粤北大宝山矿区徐屋岩体 SHRIMP 锆石 U-Pb 年龄及其地质意义

潘会彬¹,康志强^{1,2},付文春¹ PAN Hui-bin¹, KANG Zhi-qiang^{1,2}, FU Wen-chun¹

 1.桂林理工大学/地球科学学院/广西隐伏金属矿产勘查重点实验室,广西桂林 541004;
 2.中国科学院地球化学研究所,贵州贵阳 550002
 1. School of Earth Science, Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin 541004, Guangxi, China;
 2. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Guizhou, China

摘要:徐屋岩体位于粤北大宝山矿区南部,是区内花岗岩体的重要组成部分。首次采用SHRIMP 锆石 U-Pb定年方法对徐屋 岩体进行了年代学研究,获得其成岩年龄为441.2±4.2Ma(MSWD=1.02),表明其为加里东期岩浆活动的产物。结合前人年龄 数据表明,大宝山矿区存在有加里东期和燕山期2次成岩作用和1次成矿作用,且成矿作用与燕山期花岗岩关系密切。 关键词:SHRIMP 锆石 U-Pb 年龄;徐屋;次英安斑岩;大宝山矿区;粤北 中图分类号:P597⁺.3 文献标志码:A 文章编号:1671-2552(2014)06-0894-06

Pan H B, Kang Z Q, Fu W C. SHRIMP zircon U-Pb ages of Xuwu subdacitic porphyry in the Dabaoshan ore district of northern Guangdong Province and its geological implications. *Geological Bulletin of China*, 2014, 33(6):894–899

Abstract: The Xuwu subdacitic porphyry is located in the south of the Dabaoshan ore district. This paper reports for the first time the SHRIMP zircon U-Pb age of Xuwu dacitic porphyry (441.2 ± 4.2 Ma), suggesting Caledonian. Combined with the previous dating results, the authors conclude that there are two rock-forming stages (Caledonian and Yanshanian) and one ore-forming stage (Yanshanian) in the Dabaoshan ore district, with the mineralization mainly related to the Yanshanian intrusions.

Key words: SHRIMP zircon U-Pb ages; Xuwu; subdacitic porphyry; Dabaoshan ore district; northern Guangdong Province

粤北大宝山矿区位于南岭成矿带中段,是中国 南岭地区典型的多金属硫化物矿区,包括大宝山多 金属矿床、大宝山斑岩型钼矿床、船肚夕卡岩型钨 钼矿床等。前人对矿床的地球化学、蚀变一矿化特 征^[1-3]、成矿物质和成矿流体来源^[4-5]、成矿模式和找 矿预测^[6-8]、矿床成因^[9-11]等作了大量的研究。而关 于矿区岩浆岩成岩时代的研究则主要集中在大宝 山岩体^[2-3,9,12-14]、船肚岩体^[2,15]和丘坝岩体^[15]。结合矿 区成矿年代学研究认为,成矿作用与燕山期花岗岩体有着密切的关系^[3,16-17]。徐屋岩体位于矿区的南部,被认为是燕山期花岗岩,具有一定的成矿潜力,然而,截止到目前尚无对其成岩时代数据的报道。 笔者采用SHRIMP锆石U-Pb定年方法对矿区徐屋 岩体的形成时代进行了精确厘定,对于完善大宝山 矿区成岩年代学格架和确定矿区及其外围找矿靶 区具有一定的指导意义。

收稿日期:2013-11-23;修订日期:2014-02-17

资助项目: 广西矿冶与环境科学实验中心资助项目(编号:KH2011ZD002)、广西八桂学者项目、广西教育厅项目(编号:201010LX170) 和广西自然科学基金项目(编号:2012GXNSFBA053132)

