure for (a) C2/m SiC2N4 and (b) Cmmm SiC2N4,
where a0, b0, and c0 represent the lattice parameters determinated at
zero pressure, respectively.

In previous work,[23] according to the analysis of partial
density of states, the Si–N and C–N bonding are found to be
mainly governed by the strong hybridization of Si-p and C-p
with N-p states. Compared with the partial density of states,
Mulliken population analysis[31] can provide a means of esti-
mating partial atomic charge transformation qualitatively. To

investigate the bonding behaviors of the two phases under
pressure, Mulliken charge populations are presented in Ta-
ble 2. The valence electron configurations are C: 2s22p2, N:
2s22p3, Si: 3s23p2. For both phases, a charge transfer from C
atoms and Si atoms to N atoms was observed. Specifically, C-
s, Si-s, and Si-p orbitals lose charges and transfer them to N-p
orbital. In addition, more charges transfer from Si atoms to N
atoms for both phases with the increase of pressure, thus the
interactions between N and Si atoms are enhanced by applied
pressure.
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Fig. 3. (color online) Band structures and total densities of states for (a)
C2/m SiC2N4 at 4 GPa and (b) Cmmm SiC2N4 at 25 GPa.

Table 2. Mulliken charge populations for C2/m and Cmmm SiC2N4 at different pressures.

Structures Pressure/GPa Species Ion s (e) p (e) Total (e) charge (e)

C2/m

0 C 1 1.04 2.52 3.56 0.44
N 1 1.52 4.43 5.95 –0.95
N 2 1.60 3.81 5.41 –0.41
Si 1 0.73 1.42 2.15 1.85

40 C 1 1.00 2.55 3.56 0.44
N 1 1.51 4.45 5.96 –0.96
N 2 1.56 3.88 5.44 –0.44
Si 1 0.67 1.42 2.09 1.91

Cmmm

0 C 1 1.05 2.52 3.57 0.43
N 1 1.46 4.14 5.61 –0.61
N 2 1.56 4.12 5.67 –0.67
Si 1 0.76 1.54 2.30 1.70

40 C 1 1.01 2.56 3.57 0.43
N 1 1.44 4.19 5.62 –0.62
N 2 1.53 4.17 5.70 –0.70
Si 1 0.70 1.52 2.22 1.78
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The elastic properties of a solid are important. They
are not only closely related to various fundamental solid-state
phenomena, such as interatomic bonding, equations of state,
and phonon spectra, but also connected thermodynamically
with specific heat, thermal expansion, Debye temperature, and
Grüneisen parameter. In order to study the mechanical stabil-
ity of SiC2N4, we calculated the second-order elastic constants
Ci j using the “stress–strain method”. The calculated elastic
constants as a function of pressure are shown in Fig. 4. For
C2/m SiC2N4, there are thirteen independent elastic constants,
while for Cmmm SiC2N4, there are only nine independent elas-
tic constants. As is well known, the elastic constants C11, C22,

C33 character the resistances to linear compression in x, y, and
z directions, respectively, while the elastic constants C12, C13,
and C23 and C44, C55, and C66 are related to the elasticity in
shape. For C2/mSiC2N4, C35 and C46 decrease gradually with
the increase of pressure, while C12, C13, C23, C25, C44, C55, C66,
and C15 all increase linearly with pressure increasing. In ad-
dition, as pressure increases, the elastic constants C11 and C33

have a crossover point at around 11 GPa. For Cmmm SiC2N4,
C33 is highest in all the elastic constants and C22 and C11 fol-
low it, implying that they are incompressible under uniaxial
stress along the coordinate axis. Besides, C12, C13, C23, C44,
C55, and C66 increase slowly with pressure increasing.
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Fig. 4. (color online) Calculated pressure dependences of elastic constants for (a) C2/m SiC2N4 and (b) Cmmm SiC2N4.

