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by relatively high Mg# (54–57), low contents of Na2O 
(3.2–4.3  wt%), low abundances of incompatible elements 
(LILE, Nb and P), high initial 87Sr/86Sr (0.7175–0.7184) 
and negative εNd(t) (−9.98 to −9.72). REE patterns show 
moderate fractionation ((La/Yb)cn  =  8.07–18.80) with 
negative Eu anomalies (Eu/Eu*  =  0.62–0.86). Compared 
with the granodiorite, the granite has a wider range of Mg# 
(49–59), lower contents of Na2O (2.8–4.2  wt%), higher 
initial 87Sr/86Sr (0.7232–0.7243) and more negative εNd(t) 
(−12.07 to −11.24) values. REE patterns are relatively flat 
((La/Yb)cn = 14.73–29.37) with smaller negative Eu anom-
alies (Eu/Eu*  =  0.48–0.63). The granodiorite has lower 
K2O/Na2O and Al2O3/(MgO  +  FeOTot) values than the 
granite. Based on major and trace element geochemistry 
and Sr–Nd isotopes, we interpret the Longtan granodioritic 
magma to have been derived by partial melting of interlay-
ered Proterozoic metabasaltic to metatonalitic source rocks, 
whereas the granite was probably derived from a mixture 
of Proterozoic metagraywackes and metaigneous rocks. 
Field, petrographic and geochemical evidence indicate 
that partial melting and fractional crystallization were the 
dominant mechanism in the evolution of the pluton. The 
Longtan granodiorites and granites are petrologically and 
geochemically similar to typical Indosinian varieties and 
are considered to have been produced in a similar man-
ner. The Indosinian granitoids in the region show a mag-
matic peak age of ~238 Ma from the Yunkai-Nanling belt 
in the southeast and a magmatic peak age of ~218 Ma of 
the Xuefengshan belt to the northwest. These early and late 
magmatic episodes of the Indosinian granitoids also dis-
play slight variations of regular compositions, εNd(t) values 
and TDM ages. Thus, we propose a syncollisional extension 
model that Indosinian granitoids were generated by decom-
pressional partial melting of crustal materials triggered by 
two extensions during collision of the Indochina and South 

Abstract  The Indosinian orogeny is recorded by Trias-
sic angular unconformities in Vietnam and South China 
and by widely occurring granitoids in the Yunkai-Nanling 
and the Xuefengshan belts of South China. The Longtan 
pluton in the northwestern part of the Xuefengshan belt 
is a typical high-K, calc-alkaline, I-type granitoid, which 
can shed light on the relationship between the Indosinian 
tectonic and magmatic activity in the region. Three pre-
cise zircon U–Pb ages yielded a mean of 218 ±  0.8  Ma, 
which is taken as the age of crystallization. The pluton 
consists of both granodiorite (64.59–68.01  % SiO2 and 
3.25–4.22  % K2O) and granite (70.49–71.80  % SiO2 and 
4.07–4.70  % K2O). The granodiorites are characterized 
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China blocks. The Longtan pluton in the northwestern-
most part of the orogenic belt marks the termination of the 
Indosinian magmatism and orogenesis.

Keywords  South China · Indosinian orogeny · High-K 
granodiorite and granite · Granitoid genesis · Partial 
melting · Fractional crystallization

Introduction

Granitoid plutons derived from crustal melting occur in a 
wide variety of tectonic settings, e.g., subduction zones, col-
lision zones, rift zones and intraplate environments (Petford 
et al. 2000; Annen et al. 2006; Brown 2007; Xiao et al. 2009; 
Conrad et  al. 2011; Le Pape et  al. 2012). Seismic, magne-
totelluric and gravity data of many orogens, including the 
central Andes and Himalayas, have identified the presence 
of partial melt within thickened continental crust (Schilling 
et al. 1997; Schmitz et al. 1997; Kalsbeek et al. 2001; Van-
derhaeghe and Teyssier 2001; Wang et al. 2013). Addition-
ally, there is abundant evidence for the presence of partial 
melt in deeply exhumed ancient orogens (e.g., Vanderhae-
ghe and Teyssier 2001). The combined processes of crustal 
melting, ascent and emplacement of magma are considered 
significant material and heat transfer processes from deep to 
shallow crust (England and Thompson 1986; Simpson et al. 
2000). Thus, the magma source and magma-forming pro-
cess of crustal melting are key to understanding the evolu-
tion of continental crust which consists mainly of granitoids 
(Altherr et al. 2000; Annen et al. 2006; Brown 2007).

The tectonic configuration of Southeast Asia is the 
consequence of amalgamation of microcontinents from 
the Early Triassic to the present. The Indosinian orogeny, 
which was defined originally by Triassic angular uncon-
formities in Vietnam and South China (Deprat 1914; Fro-
maget 1932, 1941), is thought to have been caused by con-
tinental collision between the Indochina and South China 
blocks (SCB) during closure of the eastern Paleo-Tethys 
Ocean (Cho et al. 2008). Previous studies of the Late Per-
mian to Triassic granitoids in the SCB (e.g., Huang et  al. 
1987; Chen and Jahn 1998; Shen et  al. 1998; Deng et  al. 
2004; Chen et  al. 2007, 2011, 2013; Zhou et  al. 2008; 
Mao et  al. 2011; Yang et  al. 2012; Charvet 2013; Wang 
et  al. 2001, 2002, 2007, 2013) have shown that Indosin-
ian granitoids in the Yunkai-Nanling belt in the southeast 
are strongly peraluminous, whereas those in the Xuefeng-
shan belt in the interior of the SCB are weakly to moderate 
peraluminous.

