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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• TGM concentrations in Beijing 
decreased at a rate of − 8% yr− 1 from 
2015 to 2018. 

• GAM was developed to explain the 
decline of TGM concentrations in 
Beijing. 

• Reduction of anthropogenic emission 
explained 51.5% of the decrease of 
TGM.  
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A B S T R A C T   

Mercury is a ubiquitous environmental toxicant and a cause for global concern due to its persistence and bio
accumulation in the environment. Evaluating the effectiveness of mercury emission control has become a sig
nificant issue after the entry into force of the Minamata Convention on Mercury in 2017. Atmospheric mercury 
concentration is an important indicator for anthropogenic emission control. Although Eulerian models are 
generally applied to evaluate emission reduction and policy effectiveness, the uncertainty of mercury reaction 
mechanisms and the insufficient grid accuracy of simulations limit the applications of this method at particular 
sites. In this study, we applied a statistical approach (the Generalized Additive Model, GAM) to explain the 
decline of atmospheric mercury concentration in Beijing, China, which followed a trend (Sen’s slope) of − 0.37 
ng m− 3 yr− 1 (− 8.0% yr− 1). The statistical model represented 56.5% of the variance in mercury concentration and 
the adjusted R2 reached 0.547. Reduction of anthropogenic mercury emission, variation in meteorological 
condition, and change in global background level explained 51.5%, 47.1%, and 1.4% of the decrease of air 
mercury concentration, respectively. We validated the results using Hg emission inventories, seasonal Hg/CO 
value, and meteorological data. Considering the limitations of Eulerian models and the simplicity of statistical 
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models, we suggest the application of GAM as an assessment method for long-term variation of atmospheric 
mercury.   

1. Introduction 

Mercury (Hg) is of great concern due to its biotoxicity and neuro
toxicity, as Hg emissions can cause global pollution through long-range 
transport by air. To protect human health and the environment, global 
actions have been taken to reduce atmospheric Hg emissions (UNEP, 
2013). With the 2017 entry into force of the Minamata Convention on 
Mercury, regional emissions are expected to be better controlled (Liu 
et al., 2019; Pacyna et al., 2016; Wu et al., 2016, 2018a, 2018b; Zhang 
et al., 2016). Methods for evaluating the effectiveness of Hg emission 
control became an important issue after the implementation of the 
convention. 

Atmospheric Hg concentration is a significant indicator for evalu
ating the effectiveness of Hg emission control (Cole et al., 2013; Fu et al., 
2015; Tang et al., 2018; Tong et al., 2016; Weigelt et al., 2015; Zhang 
et al., 2016). However, changes in atmospheric Hg concentrations are 
affected not only by anthropogenic activities, but also by meteorological 
conditions and global background concentrations (GBC). In order to 
quantitatively characterize the impact of anthropogenic Hg emissions on 
changes in ambient atmospheric Hg concentrations, previous studies 
have often used atmospheric Hg transport models based on Eulerian 
models, such as GLEMOS, ECHMERIT, GEMMACH-Hg, GEOS-Chem, and 
CMAQ-Hg (Pacyna et al., 2016; Selin et al., 2008; Ye et al., 2018). These 
models use atmospheric Hg inventories as the primary input data, then 
consider the impact of meteorological fields as well as physical and 
chemical mechanisms (Selin et al., 2008). By designing scenarios, the 
contribution of the selected parameters to changes in atmospheric Hg 
concentration can be quantitatively characterized. These models have 
performed well at both global and regional scales (Horowitz et al., 2017; 
Liu et al., 2019; Saiz-Lopez et al., 2018; Zhang et al., 2016). However, 
when they are applied to explain atmospheric Hg observations from a 
single site, their utility is often limited in two ways. First, uncertainty in 
the model mechanism itself leads to insufficient interpretation of 
observational data by the simulation results. Second, the dilution effect 
of gridding on atmospheric Hg concentration often makes the simulation 
results at urban stations significantly lower than the observed concen
trations (Liu et al., 2019). 