As for the mechanical stability of a structure, one condi-
tion is that its strain energy must be positive against any ho-
mogeneous elastic deformation. For monoclinic structure, the
mechanical stability criterion can be expressed as[32]

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0,

[C11 +C22 +C33 +2(C12 +C13 +C23)]> 0,

(C33C55 −C2
35)> 0, (C44C66 −C2

46)> 0,

(C22 +C33 −2C23)> 0,

[C22(C33C55 −C2
35)+2C23C25C35 −C2

23C55 −C2
25C33]> 0,

{2[C15C25(C33C12 −C13C23)+C15C35(C22C13 −C12C23)

+C25C35(C11C23 −C12C13)]− [C2
15(C22C33 −C2

23)

+C2
25(C11C33 −C2

13)+C2
35(C11C22 −C2

12)+C55g]}> 0,

g =C11C22C33 −C11C2
23 −C22C2

13 −C33C2
12 +2C12C13C23. (7)

For orthorhombic structure, the mechanical stability criterion

can be expressed as[32]

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0,

C11+C22+C33 +2(C12 +C13 +C23)> 0,

C11 + C22 −2C12 > 0, C11 +C33 −2C13 > 0,

C22 +C33 −2C23 > 0. (8)

The calculated results for the two structures all satisfy the
above stability criteria over the whole pressure range investi-
gated, implying that the two structures are mechanically stable
within 60 GPa.

Based on the calculated elastic constants, we deduce the
bulk modulus B, shear modulus G, Young’s modulus E, Pois-
son ratio υ , and B/G which are widely used to describe the
mechanical behaviors of materials. As suggested by Voigt,[33]

the polycrystalline bulk modulus BV and shear modulus GV

can be expressed in the appropriate combinations of single-
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crystal elastic constants Ci j,

9BV = (C11 +C22 +C33)+2(C12 +C23 +C13), (9)

15GV = (C11 +C22 +C33)− (C12 +C23 +C13)

+3(C44 +C55 +C66), (10)

Analogously, Reuss and Angew[34] have derived the bulk
modulus BR and shear modulus GR expressions in terms of
compliance constants Si j as follows:

1
BR

= (S11 +S12 +S33)+2(S12 +S23 +S13), (11)

15
GR

= 4(S11 +S22 +S33)−4(S12 +S23 +S13)

+3(S44 +S55 +S66) . (12)

Let Si j be the elastic compliance constants:

S11 = (C22C33 −C2
23)/∆ , S22 = (C11C33 −C2

13)/∆ ,

S33 = (C11C22 −C2
12)/∆ , S12 = (C13C23 −C12C23)/∆ ,

S13 = (C12C23 −C13C22)/∆ , S23 = (C12C13 −C11C23)/∆ ,

Sii = 1/Cii, (i = 4,5,6),

with

∆ = C13(C12C23 −C13C22)+C23(C12C13 −C23C11)

+C33(C11C22 −C2
12). (13)

Hill[35] has shown that for any crystalline structure, the
assumptions of Voigt and Reuss lead to an upper bound and a
lower bound of B and G, respectively. In solid state physics, it
is common to use the arithmetic average of Voigt and Reuss
bounds for the evaluation of B and G, which is called the
Voigt–Reuss–Hill (VRH) approximation.

B =
BV +BR

2
, G =

GV +GR

2
. (14)

The polycrystalline Young’s modulus (E) and the Poisson’s
ratio (υ) are then calculated using the relationships[35]

E =
9BG

3B+G
, υ =

3B−2G
6B+2G

. (15)

The bulk modulus reflects the resistance of a material to
a volume change and its response to a hydrostatic pressure,
whereas the shear modulus describes the resistance of a mate-
rial to a shape change. The aggregate bulk, shear, and Young’s
moduli of both phases as a function of pressure are shown in
Figs. 5(a) and 5(b), respectively. Both the bulk and shear mod-
uli increase with the increase of pressure. The calculated bulk
moduli of both phases under pressure are larger than 200 GPa,
which are comparable to those of classic hard materials, such
as β -B2O3 (169.9 GPa)[36] and α-Al2O3 (253.7 GPa).[37] It
can also be seen that the three curves show similar trends un-
der elevated pressure but they vary at different rates, partic-
ularly under higher pressure. The Cmmm phase has larger

bulk, shear, and Young’s modulus than C2/m phase in the
whole pressure range studied, indicating that Cmmm SiC2N4

is harder than C2/m SiC2N4.
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For the application of materials, the brittle or ductile be-
havior is of great importance. Pugh[38] proposed a formula,
i.e., B/G, to judge a metal’s ductility and brittleness in 1954.
The critical value which distinguishes between ductile ma-
terial and brittle material has been evaluated to be 1.75. If
B/G> 1.75, material behaves in a ductile manner, if not, a ma-
terial demonstrates brittleness. Here we calculate the values of
B/G for SiC2N4 to investigate the brittleness of the two phases
under pressure as shown in Fig. 5(c). It is found that the B/G
values of two structures are less than 1.75, thus both phases
behave in brittle manners within 60 GPa. With the increase of
pressure, B/G values increase for both phases, revealing that
the degree of brittleness decreases under applied pressure. In
fact, the brittleness and ductility can also be estimated by the
Frantsevich rule,[39] where the critical value of Poisson’s ratio
is suggested to be 1/3. For brittle materials, υ < 1/3, oth-
erwise the material behaves in a ductile manner. For the two
structures, the Poisson ratios are both less than 1/3 as shown in
Fig. 5(c), which also suggests that the two SiC2N4 compounds
exhibit brittle behaviors under pressure.