However, the timing of the Indosinian orogeny, the ori-
gin of the granitoids and the regional tectonic framework 
are still not clear (Carter et al. 2001; Lepvrier et al. 2004). 
Numerous tectonomagmatic models have been proposed 

to explain the patterns of deformation and magmatism of 
this orogen. For example, Li and Li (2007) proposed that 
flat-slab subduction of the Pacific plate was responsible 
for development of the broad, Laramide-style magmatic 
province in the SCB during the Triassic to Early Juras-
sic. Lepvrier et  al. (2004, 2008), Zhou et  al. (2006) and 
Shu et  al. (2008) proposed that Indosinian magmatism 
was caused by northward subduction and collision of the 
Indochina block with the SCB in response to closure of 
the Paleo-Tethys Ocean. Wang et al. (2007) suggested that 
the Indosinian granitoids might have resulted from intrac-
ontinental collision between the Yangtze and Cathaysian 
blocks. Additionally, Chu et  al. (2012a, b) suggested that 
the Early Mesozoic granites may be late-orogenic products 
of the intracontinental Xuefengshan orogen produced by 
subduction of the Paleo-Pacific ocean plate. However, none 
of these models adequately explain the wide distribution 
of the Indosinian granitoids, particularly variations in age 
over a distance of ca. 1,200 km. Most workers in the region 
agree that the granitoids were derived from Precambrian 
crustal basement (e.g., Ge 2003; Deng et  al. 2004; Wang 
et  al. 2007), and Wang et  al. (2002, 2007, 2013) specifi-
cally proposed that the magmatic activity was related iso-
static adjustment, in situ radiogenic heating, and magmatic 
underplating of a thickened crust.

Although many studies have focused on the Indosinian 
granitoids in the SCB, little attention has been paid to the 
crustal melting processes or to defining the northern mar-
gin of the orogen (Faure et  al. 1996; Xiao and He 2005; 
Lin et al. 2008). Additionally, there are no systematic geo-
chemical studies of the Indosinian granitoids can be used 
to understand the time–space pattern and termination of 
the Indosinian tectonomagmatism (Wang et al. 2013). The 
Longtan pluton, one of the youngest Indosinian plutons in 
the region, is located in the northwesternmost part of the 
orogenic belt and contains rocks compositionally similar to 
Indosinian granitoids elsewhere in the SCB (Fig. 1; BGM-
RHN 1988; Chen and Jahn 1998; Wang et al. 2002, 2005a; 
Mao et  al. 2011). In this paper, we present new precise 
SIMS zircon U–Pb ages, major and trace element data, and 
Sr–Nd isotopes values for the Longtan granodiorites and 
granites. We then use these new data with previously pub-
lished information on Indosinian granitoids of the entire 
SCB to constrain the origin, time–space patterns and termi-
nation of Indosinian magmatism.

Geologic background

Tectonic framework and sedimentary sequence

The SCB is composed of the Yangtze block to the north-
west and Cathaysian block to the southeast (Fig.  1a; Ren 
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1996; Yan et al. 2003). The two blocks have a folded and 
metamorphosed basement composed of the Mesoprote-
rozoic to Neoproterozoic Sibao and Banxi groups and 
their equivalents (Zhao et  al. 2011). The Sibao group is 
dominated by epimetamorphic sandy-argillaceous detrital 
rocks with flysch and volcanic intercalations (BGMRGX 
1985; Zhao et  al. 2013a, b). The Banxi group consists of 
a graywacke-schist succession, tillite, limestone and vol-
canic rocks (BGMRHN 1988; Zhou et  al. 2002; Wang 
and Li 2003). The sedimentary cover is composed mainly 
of folded Paleozoic and Lower Triassic strata of shallow 
marine origin, and Middle Triassic to Cretaceous clastic 
rocks (Metcalfe 2011; Wang et  al. 2013). The Indochina 

block is an amalgamation of several terranes that are sepa-
rated by suture zones (Fig.  1a; Fan 2000; Metcalfe 2002, 
2011; Yan et al. 2006). The major amalgamation, related to 
the Indosinian orogeny, was produced by collision between 
the Indochina and adjacent blocks (Deprat 1914; Fromaget 
1927, 1941; Lacassin et al. 1998; Lepvrier et al. 2008). The 
main phase of this collision is constrained at 258–243 Ma 
by U–Pb zircon ages of metamorphic basement in Vietnam 
(Carter et al. 2001).

Numerous suture zones, which were produced by clo-
sure of the Paleo-Tethys Ocean, subdivide and separate 
the SCB from adjacent blocks (Fig. 1a). The Neoprotero-
zoic to Early Paleozoic Jiangshao suture zone separates 

Fig. 1   a Sketch map of major 
microcontinents and suture 
zones of the South China and 
Indochina blocks in the South-
east Asia (Carter et al. 2001; 
Yan et al. 2003, 2006; Metcalfe 
2006; Zhou et al. 2006, 2008; 
Lin et al. 2008). b Exposed 
210–260 Ma granitoids in the 
SCB. Representative ages (Ma) 
of Indosinian plutons and data 
of age contour are from Li and 
Li (2007), Wang et al. (2005a, 
b), Zhou et al. (2006) and refer-
ences shown in Supplementary 
Table 5. c Geological map of 
the Longtan pluton and adjacent 
regions showing petrology and 
structure in the plutons (modi-
fied after BGMRHN 1988, 
1995a, b; Chen et al. 2007). 
The symbols of yellow triangles 
refer to sampling locations



	 Int J Earth Sci (Geol Rundsch)

1 3

the Yangtze block from the Cathaysian block within the 
SCB (Ren 1996; Charvet et  al. 1996; Yan et  al. 2006; 
Wan 2011). The Indochina block is separated from the 
SCB by the Paleozoic to Triassic Song Ma suture zone 
(Hutchison 1975; Carter et al. 2001; Metcalfe 2006; Shu 
et  al. 2008; Faure et  al. 2013), which contains strongly 
sheared mafic and ultramafic rocks regarded as elements 
of a disrupted ophiolite (Fromaget 1941; Lepvrier et  al. 
2004; Trung et  al. 2006). The Triassic Mianlüe suture 
separates the Qinling-Dabie orogenic belt from the SCB 
(Ratschbacher et  al. 2003; Lai et  al. 2004; Zhang et  al. 
2004a, b).