Statistical regression models are otherwise more flexible than 
Eulerian models. From a statistical perspective, the interpretation of 
factors affecting variations in target air pollutant is an issue with 
regression analysis, which is a set of statistical processes used for esti
mating the relationship between a dependent variable and one or more 
independent variables (Wood, 2017). There are different ways to model 
the conditional expectation function, including parametric, nonpara
metric, and semi-parametric approaches. Parametric approaches such as 
linear functions are an easy statistical method, but it is not clear that the 
relationship is linear in many cases (Li et al., 2019; Tai et al., 2010). 
Nonparametric regression is a much more robust approach, but it re
quires more calculations and a large number of samples; further, the 
model cannot be easily stabilized due to its high complexity. As a 
compromise between these two models, the semi-parametric approach is 
widely used in air pollution research. For example, the Generalized 
Additive Model (GAM) can be used to incorporate both linear and 
nonlinear parameters (Wood, 2017). GAM has been used to simulate 
long-term change trends of sulfur and nitrogen species, particulate 
matter (PM) concentrations (Aldrin and Haff, 2005; Holland et al., 
2000), benzene and 1,3-butadiene concentrations (Reiss, 2006), and the 
maximum daily 8 h average ozone (Davis and Speckman, 1999; Gong 
et al., 2017). These analyses principally focused on exploring how 
concentrations were influenced by a wide range of meteorological and 
source-related variables. 

Compared to the air pollutants mentioned above, the residence time 
of total gaseous Hg (TGM) is much longer and the global background 
also affects changes in atmospheric Hg concentrations at studied sites. In 
addition, the GAM parameters used in some studies include only mete
orological factors and the residuals were identified as anthropogenic 
emissions (Aldrin and Haff, 2005; Li et al., 2019; Tai et al., 2010). When 
emissions are not the dominant source of target air pollutants, the GAM 
can accurately explain the target variables. However, when emissions 
change significantly, the lack of the first crucial independent variable 
reduces the proportion of variation of the dependent variable. In other 
words, this reduces the interpretation of existing independent variables 
to dependent variables and lowers the feasibility of the model. There
fore, when using the GAM to evaluate the effectiveness of atmospheric 
Hg reduction, it is also necessary to determine the independent variables 
that can be used to characterize emissions. 

In this study, we applied GAM to explain variations in observed TGM 
concentration in Beijing, China by coupling the model with parameters 
representing GBC, anthropogenic emissions, and meteorological condi
tions. We used the Hg concentrations observed in Beijing as a case study 
and interpreted model results using the seasonal Hg/CO ratio, Hg 
emission inventories, meteorological data, and GBC. Our results 
demonstrate a rapid method for explaining site-specific observational 
data and can be used to assess the environmental benefits of Hg emission 
control on a city or regional scale. 

2. Methodology 

2.1. GAM model development 

GAM produces a simple and explicit formulation of response- 
predictor relationships in a neural network framework (Aldrin and 
Haff, 2005). We simulated TGM in Beijing by using GAM in R software 
with the “mgcv” package (Wood, 2017). The GAM equation is as follows:  

g(μi) = Xiθ + f1(x1i) + f2(x2i) + … + fn(xni) +ξi,                              (1) 

where i is the observation on the ith day; g is the link function; and μi is 
the expectation of the dependent variable, which specifies the rela
tionship between the linear formulation on the right side of the equation 
and the response μi. We used the “identity link” function with Gaussian 
distribution because the relationship between atmospheric Hg concen
trations and parameters conformed to a Gaussian distribution and the 
estimation of GAM was considered unbiased (Figure S1). Xθ is a constant 
component of the model, presenting a categorical relationship for pre
dictors not subject to nonlinear transformation. f(x) is the smooth 
function of the predictors. Penalized Cubic Regression Splines were used 
for the smoothing function to ensure a balance between underfitting the 
observed data and overfitting the data by choosing the effective number 
of degrees of freedom. The restricted maximum likelihood approach was 
used to estimate the smooth function. 