As is well known, microcracks are easily induced in the
materials due to the significant elastic anisotropy.[40] Hence,
it is important to calculate elastic anisotropy in order to im-
prove their mechanical durability. Chuang and Buessem
introduced[41] a concept of percent elastic anisotropy which
is a measure of elastic anisotropy possessed by the crystal un-
der consideration. The bulk modulus anisotropic factor AB and

127101-5



Chin. Phys. B Vol. 23, No. 12 (2014) 127101

shear anisotropy AG are defined as

AB =
BV −BR

BV +BR
, AG =

GV −GR

GV +GR
, (16)

respectively, where B and G are bulk modulus and shear mod-
ulus, and the subscripts V and R represent the Voigt and
Reuss bounds. For the two expressions, zero represents com-
plete elastic isotropy and a value of 1 (100%) refers to the
largest possible anisotropy. The percentages of bulk and shear
anisotropies of Cmmm SiC2N4 and C2/m SiC2N4 are shown
in Fig. 6(a). We observe that on the whole, Cmmm SiC2N4

possesses very low bulk and shear anisotropies over the whole
pressure range investigated. Furthermore, Cmmm SiC2N4 ex-
hibits comparatively small bulk anisotropy, while the value of
its shear anisotropy is slightly large. Compared with Cmmm
phase, C2/m phase possesses comparatively high anisotropy.
Interestingly, as pressure increases, both the anisotropy fac-
tors AB and AG of C2/m SiC2N4 decrease gradually, while
the corresponding values of Cmmm SiC2N4 remain almost un-
changed.

0 20 40 60

0.02

0.04

0.06

0.08

0 20 40 60
0.05

0.15

0.25

0 20 40 60

0.6

0.7

0.8

0 20 40 60
1.0

2.0

3.0

0 20 40 60

0.4

0.6

0.8

A
n
is
o
tr
o
p
y

A
n
is
o
tr
o
p
y

A
n
is
o
tr
o
p
y

A
n
is
o
tr
o
p
y

Pressure/GPa

Pressure/GPa

Pressure/GPa

Pressure/GPa

Cmmm AG

Cmmm AB

A
n
is
o
tr
o
p
y

Pressure/GPa

(c)

(b)

(a)

Cmmm Au

C/m Au

Cmmm A1

Cmmm A2

Cmmm A3

C/m AB

C/m AG

Fig. 6. (color online) Pressure dependences of elastic anisotropies for
Cmmm and C2/m SiC2N4; (a) percentage anisotropy in compressibil-
ity AB and shear AG; (b) universal elastic anisotropy Au; (c) shear
anisotropic factorsA1, A2, and A3of Cmmm SiC2N4.

In order to study the anisotropy of single crystal quanti-
tatively, another universal elastic anisotropy index Au was de-
veloped by Ranganathan and Ostioja-Starzewski[42] for crystal

with any symmetry as shown below

Au = 5
GV

GR
+

BV

BR
−6. (17)

The farther from 0 the value of Au, the larger the
anisotropy of material will be. For isotropy materials, Au = 0.
The calculated Au values of Cmmm and C2/m SiC2N4 as a
function of pressure are shown in Fig. 6(b). It is found that
the universal elastic anisotropy index Au of C2/m SiC2N4 is
more sensitive to pressure, while that of Cmmm SiC2N4 re-
mains nearly unchanged with increasing the pressure. Those
results agree with the above discussion about the percentage
of bulk anisotropy and shear anisotropy.