Indosinian magmatism

Indosinian granitoids occur as voluminous, peraluminous 
batholiths and widely dispersed small intrusions within 
the SCB (Fig. 1b; BGMRJX 1984; BGMRHN 1988; Mao 
et al. 2011). They consist of 60 % (outcrop area) strongly 
peraluminous (A/CNK  >  1.1) S-type granitoids (Deng 
et  al. 2004; Sun et  al. 2005), 30  % weakly peraluminous 
(A/CNK =  1.0–1.1) and 10  % calc-alkaline I-type grani-
toids. The strongly peraluminous granitoids contain minor 
mafic enclaves (Wang et al. 2007; Zhao et al. 2010), but the 
weakly peraluminous granitoids contain abundant angu-
lar to rounded mafic enclaves and sparse hornblende. The 
only known Indosinian mafic rocks are the enclaves in the 
granitoids (Wang et  al. 2007). The Indosinian granitoids 
have ages ranging from ca. 260 to 210 Ma based on various 
techniques (e.g., Chen et al. 2007, 2011; Chu et al. 2012a, 
b; Wang et al. 2007, 2013).

The Longtan pluton

The Longtan pluton, which is located in the central part of 
the Xuefengshan belt in the interior of the SCB, is one of 
the northwesternmost outcrop plutons (Fig. 1c). This EW-
striking, ellipsoidal granitoid was emplaced into the Silu-
rian monzogranitic Shuiche pluton (414 ± 4 Ma; Chu et al. 
2012a, b) and was later intruded by the Jurassic monzo-
granitic Longcangwan pluton (177 ±  1.7 Ma; Chen et  al. 
2007).

The pluton is composed of fine- to medium-grained 
biotite granodiorite and medium- to coarse-grained gran-
ite (Fig.  2a, b, e, f). Lath-shaped feldspar phenocrysts 
with a grain size of 0.8–3.5 cm are common in the gran-
ite. Ellipsoidal mafic microgranular enclaves (MMEs), 
10–30 cm in diameter (Fig. 2c), and fine-grained granitic 
enclaves with maximum diameter of 90 cm are also pre-
sent. The MMEs and elongated xenoliths with a gneissic 
texture are particularly common in the marginal zone 
(Fig.  2d; Zhuang et  al. 1988; Chen et  al. 1998, 2007; 
Wang et al. 2005a).

Previous workers have reported a wide range of ages 
for the Longtan pluton, from a low of 205  ±  2.2  Ma 
(LA-ICPMS; Luo et  al. 2010) to a high of 243  ±  3  Ma 
(SHRIMP zircon U–Pb; Wang et al. 2007). Some of these 
ages are difficult to evaluate, because of poor precision of 
the dating method or a lack of detail about the morphology 
and texture of the zircon grains (Chen et al. 1986; BGM-
RHN 1995a, b).

Sampling and analytical methods

Samples were collected from the margin to the center in the 
western part of the Longtan pluton (Fig. 1c). Three samples 
HH27-5, HH29-5 and HH31-8 were selected for zircon 
U–Pb analyses. Thirty-four fresh whole-rock samples were 
collected for major and trace element analyses and nine 
samples were selected for Sr–Nd isotopic analyses.

SIMS Zircon U–Pb dating

Zircons were separated from fresh samples by using stand-
ard heavy liquid and magnetic techniques. Zircon grains, 
together with the zircon standards DC-13, Qing Hu and 
Plesovice (Mattinson 2005; Li et al. 2009), were mounted 
in epoxy, polished and vacuum coated with high-purity 
gold. The shapes and internal textures of all the zircons 
were documented with transmitted and reflected light 
microscopy, as well as cathodoluminescence (CL) images 
to reveal their internal structures. CL images of zircons 
were taken using a JXA-8100 Cameca electron probe at a 
voltage of 15 kV and current of 10 nA at the Institute of 
Geology and Geophysics, Chinese Academy of Sciences. 
Measurements of U, Th and Pb isotopes were conducted 
using a newly installed Cameca IMS 1280 large-radius 
SIMS at the same institute. Analytical procedures are those 
described by Li et  al. (2009, 2010). Data were processed 
using the GLITTER, ISOPLOT and CGDK programs 
(Ludwig 2003; Qiu et al. 2013).

Major and trace element analysis

Major oxides were analyzed with a PANalytical Axios-
advance (Axios PW4400) X-ray fluorescence spectrometer 
(XRF) at the State Key Laboratory of Ore Deposit Geo-
chemistry, Institute of Geochemistry, Chinese Academy of 
Sciences (IGCAS). Loss on ignition (LOI) was obtained 
using 1 g of powder, which was heated to 1,100 °C for 1 h. 
Major oxides were measured on fused glass with a preci-
sion better than 2 %.