作者简介:潘会彬(1988-),男,在读硕士生,地球化学专业。E-mail: phbin2013@163.com

通讯作者: 康志强(1979-), 男, 副教授, 从事岩石地球化学方面研究。E-mail: zk99201@163.com

1 地质背景

大宝山矿区在构造位置上处于南岭纬向构造 带南侧、大东山一贵东东西向构造岩浆带与吴川— 四会深大断裂构造带的复合部位。区内广泛出露 古生代地层,其中北东部和东部泥盆系—石炭系碳 酸盐岩分布最广,北西部和西部寒武系浅变质砂页 岩次之,有少量下侏罗统、上白垩统碎屑岩分布,缺 失奧陶系和志留系。矿区构造复杂,以断裂为主, 主要有近东西向船肚—大宝山断裂,北东—南北向 九曲岭断裂和徐屋断裂,以及北北西向的大宝山断 裂和丘坝断裂等。区内岩浆活动频繁而强烈,主要 发生在中生代,矿区北侧近东西向大东山—贵东花 岗岩带为燕山早期侵位形成,出露面积达数百平方 千米,是本区岩浆岩的主体。在岩体中分布有许多 中一酸性浅成、超浅成小岩体,如大宝山地区的大 宝山、丘坝、岩前、徐屋、凉桥等次英安斑岩,以及大 宝山和船肚花岗闪长斑岩等(图1),这些小岩体多 呈岩株、岩墙和岩脉产出^{19,18-19]①}。

大宝山矿区是一个多矿种、多类型的大型多 金属矿区,可划分为5种矿床类型:风化淋滤型褐 铁矿床、铜铅锌硫化矿床、层状菱铁矿矿床、斑岩 型钼矿床和夕卡岩型钼钨矿床。其中褐铁矿床赋 存于中泥盆统东岗岭上亚组凝灰岩中,矿体呈层 状,直接裸露于地表;铜铅锌多金属矿床赋存在中 泥盆统东岗岭下亚组中,矿体总体倾向东,呈多层

图1 大宝山矿区区域地质图(据参考文献[3])

Fig. 1 Regional geological map of the Dabaoshan ore district

1一下侏罗统金鸡组;2一石炭系壶天组;3一石炭系测水组;4一泥盆系天子岭组;5一泥盆系棋子桥组;

6一泥盆系老虎头组;7一寒武系高滩组;8一黑云母钾长花岗岩;9一花岗闪长斑岩;10一黑云母

二长花岗岩;11一次英安斑岩;12一铁帽;13一地质界线;14一断层;15一采样位置

状分布;菱铁矿矿床产于上述2类矿床之间的凝灰 岩中;斑岩型钼矿床产于船肚和大宝山花岗闪长斑 岩体的内外接触带上,大宝山斑岩钼矿体围绕大宝 山花岗闪长斑岩体呈环状分布,船肚斑岩钼矿体赋 存在船肚花岗闪长斑岩体及北接触带内侧,整个岩 体都有矿化;夕卡岩型钼钨矿体主要产于船肚花岗 闪长斑岩体南缘与天子岭组灰岩接触交代的石榴 子石夕卡岩带中,矿体多呈透镜状,上部花岗闪长 斑岩主要呈绢云母化,下部夕卡岩带或大理岩呈硬 石膏化、透闪石化、绿泥石化等。

2 样品采集及测试方法

定年样品(DBS12-23)采自大宝山矿区南部的 徐屋岩体(图1),岩性为次英安斑岩,岩石蚀变严重, 矿物呈一定的定向性(图2)。在选取锆石前,先将岩石 样品破碎,用常规的人工淘洗、电磁选及重液选方法 处理样品,分离出锆石,然后在双目镜下挑纯。制样 时先将锆石样品与标准锆石 BR266(²³⁸U=903×10⁻⁶, ²⁰⁶Pb/²³⁸U=0.09059,t=559Ma)在玻璃板上用环氧树脂 固定,然后将锆石颗粒磨薄抛光,直至锆石内部暴露, 并对样品靶上锆石进行透射光、反射光照相和阴极发 光图像分析,据此选定锆石微区原位分析的靶位,再 进行镀金以备分析。锆石阴极发光分析与成像(CL) 在澳大利亚科廷大学成像与应用物理系完成。