The Akaike Information Criterion (AIC) was used as an estimator to 
ensure the effectiveness of each input variable. Higher R2 and lower AIC 
values suggest better parameter selection and fitting results. We carried 
out backward selection coupling with the double penalty approach to 
ensure that all selected parameters were significant (by p value). Based 
on this method, we tested 15 variables and selected 9 final variables for 
the model (Table S1). These included one air pollutant variable (CO), 
GBC (reflecting the impact of global emissions), and seven meteoro
logical variables. The latter included the backward trajectory longitude 
after 24 h (TrajLong), daily average wind speed (VAVG), daily average 
relative humidity (RHAVG), daily temperature difference (TDELTA), daily 
average surface pressure (P), daily average of temperature at 700 hPa 
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(T700), and day of year (DOY). The latter represented the variation of 
TGM during a year and showed the influence of synthetical seasonal 
meteorological conditions. The significance of the independent vari
ables was identified using F statistics (Table S2). The partial response 
curve of the independent variables was used to explain their nonlinear/ 
linear relationship with TGM. 

2.2. Variables and data sources 

TGM data were measured from the roof of the China Environmental 
Monitoring Station, Beijing (40.04◦ N, 116.41◦ E), between May 2015 
and December 2018 (Figure S2). This site, which lies on the northern 
side of the city without any industrial point sources within a 30 km 
radius, is a national atmospheric superstation and has carried out many 
atmospheric observations (Ji et al., 2017; Lin et al., 2017; Zhou et al., 
2015). TGM was monitored using a TEKRAN 2537X instrument widely 
used globally for long-term atmospheric Hg observations with high 
precision and stability. The detailed operational procedures, as well as 
quality control and quality analysis methods, were detailed in our pre
vious study (Tang et al., 2018). In order to identify the downward trend, 
we used the seasonal Mann-Kendal (SMK) test for trend analysis and 
estimation of Sen’s slope (Cole et al., 2013; Weiss-Penzias et al., 2016), 
which is suitable for analyzing environmental data containing a seasonal 
cycle. The annual slope was the average of the seasonal Sen’s slope, as 
verified by SMK. The specific tasks were conducted using the “mblm” 
and “Kendall” packages in RStudio 4.0.0. 

Surface and upper-air meteorological data were collected from the 
China Meteorological Data Service Center (http://data.cma.cn/en). The 
Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYS
PLIT, https://www.ready.noaa.gov/HYSPLIT.php) was run for each day 
to calculate 24 h backward trajectories. Gridded meteorological data at 
a horizontal resolution of 1 × 1 were obtained from the Global Data 
Assimilation System (GDAS) (Draxler and Hess, 1998). As no measured 
planetary boundary layer height data were available, we set the starting 
height as 500 m above ground level to represent the center height of the 
boundary layer, where pollutants are usually well-mixed. 

Considering the annual or monthly resolution of existing emission 
inventories (Liu et al., 2018, 2019; Wu et al., 2016), it is difficult to use 
such results in GAM, where hourly precision is required. Previous 
studies have generally used CO to represent combustion sources for at
mospheric Hg (Jaffe et al., 2005; Zhang et al., 2015a). Given that Hg 
emissions in Beijing and surrounding provinces are dominated by 
combustion sources (Liu et al., 2019), we also used CO to represent 
anthropogenic Hg emissions. CO concentration data were collected from 
the China National Environmental Monitoring Station (http://beijingai 
r.sinaapp.com, last accessed June 2020). 

According to previous studies, GBC accounted for ~60% of the 
concentration in China (Liu et al., 2019; Wang et al., 2014). As GBC 
reflects the impact of global emissions, we chose this for the analysis of 
atmospheric Hg variation in this study. GBC was derived from 
GEOS-CHEM simulation results, while the simulated spatiotemporal 
distribution of TGM in China was been obtained in our previous study 
using GEOS-CHEM (Liu et al., 2019). We excluded anthropogenic 
emissions in China from the model in order to obtain the GBC value. 

2.3. Model validation and result interpretation 

2.3.1. Model validation 
10-fold cross-validation was carried out to evaluate the accuracy of 

the GAM model (Figure S3) (Fushiki, 2009). The entire fitting data sets 
were randomly split into ten subsets, each containing ~10% of the total 
data. In each round of cross-validation, the nine subsets were used to fit 
the model and make predictions on the remaining one subset. This 
process was repeated ten times so that every subset was tested. The 
agreement between the measured and predicted TGM was evaluated 
using statistical indicators such as coefficient of determination (R2). 