Trace elements were analyzed using a Perkin-Elmer Sciex 
ELAN 6000 ICP-MS at the IGCAS. The powdered sam-
ples (50 mg) were dissolved in a mixture of HF + HNO3 in 
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high-pressure Teflon bombs for 48 h at ca. 190 °C (Qi et al. 
2000). Rhodium was used as an internal standard to monitor 
signal drift during counting. Repeated analyses of interna-
tional standard GBPG-1 were used for analytical quality con-
trol. Analyses of international standards OU-6 and GBPG-1 
are in agreement with recommended values. The analytical 
precision was generally better than 5 % for all elements.

Whole‑rock Sr–Nd isotopic analysis

Sr and Nd isotopic ratios were analyzed at the IGCAS. 
87Rb/86Sr and 147Sm/144Nd ratios were calculated using 
the Sr and Nd abundances measured by ICP-MS. Sev-
eral analyses on the NBS-987 Sr standard yielded 

87Sr/86Sr = 0.710254 ± 5. Mean 143Nd/144Nd ratios for the 
Jndi-1 Nd standard were 0.512078 ± 7. 143Nd/144Nd ratios 
were normalized to the value of 146Nd/144Nd = 0.7219. Frac-
tionation effects during the Sr isotopic composition runs 
were eliminated by normalizing to an 86Sr/88Sr value of 
0.1194. Detailed procedures are available in Xu et al. (2007).

Analytical results

SIMS zircon U–Pb ages

Zircons from sample HH27-5 (granodiorite) have pyrami-
dal and prismatic crystal forms, inherited cores and 

Fig. 2   Field photographs and microphotographs of the granitoids 
from the Longtan pluton in the SCB. a Fine-grained granodiorite; 
b coarse-grained granite; c mafic microgranular enclave; d Silurian 

xenoliths; e microphotograph of granodiorite; f microphotograph of 
granite. Length of the marking pen is 14 cm
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magmatic oscillatory in CL images (Fig. 3a). They are 70–
290 μm long with length/width ratios ranging from 1:1 to 
3:1. All of zircons with Th/U ratios between 0.39 and 2.5 
show igneous or inherited cores. Three of 25 analyses have 
significant percentages of common 206Pb and were dis-
carded. The remaining 22 analyses give a concordia U–Pb 
age of 217.0 ± 1.4 Ma (2σ error) with a small MSWD of 
0.045 (Fig. 3b; Supplementary Table 1).

Zircons from sample HH29-5 (granite) have oscillatory 
zonal textures with Th/U ratios of ca. 0.40–1.35, indicating 
an igneous origin (Zhou et al. 2002). They are 40–280 μm 

long with length/width ratios ranging from 1:1 to 3:1 in CL 
images (Fig. 3c). Ten analyses that have f206(%) values sig-
nificantly higher than the detector background and 1 analy-
sis with a Th/U ratio less than 0.1 are excluded in the age 
calculation (Supplementary Table  1). Treated as a single 
group, the remaining 15 analyses yield a concordia U–Pb 
age of 217.8 ± 2.2 Ma (MSWD = 1.4; Fig. 3d).

Zircons from sample HH31-8 (granodiorite) exhibit 
euhedral, pyramidal and prismatic shapes and magmatic 
oscillatory zoning, with a minority of grains exhibiting 
inherited cores and magmatic rims. Lengths range from 40 

Fig. 3   Representative cathodo-
luminescence images of zircon 
grains and corresponding SIMS 
zircon U–Pb concordia diagram 
of the granitoid samples from 
the Longtan pluton
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to 320 μm yielding length/width ratios of 1:1–4:1 (Fig. 3e). 
Twenty-four analyses with Th/U ratios from 0.39 to 1.04 
were obtained (Supplementary Table  1). Four analyses 
have f206(%) values significantly higher than the detec-
tor background and are excluded in the age calculation. 
The remaining 20 analyses yield a concordia U–Pb age of 
218.7 ± 1.5 Ma (MSWD = 1.16; Fig. 3f).

The three samples have identical ages within the uncer-
tainty of the analyses, so we use all 57 analyses from the 
three samples to obtain a weighted mean 206Pb/238U age 
of 218 ± 0.8 Ma (MSWD = 3.2; 95 % confidence), pre-
cisely constraining the age of emplacement of the Longtan 
pluton.

Major and trace elements

Thirty-four samples from the Longtan pluton exhibit a 
narrow range of chemical compositions (Supplementary 
Table 2; Fig. 4). All samples belong to the granodiorite and 
granite series on a total alkali-silica diagram (Fig. 4a; Mid-
dlemost 1994; Le Maitre 2002) and show a high-potassic 
calc-alkaline affinity on the SiO2 versus K2O diagram 
(Fig. 5a; Morrison 1980; Roberts and Clemens 1993). The 
two groups are easily distinguished; granodiorites have 
64.6–67.5  % SiO2 and granites have 70.5–71.8  % SiO2 
(Fig. 4a). Both groups straddle the boundary between meta-
luminous and peraluminous fields, with A/CNK ratios from 
0.93 to 1.10 (Chappell 1999), and they plot in the field of 
I-type granitoids (Chappell and White 1992; Figs. 4b, 5e). 
There are significant negative correlations between SiO2 
and MgO, CaO, Fe2O3, P2O5, TiO2 and Zr, and positive 
correlations between SiO2 and K2O and Rb on the Harker 
diagrams (Fig. 5).