SHRIMP 锆石 U-Pb 同位素分析在澳大利亚科 廷大学 John de Laeter 中心 SHRIMP-II 仪器上完成。样品详细分析流程和测试原理见参考文献 [20]。一次离子流(O⁻2)稳定在 2.0nA,离子束直径约 20μm。应用锆石标样进行同位素 U/Pb 比值的校 正,年龄计算采用 Steiger 等^[22]推荐的 U、Th 衰变常 数,普通铅根据实测²⁰⁴Pb/²⁰⁶Pb 进行校正^[22],数据的 计算和作图采用 Ludwig^[23-24] SQUID 2和 Isoplot3.0 程序。单个数据点误差均为1σ,年龄加权平均值 具有 95%的置信度,具体分析数据见表1。

3 测试分析结果

大宝山徐屋岩体样品(DBS12-23)中代表性锆 石颗粒的阴极发光(CL)图像见图3,锆石大部分呈 长柱状,具有明显的振荡环带,锆石的Th/U值介于 0.301~0.678之间,均大于0.10,属于岩浆成因的锆 石^[25-26]。11个锆石颗粒具有十分相近的²⁰⁶Pb/²³⁸U年 龄值,所获年龄数据的加权平均值为441.2±4.2Ma (MSWD=1.02)。在²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U图(图4-a) 上,样品投影点均位于谐和线上,且比较集中,表明 这些锆石颗粒在形成后U-Pb同位素体系是基本封 闭的,未受后期地质热事件的干扰而引起Pb的明显 丢失等。因此,上述²⁰⁶Pb/²³⁸U年龄值可以代表徐屋 岩体的形成时代。

4 讨 论

4.1 成岩时代

研究区与成矿有关的花岗闪长斑岩和次英安 斑岩体的成岩年代学研究可以追溯到20世纪80年 代(表2)。刘姤群等¹⁹采用K-Ar法获得的大宝山花 岗闪长斑岩和次英安斑岩年龄分别为97~101Ma和 163~166Ma;蔡锦辉等¹¹³采用全岩 Rb-Sr等时线法

图 2 徐屋次英安斑岩体手标本(a)及显微照片(b) Fig. 2 The hand specimen photo(a) and micrograph(b) of Xuwu subdacitic porphyry

分析	²⁰⁶ Ph /%	U/10 ⁻⁶	Th/10 ⁻⁶	232 TL /238 I I	²⁰⁶ Db* /0/	206 Db */238 I I	误差	$^{207}\text{Pb}^*/$	误差	206 Pb/ 238 U	误差
点号	F U _c / %0	0/10	111/10	III/ U	FU / %	FU/ U	1σ/%	²³⁵ U	$1\sigma/\%$	年龄/Ma	/Ma
04	0.105	603	290	0.497	37.3	0.072	1.5	0.561	2.2	448.6	6.7
05	-0.050	246	101	0.422	14.9	0.071	1.6	0.540	2.9	439.6	6.9
06	-0.053	213	140	0.678	13.0	0.071	1.6	0.571	2.9	442.4	7.0
07	0.223	318	98	0.320	19.4	0.071	1.6	0.546	2.9	443.3	6.8
08	0.081	396	165	0.430	24.3	0.071	1.6	0.553	2.4	444.6	6.7
09	-0.052	249	131	0.542	14.7	0.069	1.8	0.531	3.1	429.5	7.6
10	0.000	640	242	0.390	39.3	0.071	1.5	0.564	2.1	444.8	6.6
11	-0.046	250	106	0.437	15.2	0.071	1.6	0.555	2.8	440.8	6.8
12	-0.311	150	59	0.409	9.3	0.072	1.7	0.581	3.9	451.0	7.4
13	0.667	162	47	0.301	9.5	0.069	2.0	0.532	5.1	425.4	8.3
14	0.086	296	151	0.528	17.8	0.070	1.6	0.521	2.8	436.2	6.7