To examine underlying assumptions regarding homogeneity, 
normality, and independence of GAM so as to ensure the model’s 
effectiveness and accuracy, we used the following methods: (1) 
Quantile-quantile (QQ) plots (Sample quantiles against theoretical 
quantiles, Figure S4a), scatterplots (residuals against linear predictor, 
Figure S4b), and histograms of the residuals and scatter plots (responses 
against fitted values) (Figure S4c); (2) Fitted TGM against observed TGM 
(Fig. 2a) and model residuals (Figure S4d); and (3) Autocorrelation of 
both the original TGM and residues (Figure S5). 

2.3.2. Quantifying the contribution of independent variables 
We used a relative importance analysis method to quantify the 

contribution of each independent variable made toward the dependent 
variable. This method helps determine the extent to which each variable 
drives the prediction and allows for more accurate variance partitioning 
among correlated independent variables (Tonidandel and LeBreton, 
2011). It acts as a useful supplement to multiple regression by providing 
information not readily available from the indices typically produced 
from a multiple regression analysis. We calculated the relative impor
tance using the “varImp” function in the “caret” package of RStudio 
3.6.2 (Kuhn, 2008). 

The emission inventory showed the variations in anthropogenic Hg 
emissions. We first identified the source area by using the Potential 
Source Contribution Factors (PSCF) method (Polissar et al., 1999). The 
PSCF value can be used to quantify the impact of source area emissions 
on the monitored concentration: the higher the value, the larger the 
contribution of a source area. The PSCF values at a grid cell in the study 
domain were calculated by counting the endpoints of trajectories ter
minating within each cell (details given in section S1). We then calcu
lated the emission inventories of the target area using a 
technology-based emission factor method presented in our previous 
studies (Liu et al., 2019; Wu et al., 2016; Zhang et al., 2015b). The 
related parameters were updated based on recent research (Wen et al., 
2020). The Hg/CO ratio can also be used to investigate changes in 
anthropogenic emissions, but has a higher time resolution than the 
emission inventory method. 

3. Results and discussion 

3.1. TGM dataset analysis 

The annual average TGM concentrations in urban Beijing were 4.61 
ng m− 3 in 2015, declining to 2.72 ng m− 3 in 2018 at a rate of − 0.37 ng 
m− 3 yr− 1 (or − 8.0% yr− 1, Sen’s slope, p < 0.001) (Fig. 1). A similarly 
large TGM reduction (annual decrease rate of 0.60 ng m− 3 yr− 1) was also 
observed in rural eastern China almost simultaneously (Tang et al., 
2018). These observed decreasing trends of atmospheric Hg in China 
were the most robust among all global Hg observations (Kim et al., 2016; 
Nguyen et al., 2019; Tang et al., 2018; Zhang et al., 2016). For example, 

Fig. 1. The times series of TGM concentrations and Sen’s slope of daily con
centration in Beijing. The black dot was daily average GEM concentration 
during sampling period. 
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the 10-year trends of gaseous elemental Hg (GEM) concentrations at six 
background sites in the Arctic and Canada showed decreasing trends of 
13–35 pg m− 3 yr− 1 (Cole et al., 2013), while in South Korea, TGM 
concentrations decreased in urban Seoul after 2011 (Kim et al., 2016). 

As for the seasonal downward trend, the decrease in winter 
(December–February; − 0.79 ng m− 3 yr− 1; p < 0.01) was significantly 
higher than for observations in other seasons (− 0.39 to − 0.50 ng m− 3 

yr− 1). These differences in seasonal downward trends imply impacts 
from time-specific parameters, as explored further in following sections. 

3.2. Model validation and interpretation 

Fig. 2 compares the observed and fitted TGM; the statistical model 
explained 56.5% of the variance in Hg concentration and the adjusted R2 

reached 0.547. In other studies using GAM to quantify the impact factors 
on air pollutant concentrations or variation trends, the adjusted R2 

generally ranged from 0.35 to 0.86 (Aldrin and Haff, 2005; Gong et al., 
2018; Li et al., 2019). Thus, the adjusted R2 for our results was accept
able and the independent variables were deemed capable of interpreting 
the existing dependent variables. The time series (Fig. 2) showed a 
generally good agreement between the observed and modeled values 
and the residuals had an almost normal distribution (Figure S4c). The 
standard deviation and 95th percentiles of the residuals were 1.05 ng 
m− 3 and 5.33 ng m− 3, respectively. 