Both granodiorites and granites have similar chondrite-
normalized REE patterns with moderate to strong LREE 
enrichment ((La/Yb)cn  =  8.07–29.37), prominent nega-
tive Eu anomalies (EuN/Eu*  =  0.48–0.86) and moderate 
HREE fractionation ((Gd/Yb)cn  =  0.88–1.32) (Supple-
mentary Table 2; Fig. 6a). On the mantle-normalized trace 

element diagram (Fig. 6b), both granodiorites and granites 
display strong enrichment of Pb and depletion of Ba, Nb, 
Sr, P and Ti. The granodiorites show a moderate fraction-
ated REE pattern with LREE/HREE ratios of 7.22–13.72, 
(La/Yb)cn  =  8.07–18.80 and Eu/Eu* ratios (0.62–0.86), 
but the granites display strongly fractionated REE patterns 
with lower LREE/HREE ratios (11.35–16.69) and more 
significant HREE fractionation (La/Yb)cn  =  14.73–29.37 
and Eu/Eu* ratios (0.48–0.63) (Supplementary Table  2; 
Fig.  6a). The granodiorites show shallower Ti troughs 
(2,641–3,485 ppm) than the granites (1,323–2,060 ppm).

Whole‑rock Sr–Nd isotopes

The granodiorites exhibit lower initial 87Sr/86Sr ratios 
(0.7175–0.7184) but higher εNd(t) value (−9.98 to −9.72) 
(Supplementary Table  3; Fig.  9a), and model ages (TDM) 
varying from 1.65 to 1.76 Ga (except for sample HH31-17, 
TDM = 1.51). The initial 87Sr/86Sr ratios and εNd(t) values of 
the granites are from 0.7232 to 0.7243 and from −12.07 to 
−11.24, respectively. Model ages (TDM) of the granites are 
from 1.78 to 1.84 Ga.

Discussion

Petrogenesis: magma source, partial melting and fractional 
crystallization

High-K granodioritic to granitic magmas found in col-
lisional settings are mainly generated by (1) melting of 
crustal rocks by decompression or thermal relaxation (e.g., 
Roberts and Clemens 1993; Thompson et al. 1995; Petford 
et  al. 2000); or (2) ascending parent mantle melts con-
taminated by crustal material (e.g., Hildreth and Moorbath 
1988; Altherr et al. 2000). The geochemical characteristics 
[high K2O, FeO/MgO ratios (1.7–2.0), enrichment of Rb, 
Ba, Pb, LREE and initial 87Sr/86Sr ratios; negative Nb and 
εNd(t) values; low Zr values (<8.4  %) and 10,000  Ga/Al 

Fig. 4   Classification of the 
granitoids: a TAS diagram. 
All of the major element 
data have been recalculated 
to 100 % on a LOI-free 
basis (Middlemost 1994; Le 
Maitre 2002); b molar Al2O3/
(Na2O + K2O) versus molar 
Al2O3/(CaO + Na2O + K2O) 
plot (Chappell and White 1992; 
Chappell 1999)
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ratios (2.01–2.36)] of the Longtan granodiorites and gran-
ites all indicate crustal source (Collins et al. 1982; Chau-
vel et al. 1987; Whalen et al. 1987; Jung et al. 2000; Chen 
et al. 2007; Wang et al. 2007). The high-K, calc-alkaline, 
I-type affinity of the granodiorites and granites suggest a 
source composed of metasedimentary/metaigneous rocks 

(Roberts and Clemens 1993; Altherr et al. 2000). Further-
more, the similarity of REE patterns, εNd(t) values, model 
ages, strong enrichment of Pb and depletion of the HFSE 
between the Longtan granodiorites and granites and Prote-
rozoic basement rocks indicate a genetic affinity (Figs. 6, 
9; Li 1994; Chen and Jahn 1998; Shen et al. 1998; Wang 

Fig. 5   Chemical variation 
diagrams of K2O, MgO, CaO, 
Fe2O3, P2O5, TiO2, Rb and Zr 
versus SiO2 contents of the 
Longtan granitoids. The geo-
chemical data of the granitoids 
in Yunkai-Nanling and Xue-
fengshan belts in the SCB are 
from Li et al. (2006), Sun et al. 
(2005), Xie et al. (2006), Chen 
et al. (2007), Qi et al. (2007), 
Wang et al. (2007), Yu et al. 
(2007), Charoy and Barbey 
(2008) and this study. The clas-
sification of the high-K, calc-
alkaline series is from Roberts 
and Clemens (1993). The I-type 
trend is after Li et al. (2006). 
The generalized trajectory of 
the accumulative magmas (thin 
gray line) during in situ crystal-
lization is from Kemp et al. 
(2005). YNB Yunkai-Nanling 
belt; XFB Xuefengshan belt
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et  al. 2007; Wan et  al. 2010; Zhao et  al. 2013a, b). For 
example, on a t–εNd(t) diagram, all the granodiorites and 
granites plot in the field defined by the Proterozoic crust 
of the SCB and under the CHUR reference line (Fig. 9a; 
Shen et al. 1993).

The low ratios of CaO/Na2O (granodiorite: 0.75–1.07; 
granite: 0.47–0.69), Rb/Ba (granodiorite: 0.24–0.35; gran-
ite: 0.47–0.79) and Rb/Sr (granodiorite: 0.97–1.25; gran-
ite: 2.05–3.94) indicate that the granodiorites and granites 
were derived from plagioclase-rich and clay-poor source 

Fig. 6   a Chondrite-normalized 
REE patterns (normalizing val-
ues are from Sun and McDon-
ough 1989) and b primitive 
mantle-normalized trace ele-
ment spider diagram (normal-
izing values are from Taylor and 
McLennan 1985)