表1 徐屋次英安斑岩(DBS12-23)SHRIMP 锆石 U-Th-Pb 同位素测试结果 Table 1 SHRIMP zircon U-Th-Pb analytical results of Xuwu subdacite porphyry(DBS12-23)

注:以实测²⁰⁴Pb/²⁰⁶Pb 校正的普通铅;Pb。和Pb^{*}分别指普通铅和放射性铅

获得大宝山花岗闪长斑岩年龄为155±23Ma,次英 安斑岩强蚀变岩体年龄为195.5±11Ma,弱蚀变岩体 年龄为135.5±5.7Ma;裴太昌等¹⁴⁴报道的大宝山花岗 闪长斑岩和次英安斑岩全岩 Rb-Sr等时线年龄分 别为156Ma和168Ma。由于K-Ar和Rb-Sr同位素 体系封闭温度较低,易受后期构造一热事件影响而 导致其年龄值偏低,且本区出露岩体均受到不同程 度的蚀变,因此上述K-Ar和Rb-Sr等时线年龄并

不精确。最近,王磊等¹²采用高精度LA-ICP-MS错 石U-Pb法对大宝山和船肚花岗闪长斑岩进行分析, 定年结果分别为175.8±1.5Ma和175.0±1.7Ma,并认 为两者原本是连为一体的,后期被构造错断,表明大 宝山和船肚地区岩浆活动的时限集中在163~175Ma 之间,形成于燕山早期。蔡锦辉等153对矿区丘坝次英 安斑岩和船肚花岗闪长斑岩进行了单颗粒锆石 LA-ICP-MS测试,得出其年龄分别为419~496Ma和 410~489Ma,大宝山强蚀变次英安斑岩的测试年龄有 2组,一组为145~168Ma,另一组为412~420Ma,表明 矿区存在一期加里东期的岩浆活动。本文首次采用 SHRIMP 锆石 U-Pb 定年法测得徐屋次英安斑岩体 的成岩年龄在425~451Ma之间,该成岩年龄与上述 蔡锦辉等鬥获得的丘坝岩体和船肚岩体在形成时代 上一致,均为加里东期形成的岩浆岩,可能为同一时 期同源岩浆的产物。以上研究结果表明,该区存在加 里东期和燕山期2期岩浆活动事件。

4.2 成岩成矿关系

大宝山多金属矿床成矿年代学研究表明,区内 与次英安斑岩有密切成因联系的黄铜矿—黄铁矿 一铅锌矿床的成矿年龄在158~174Ma之间^[17,27-28];与 花岗闪长斑岩有关的斑岩型—夕卡岩型钼钨矿床 的成矿年龄在161~167Ma之间^[3,17]。可以看出,该区