To investigate the degrees of anisotropy of Cmmm SiC2N4

in different planes in detail, we further calculate the anisotropy
factors of Cmmm SiC2N4 as a function of pressure, which are
shown in Fig. 6(c). The shear anisotropic factors reflect the
degrees of anisotropy in the bonding between atoms in dif-
ferent planes. There are three shear anisotropic factors in the
orthorhombic phase, [40] i.e., A1 which is the shear anisotropic
factor for the {1 0 0} shear plane between the {0 1 1} and {0 1
0} directions, A2 which is the shear anisotropic factor in the {0
1 0} shear plane between {1 0 1} and {0 0 1} directions, and
A3 which is the shear anisotropic factor in the {0 0 1} shear
plane between {1 1 0} and {0 1 0} directions. These factors
are expressed as

A1 = 4C44/(C11 +C33 +2C13), (18)

A2 = 4C55/(C22 +C33 −2C23), (19)

A3 = 4C66/(C11 +C22 −2C12). (20)

For an isotropic crystal, all three factors must be one
while any other value less or greater than one indicates the de-
gree of anisotropy. When the applied pressure increases from
0 to 60 GPa, the anisotropy factors A1 and A3 decrease by
approximately 14.2% and 10.8%, respectively, while A2 in-
creases by approximately 5.5%. However, for Cmmm SiC2N4,
the {1 0 0} shear planes show more isotropic than the {0 1 0}
shear planes as well as the {0 0 1} shear planes over the whole
pressure range investigated.

Debye temperature is another one of fundamental param-
eters for solid materials, which is correlated with many phys-
ical properties, such as thermal expansion, melting point, and
Grüneisen parameter.[40] At low temperatures, Debye temper-
ature Θ D is proportional to the sound velocity and directly re-
lated to the elastic constant through bulk and shear moduli[43]

ΘD =
h
kB

3

√
3nNAρ

4πM
vm, (21)

where h is the Planck’s constant, kB is the Boltzmann’s con-
stant, n is the number of atoms per formula unit, M is the
molecular weight, NA is the Avogadro’s number, ρ is the den-
sity, and νm is the average sound velocity. In fact, νm can be
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obtained from the longitudinal wave velocities ν l and trans-
verse wave velocities νs, i.e., from the following relationship:

3
v3

m
=

1
v3

l
+

2
v3

s
, νl = [(B+4/3G)/ρ]1/2,

νs = (G/ρ)1/2. (22)

The calculated velocities and Debye temperatures as a func-
tion of pressure for both phases are shown in Fig. 7. For both
phases, νm, ν l, and νs as well as Θ D increase monotonically
as pressure increases from 0 to 60 GPa. For most materials,
usually, the higher the Debye temperature, the larger the mi-
crohardness is. The Debye temperature of Cmmm SiC2N4 is
higher than that of C2/m SiC2N4, implying that the micro-
hardness of C2/m SiC2N4 is not so good as that of Cmmm
SiC2N4. Furthermore, since Debye temperature in a solid rep-
resents the interatomic force, the higher Debye temperature
also indicates that Cmmm SiC2N4 has stronger bonds than
C2/m SiC2N4.
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Fig. 7. (color online) (a) Pressure dependences of Debye temperatures
of Cmmm and C2/m SiC2N4; pressure dependences of transverse νs,
longitudinal ν l, and average νm sound velocities of (b) Cmmm SiC2N4
and (c) C2/m SiC2N4.

4. Conclusions
In this work, we employ the density functional perturba-

tion theory to investigate the electronic structures, elastic and
thermodynamic properties of the two new discovered phases
of SiC2N4 under pressure. The calculated structural and elas-
tic parameters accord well with previous theoretical values at
zero pressure. The C2/m phase is an indirect-gap semicon-
ductor, while Cmmm phase is a direct-gap semiconductor. The
band-gap energies of C2/m phase at 4 GPa and Cmmm phase

at 25 GPa are calculated to be 2.85 eV and 3.21 eV, respec-
tively. With the increase of pressure, a charge transfer from
the C atoms and Si atoms to N atoms is observed for each
of both phases. The two phases satisfy the mechanical stable
criteria within 60 GPa. With increasing the pressure, the de-
gree of the anisotropy decreases rapidly in monoclinic phase,
whereas it remains almost unchanged in orthorhombic phase.
For the orthorhombic phase, its {1 0 0} shear planes show
more isotropic than the {0 1 0} shear planes as well as the
{0 0 1}. Furthermore, both phases behave in brittle manners
within 60 GPa. However, the degrees of brittleness for the
two phases decrease under applied pressure. The shear mod-
ulus, bulk modulus, Young’s modulus, Poisson’s coefficient,
and wave velocities as well as Debye temperature are also dis-
cussed in this paper, more experimental and theoretical studies
are recommended.
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