Fig. 7   a Al2O3/TiO2 vs. 
CaO/Na2O; b Rb/Sr versus Rb/
Ba; c Ba versus Rb/Sr; d Nb/Ta 
versus Zr/Hf; e εNd(t) versus 
Zr/Hf; f Nb/Ta versus 87Sr/86Sr. 
The mixing curve between 
the basalt- and pelite-derived 
melts is from Sylvester (1998). 
Peraluminous high Himalayan 
leucogranites and North Hima-
layan granites are from Inger 
and Harris (1993) and Zhang 
et al. (2004a, b)
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rocks (Fig.  7a–c; Chappell and White 1992; Sylvester 
1998). The incompatible element diagrams [Rb/Sr vs. 
Rb/Ba, Ba (granodiorite: 579–696  ppm; granite: 351–
501  ppm) vs. Rb/Sr and Nb/Ta vs. Zr/Hf (granodiorite: 
7.89–11.23; granite: 4.02–9.71)] exhibit two discontinu-
ous, distinct groups ruling out mixing of melts (Fig. 7b–d; 
Wang et al. 2007). On the plots of incompatible elements 
(Zr/Hf and Nb/Ta) versus isotopic compositions (Fig. 7e, 
f), both the granodiorites and granites show linear trends in 
these two diagrams but they clearly show that the groups 
are not related.

Compositional diversity of crustal magmas may cor-
respond to variable melting conditions, such as pressure, 
temperature and H2O content which control both the 
degree of partial melting (Patiño Douce and Beard 1995, 
1996; Patiño Douce 1996; Jung et al. 2000), or unrelated 
magmas generated from different source rocks, such as 

metapelites, metagraywackes and metabasaltic to metato-
nalitic rocks (e.g., Gardien et  al. 1995; Thompson 1996; 
Altherr et  al. 2000; Wang et  al. 2007). Based on molar 
oxide ratios, distinguishing the source of magmas with 
compositional variations generated by partial melting 
might available (Altherr et al. 2000). Partial melting pro-
duces granitoids with different K2O/NaO ratios for differ-
ent source rocks and with constant K2O/NaO ratios and 
K2O > NaO for the same source rocks (Jung et al. 2000). 
Because most of the granodiorites and granites show dif-
ferent K2O/NaO ratios, they were likely produced from 
different magma sources. The granodiorites have lower 
and Al2O3/(MgO  +  FeOTot) and K2O/Na2O ratios than 
the granites and their magmas were most likely derived 
from melting of metabasaltic to metatonalitic source rocks 
(Fig.  10c, d). The granites have chemical characteristics 
that are more compatible with a melting from mixing of 

Fig. 8   Fractional crystalliza-
tion vector diagrams. a–d Dy 
versus Dy/Yb, La versus La/Yb, 
Rb versus Ba and Sr diagrams 
for the Longtan granitoids. The 
trend of partial melting and 
fractional crystallization is from 
Wang et al. (2011). e–f SiO2 
versus Nb/Ta and Zr/Hf for the 
Longtan granitoids in the SCB. 
The trend of mineral crystalliza-
tion is from Wang et al. (2007)
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metagraywackes and metabasaltic to metatonalitic source 
rocks. Due to their high CaO/(MgO  +  FeOTot) ratios 
(Fig.  10c), a significant contribution from metapelitic 
sources to the granodiorites and granites can be ruled out. 
Furthermore, higher CaO contents (>1.3 wt%), lower Rb/
Ba (0.24–0.35), Rb/Sr ratios (0.97–1.25) and high Ba con-
tent (granodiorite: 579–696  ppm; granite: 351–501  ppm) 
of the granodiorite relative to the granite might be pro-
duced by H2O-fluxing in a source of high feldspar and low 
mica (Inger and Harris 1993; Harris et  al. 1995; Koester 
et  al. 2002). For the granites, their high Rb/Sr ratios 
(2.05–3.94) and low Sr/Ba ratios (0.19–0.27) suggest 
granitic melts derived by muscovite-dehydration melt-
ing under water-undersaturated conditions (Rb/Sr: 2–6; 
Sr/Ba: 0.2–0.7; Harris and Inger 1992), which is similar 
in composition to Himalaya peraluminous granites and 
crustal-derived leucogranites (Fig.  7c; McDermott et  al. 
1996; Sylvester 1998). Compared with the granites, the 
granodiorites have abundances of Sr (granodiorite: 151–
182  ppm; granite: 71–108  ppm), high Sr/Nd (granodior-
ite: 5.59–11.17; granite: 3.11–5.76) and Eu/Eu* ratios 
(granodiorite: 0.62–0.86; granite: 0.48–0.63) suggesting 
a smaller amount of plagioclase in their residues during 
partial melting. The granodiorites show more concentrated 
in values of Al2O3/(MgO + FeOTot), K2O/Na2O and CaO/
(MgO + FeOTot) than the granites (Fig. 10c, d) and tend to 
have slightly higher Mg# at similar SiO2 contents than the 
granites (Fig. 10a).

The granodiorites and granites define a negative Zr–
SiO2 trend (Fig.  5h), revealing the efficient saturated 
crystallization of zircon and a melt of this composition 
in equilibrium with zircon at ca. 750–800  °C (Fig.  5h; 
Kemp et al. 2005). This is also supported by experimental 
results (Vielzeuf and Schmidt 2001) suggesting that crus-
tal metasedimentary/metaigneous rocks melts at low P–T 
conditions (<750 °C at moderate to high crustal pressures) 
(Brown 2013). Furthermore, under fluid-absent condi-
tions (dehydration–melting), muscovite and biotite start to 
breakdown at ∼700 and ∼850  °C, respectively (Thomp-
son 1996; Vielzeuf and Schmidt, 2001). Invariability and 
increasing of Nb/Ta and Zr/Hf ratios with increasing SiO2 
probably suggest the involvement and non-involvement 
of aqueous fluid phases for the granodiorites and granites, 
respectively (Fig. 8e, f).