表2 大宝山矿区成岩成矿年龄数据

 Table 2
 Data of rock-forming and ore-forming ages of the Dabaoshan ore district

岩(矿)体名称	测试矿物	测试方法	年龄/Ma	资料来源	
	全岩	K-Ar法	97~101	[9]	
	全岩	Rb-Sr 等时线	155±23	[10]	
大宝山花岗闪长斑岩	含矿石英脉	Rb-Sr 等时线	136.3±6.2	[13]	
	全岩	Rb-Sr 等时线	156.0	[14]	
	锆石	LA-ICP-MS U-Pb法	175.8±1.5	[2]	
	全岩	K-Ar法	163~166	[9]	
	锆石	U-Pb稀释法	441±19	[12]	
	含矿石英脉	Rb-Sr 等时线	168.7 ± 5.7		
	弱蚀变岩	Rb-Sr 等时线	135.3±5.7	[13]	
大宝山次英安斑岩	强蚀变岩	Rb-Sr 等时线	195.5±11		
	全岩	Rb-Sr 等时线	168.0	[14]	
	锆石	LA-ICP-MS U-Pb法	174.6±1.5	[3]	
	退屈赤巴	SUDIND U. Dh >+	(145~168)	[15]	
	蚀蚀文石	SHKIMP U-P0 伝	(412~420)		
如肚井出门长斑鸟	锆石	LA-ICP-MS U-Pb法	175.0±1.7	[2]	
加加化闪闪闪烁石	锆石	LA-ICP-MS U-Pb法	410~489	[15]	
丘坝次英安斑岩	锆石	LA-ICP-MS U-Pb法	419~496		
徐屋次英安斑岩	锆石	SHRIMP U-Pb法	425~451	本文	
钨铋钼矿石	石英	Rb-Sr等时线	136.3±6.2	[27]	
铜铅锌矿石	石英	Rb-Sr等时线	168.7 ± 5.7	[27]	
似层状铜矿体	辉钼矿	Re-Os模式年龄	164.7±3	[28]	
层纹状黄铁矿矿石	黄铁矿	Rb-Sr等时线	168±5		
辉钼矿石英脉矿石	石英	Rb-Sr 等时线	164±3	[17]	
黄铁矿石英脉矿石	石英	Rb-Sr 等时线	162±4		
斑岩型、夕卡岩型钼钨矿体	辉钼矿	Re-Os模式年龄	163~165	[3]	

多金属矿成矿年代学数据与燕山期花岗岩形成时 代(163~175Ma)基本一致,应为同一次岩浆事件的 产物。蔡锦辉等¹¹⁵认为,大宝山矿区在加里东末期 存在海底火山活动,这次火山喷发在矿区形成了广 泛分布的次英安斑岩,并为该地区带来了大量的成 矿物质。因此认为,整个大宝山矿区经历了2次成 岩(加里东期和燕山期)和1次成矿作用(燕山期)。 这一认识为大宝山矿区及其外围找矿指明了方向, 即燕山期岩浆岩与成矿关系密切,而加里东期岩浆 岩出露的地区成矿作用则不明显。

5 结 论

(1)大宝山矿区徐屋次英安斑岩体 SHR IMP 锆石 U-Pb 年龄为441.2±4.2Ma,与矿区丘坝岩体和船 肚岩体(早期)的形成时代一致,表明大宝山矿区存 在广泛的加里东期岩浆活动。

(2)大宝山矿区成岩成矿年代学研究表明,该 区经历了2次成岩和1次成矿作用,且成矿作用主 要与燕山期花岗岩相关,因此该区的找矿方向是寻 找晚期燕山期的岩浆活动,而早期加里东期岩浆活 动成矿较弱。

致谢:野外地质工作得到大宝山矿业有限公司 杨富初、高志辉、李春生等领导和技术人员的大力 支持和帮助;审稿专家对论文提出了许多建设性的 意见,在此一并表示感谢。

参考文献

- [1]魏振伟.广东省大宝山斑岩型钼矿床围岩蚀变特征[J]. 甘肃科技, 2007,23(9):103-104.
- [2] 王磊,胡明安,杨振,等.粤北大宝山矿区花岗闪长斑岩LA-ICP-MS 锆石 U-Pb 年龄及其地质意义[J]. 中国地质大学学报,2010,35 (2):176-185.
- [3] 王磊,胡明安,屈文俊,等.粤北大宝山矿区花岗闪长斑岩LA-ICP-MS 锆石 U-Pb 和辉钼矿 Re-Os 定年及其地质意义[J].中国地质, 2012, 39(1):29-42.
- [4] 宋世明, 胡凯, 蒋少涌, 等. 粤北大宝山多金属矿床成矿流体的 He-Ar-Pb-S 同位素示踪[]]. 地质找矿论丛, 2007, 22(2):87-99.
- [5]徐文忻,李蘅,陈民扬,等.广东大宝山多金属矿床成矿物质来源同 位素证据[J]. 地球学报,2008, 29(6):684-690.
- [6]王联魁,覃慕陶,刘师先,等.吴川一四会断裂带铜金矿控矿条件和 成矿预测[M]. 北京:地质出版社,2001.
- [7]王磊.粤北大宝山钼多金属矿床成矿模式与找矿前景研究[D]. 武 汉:中国地质大学博士学位论文, 2010: 1-119.
- [8]祝新友,韦昌山,王艳丽,等.广东大宝山钼钨多金属矿床成矿系统 与找矿预测[J]. 矿产勘查, 2011, 2(6):661-668.

- [9]刘姤群,杨世义,张秀兰,等.粤北大宝山多金属矿床成因的初步探 讨[]].地质学报,1985,1:47-60.
- [10]黄书俊.大宝山多金属矿床原生晕理想分带模式[J]. 矿产与地质, 1988,2(3):80-87.
- [11]杨振强.大宝山块状硫化物矿床成因:泥盆纪海底热事件[J]. 华南 地质与矿产,1997,(1): 7-17.
- [12]葛朝华,韩发.广东大宝山矿床喷气一沉积成因地球之地球化学 特征[M]. 北京:北京科学技术出版社,1987.
- [13]蔡锦辉,刘家齐.粤北大宝山多金属矿区岩浆岩的成岩时代[J].广 东地质,1993,8(2):45-52.
- [14]裴太昌,钟树荣,刘胜,等.粤北大宝山一雪山障地区成矿系列及成 矿模式[J]. 地质找矿论丛, 1994,9(3):48-58.
- [15]蔡锦辉,韦昌山,张燕挥,等.广东省大宝山钥多金属矿区岩浆岩成 岩时代研究[J]. 华南地质与矿产,2013,29(2):146-155.
- [16]刘莎,王春龙,黄文婷,等.粤北大宝山斑岩钼钨矿床赋矿岩体锆石LA-ICP-MSU-Pb年龄与矿床形成动力学背景分析[J].大地构造与成矿学,2012,36(3):440-449.
- [17]杜国民,梅玉萍,蔡红,等. 粤北大宝山钼钨多金属矿床年代学研 究及其意义[J]. 华南地质与矿产,2012,28(3):227-231.
- [18]庄明正. 大宝山多金属矿田矿床类型及成矿作用探讨[J]. 地质与 勘探,1983, 8:9-16.
- [19]庄明正. 大宝山多金属矿床成矿条件及矿床成因探讨[J]. 地质与 勘探,1986, 5:27-31.
- [20]Wingate M T D, Kirkland C L, Bodorkos S. Introduction to geochronology data released in 2010[M]. Geological Survey of Western Australia, Perth 2010.
- [21]Steiger R H, Jäger E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth Planet. Sci. Let, 1977, 36:359–362.
- [22]Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26: 207–221.
- [23]Ludwig K R. Users Manual for Isoplot/Ex(version2.49): A GeochronologicalToolkit for Microsoft Excel[M]. Berkeley Geochronology Center, 2001, 1: 1–55.
- [24]Ludwig K R. Isoplot 3.00: a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication 4, 2003.
- [25]Williams I S, Buick A, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynold Region, central Austrilia[J]. J. Metamorphic Geol., 1996, 14: 29–47.
- [26]Pidgeon R T, Nemchin A A, Hitchen G J. Intenal structures of zircon from Archaean granites from the Darling Range batholith: implication for zircon stability and the interpretation of zircon U–Pb ages[J]. Contrib. Mineral. Petrol., 1998, 132: 288–299.
- [27] 丘广礼,汤吉方,等.粤北大宝山及其外围地区多金属矿床成矿条 件及成矿规律[M]. 湘桂地区铜铅锌隐伏矿床研究(2). 北京:地质 出版社,1994: 11-35.
- [28]毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩 石圈多阶段伸展[J]. 地学前缘,2004,11(1):45-55.
- ①黎洲辉,魏振伟,等. 广东省韶关市大宝山钼多金属矿接替资源勘 查报告.2011.