Because of almost no compositional overlap between 
the granodiorites and granites, the genesis affinity of the 
two groups by fractional crystallization in homogene-
ous source is unlikely. As suggested by decreasing of 
MgO, CaO, Fe2O3, P2O5, TiO2 and Zr with increasing 
SiO2, fractional crystallization of plagioclase, biotite, apa-
tite, K-feldspar and zircon are certainly important for the 
granodiorites (Fig. 5). Additionally, the granodiorites plot 
along the fractional crystallization trends on the Dy/Yb 
versus Dy diagram and along the partial melting trends 
in the La/Yb versus La diagrams (Fig. 8a, b; Wang et al. 
2011), indicating that both partial melting and fractional 

Fig. 9   Sr–Nd isotopes and TDM 
age diagrams for granitoids 
from the Longtan pluton: a–c t, 
(87Sr/86Sr)i and distance versus 
εNd(t) diagram. The field for 
Nd evolution of the Proterozoic 
crust in the SCB is from Shen 
et al. (1993); d distance versus 
TDM (Ga) diagram. The data are 
from Ge (2003), Li et al. (2006), 
Sun et al. (2005), Xie et al. 
(2006), Chen et al. (2007), Qi 
et al. (2007), Wang et al. (2007), 
Yu et al. (2007), Charoy and 
Barbey (2008) and this study. 
YNB Yunkai-Nanling belt, XFB 
Xuefengshan belt
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crystallization were involved in evolution of the Longtan 
granodiorites. It is recognized that the Rb–Ba and Rb–Sr 
variations (Fig. 8c, d) and strongly negative Ba, Nb, Sr, P 
and Ti anomalies (Fig.  6b) support fractionation of bio-
tite for the granodiorites and possibly slight fractionation 
of plagioclase for granites. The concave-upward shape of 
REE patterns and negative Eu anomalies for the magmas 
indicate that plagioclase fractionated and amphibole-out 
boundary was not crossed during partial melting (Fig. 6a; 
Altherr et  al. 2000). The lack of depletion in the HREE 
means that garnet was not a residual phase in the source 
material. The granites also show more fractionated REE 
patterns/higher LREE/HREE ratio and more significant Eu 
anomaly relative to the granodiorites (Fig. 6a). The pres-
ence of decreasing of Zr/Hf and Nb/Ta ratios for the gran-
odiorites with increasing SiO2 (Fig. 8e, f) and the distinct 
Sr–Nd isotopic compositions for the granodiorites and 
granites are not consistent with a closed-system fractional 
crystallization process (Dostal and Chatterjee 2000; Wang 
et al. 2007).

Consequently, the granodiorites might have been crus-
tally derived by melting of interlayed Proterozoic metaba-
saltic to metatonalitic source rocks, whereas the granites 
were probably derived from muscovite-dehydration melting 
of Proterozoic metagraywackes and/or metaigneous source 
rocks. The melting conditions are probably under H2O-
fluxing and water-undersaturated for the granodiorites and 
granites at ca. 750–800  °C, respectively. Additionally, the 

magmas of granodiorites and granites yielded the same age, 
derived from different sources and were emplaced indepen-
dently in the Longtan pluton without mixing of these two 
magmas. The granodiorites and granites were most likely 
formed from several magma pulses, or the granodiorites 
and granites represent separate intrusions with the undis-
covered contact between them because of poor exposure.

Tectonic implications

The evaluation and synthesis of these new data in this 
study and previously published 130 age determinations 
of Indosinian granitoids in the orogenic belt show the 
Indosinian magma mainly emplaced in two stages, includ-
ing early Indosinian with peak ages of ~238  Ma in the 
Yunkai-Nanling belt and late Indosinian with peak ages of 
~218  Ma in the Xuefengshan belt, respectively (Fig.  11a, 
c; Supplementary Table  5 and criteria therein). The early 
Indosinian S-type granitoids in the Yunkai-Nanling belt 
show high A/CNK values (1.05–1.46), strongly negative 
Ba, Sr and Nb anomalies, a narrow range of REE patterns 
and relative high TDM ages (2.09–1.82 Ga) (Supplementary 
Table 4; Fig. 9; Qi et al. 2007; Chen et al. 2011; Mao et al. 
2011). These granitoids were derived by remelting of Pro-
terozoic crustal materials under high crustal temperature 
(800–950 °C) and low pressure (4–6 kb) (Charoy and Bar-
bey 2008). The late Indosinian granitoids in the Xuefeng-
shan belt, typically the Longtan granodiorites and granites, 

Fig. 10   Chemical composi-
tions of I-type granitoids from 
the Longtan pluton in the SCB. 
a Mg# = molar 100*Mg/
(MgO + 0.9*FeOTot) versus 
SiO2 content; b Sr/Y versus 
SiO2 content; c molar Al2O3/
(MgO + FeOTot) versus molar 
CaO/(MgO + FeOTot). Outlined 
fields denote compositions of 
partial melts obtained in experi-
mental studies by dehydration 
melting of various bulk compo-
sitions (Altherr et al. 2000); d 
molar K2O/Na2O versus molar 
Al2O3/(MgO + FeOTot)
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are peraluminous and also strongly negative Ba, Sr, Nb, 
P and Ti anomalies (Chen et al. 2007; Wang et al. 2007). 
The magmas were emplaced at relatively low tempera-
ture (734–827  °C) and have TDM ages ranging from 1.46 
to 1.98  Ga (Supplementary Table  4; Fig.  9d; Wang et  al. 
2007). Additionally, the Indosinian granitoids in the Xue-
fengshan and Yunkai-Nanling belts show similar εNd(t) val-
ues and 87Sr/86Sr ratios (Fig. 9a–c). In general, the Longtan 
granodiorites and granites are petrologically and geochemi-
cally similar to typical Indosinian granitoids and are con-
sidered to have been produced in a similar manner.

On the other hand, the late Indosinian Longtan grano-
diorites and granites and other granitoids in the Xuefeng-
shan belt display a more restricted range of SiO2 contents 
and have slightly higher K2O and MgO contents (Fig. 5a, 
b) and relatively lower Rb and Zr contents, higher εNd(t) 
values, a wider range of initial 87Sr/86Sr ratios and younger 
TDM ages than early Indosinian granitoids in the Yunkai-
Nanling belt and arc magmatic rocks (Figs. 9, 11b, c). 
In summary, decreasing of zircon U–Pb ages, TDM ages, 
increasing of εNd(t) values and variation of major and trace 
elements compositions define a northward trend from the 
Yunkai-Nanling belt to the Xuefengshan belt. This north-
ward trend indicates a north ward tectonic process and a 
little older Proterozoic basement in a shallower depth of 
crustal remelting for the early Indosinian granitoids than 
the Longtan and other late Indosinian granitoids in the oro-
genic belt.

Previous tectonomagmatic models of plate subduction/
collision within or around the SCB do not clearly explain 
the time–space pattern of the Indosinian granitoids and 
have been challenged (Wang et al. 2005a, 2007; Li and Li 
2007; Carter and Clift 2008). We propose that decompres-
sional partial melting triggered by syncollisional extension 
is responsible for the origin, time–space pattern and termi-
nation of Indosinian magmatism. This syncollisional exten-
sion model highlights extension, decompression and partial 
melting of continental crust in a collisional setting, which 
is analogous to the east–west extension in Himalayan oro-
gen (Aoya et al. 2005).

Initiation of Indosinian subduction of Indochina beneath 
the SCB is recorded by the 267–262 Ma magmatic arc in 
Hainan Island (Li et al. 2006), and then plate convergence 
led to collision along the Song Ma suture zone at 258–
243 Ma (Lepvrier et al. 1997; Carter et al. 2001; Maluski 
et  al. 2005; Peng et  al. 2006; Wang et  al. 2010). A par-
tially molten zone might have been produced in thickened 
middle/lower continental crust in response to progressive 
migration of compression (Wang et  al. 2002, 2007; Ding 
et al. 2005; Sun et al. 2005; Shu et al. 2006; Langille et al. 
2010). The <7  % low-melt fractions may have triggered 
a significant drop in strength of partially molten rocks 
(Rosenberg and Handy 2005; Le Pape et  al. 2012) and a 
transition from compression to extension, further promot-
ing partial melting. Middle Triassic extension, which is 
recorded by the Dulong-Song Chay dome and A-type 

Fig. 11   a, c Frequency diagram 
of ages of Indosinian granitoids 
for the Yunkai-Nanling and 
Xuefengshan belts in the SCB, 
respectively; b–d SiO2 contents 
versus age and distance for the 
granitoids from the Longtan 
pluton, Yunkai-Nanling and 
Xuefengshan belts in the SCB. 
The distance is from the south-
ernmost Indosinian granitoid 
pluton to interior of the SCB. 
YNB Yunkai-Nanling belt; XFB 
Xuefengshan belt. Symbols are 
the same as those in Fig. 9
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granites (Zhao et al. 2013a, b), occur in the Yunkai-Nanling 
belt (Fig. 1b; Lin et al. 2008). This extension is constrained 
at ~238 Ma (Yan et al. 2006), consistent with the production 
of the early Indosinian granitoids with age peak of ~238 Ma 
in the Yunkai-Nanling belt (Charoy and Barbey 2008) 
(Fig. 12a). Meanwhile, the Xuefengshan belt moved north-
ward along a crustal basal detachment (Wang et al. 2005b; 
Zhang et al. 2009). Evidence for a Late Triassic transition 
from compression to extension at this belt includes the N–S 
extensional Wugongshan dome (Fig. 1b; Faure et al. 1996; 
Wang et al. 2001; Liang and Li 2005). This extension trig-
gered genesis of late Indosinian granitoids with age peak 
of ~218 Ma (e.g., the Longtan pluton) by decompressional 
partial melting of mid- to lower-level crust in the Xuefeng-
shan belt (Le Pape et al. 2012) (Fig. 12b). These granitoid 
intrusions were probably produced by heating and strength 
drop of decompression (Peng et  al. 1996; Rosenberg and 
Handy 2000, 2005; Brown 2007; Whittington et al. 2009). 
The effective vertical mass and heat transfer through dia-
pirism produce granitoids. Such an efficient heat and mass 
transfer halts the flow of orogenic crust and marks the end 
of Indosinian orogeny (Teyssier et al. 2005). Additionally, 
as two possible mechanisms for such decompression, slab 
rollback or/and delamination, are seemingly compatible 
with the geologic observations (Wells et al. 2012).

Conclusions

1.	 The Longtan pluton in the Xuefengshan belt is com-
posed of high-K and calc-alkaline granodiorites and 
granites, emplaced at 218 Ma.

2.	 The granodiorites were derived from partial melting 
of interlayed Proterozoic metabasaltic to metatonalitic 
source rocks, whereas the granites were derived from 
a mixture of Proterozoic metagraywackes and metaig-
neous source rocks. Geochemical evidence indicates 
that partial melting and fractional crystallization were 
dominant mechanism of the granitoid evolution.

3.	 The early and late Indosinian magmatic episodes 
with peak ages of ~238 Ma and ~218 Ma in the SCB, 
formed in a similar manner as Longtan granitoids, were 
derived from decompressional partial melting which 
triggered by syncollisional extension. The 218  Ma 
Longtan pluton marks the termination of Indosinian 
magmatism and orogeny in the region.
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