The 10-fold cross-validation results showed good coincidence be
tween the GAM and cross-validated results, demonstrating the former’s 
reliability (Figure S3). The QQ plot results showed that GAM produced 
good results around the average concentration and had elevated un
certainties in larger and smaller values (Figure S4a). The residuals vs. 
predictors (Figure S4b) and the histogram of residuals (Figure S4c) 
showed almost unbiased simulations of TGM. The autocorrelations of 
original TGM and residuals (Figure S5) showed a sharp decrease in 
autocorrelation results that reflected the lack of a lag day during 
simulation. 

The dominant impact factors included CO, RHAVG, and DOY ac
cording to the F test (Table S2). We analyzed the partial responses of the 
top 3 individual parameters to quantify the influence of each parameter 
(Fig. 3). CO was the most important parameter for TGM, which 
increased when CO increased (Fig. 3a), demonstrating that anthropo
genic Hg emissions significantly impacted TGM. However, the growth 
rate (curve slope) of TGM decreased with increasing CO concentrations. 
In other words, although anthropogenic Hg emissions promoted TGM 
pollution, the degree of impact decreased with increasing Hg emissions. 
It is quite possible that increasing Hg emissions also promoted TGM 
oxidation since the GEM oxidation rate was positively correlated with 
GEM concentration (Horowitz et al., 2017). Thus, anthropogenic Hg 
emissions also promoted TGM deposition. 

DOY was a comprehensive time-specific meteorological factor that 
showed lower values in summer and elevated values in winter (Fig. 3b), 
which we attributed to the impact of atmospheric diffusion conditions 
such changes in boundary layer height. Such conditions are generally 
better in summer than in winter (Fu et al., 2015; Mao et al., 2017). The 
smooth function curve of RHAVG remained relative stable with an overall 
slight increase when relative humidity (RH) was < ~80%, but increased 
sharply when RH was > ~80% (Fig. 3c). This indicated that TGM 
increased with rising RH and that this effect was significant when RH 
was > ~80%. According to a previous study, particulates in the air 
convert to an aqueous phase in an elevated RH environment (Horowitz 
et al., 2017). Under such conditions, the aqueous environment at the 
particle surface promotes the reduction of oxidized Hg. Thus, 
particulate-bound Hg (PBM) can be transformed to GEM, while gaseous 
oxidized Hg (GOM) can dissolve in the water and be reduced to GEM as 
well. Therefore, the TGM concentration increases due to reduced PBM 
and decreased overall deposition rate. In addition, high RH provides a 
stagnant atmospheric environment and hinders the diffusion of pollut
ants (Horowitz et al., 2017). 

3.3. Quantifying the contribution of each independent variable 

The contribution of each independent variable was determined by 
calculating their relative importance (Table 1). CO contributed to 51.5% 
of total TGM variation, indicating significant impacts from anthropo
genic emissions. Differences in meteorological condition contributed to 
47.1% of TGM variation. DOY and RH were the two dominant inde
pendent meteorological parameters, explaining 11.7% and 10.6% of 
total variation, respectively. The global background only made up 1.4% 
of total TGM variation. 

3.3.1. Anthropogenic emissions 
The relative importance results showed that anthropogenic emis

sions dominated TGM variation. According to the PSCF results 
(Figure S5), the dominant source regions of the observed TGM in Beijing 
included the cities of Beijing and Tianjin along with Hebei Province. To 
evaluate the GAM results, we calculated the Hg emissions from these 
regions from 2013 to 2017, during which Hg emissions decreased year 
by year with a linear fit (Figure S6). We then predicted Hg emissions in 
2018 based on the fitting function, finding that these decreased from 47 t 
in 2015 to 35 t in 2018, down ~26%. According to Section 3.1, annual 
TGM decreased by 41% between 2015 and 2018, such that the decrease 
in Hg emissions could explain almost 63% of the TGM decrease based on 
crude estimation, quite similar to GAM result. The reduction in 
anthropogenic emissions driving the downward TGM trend was also 
verified by previous observation and modeling studies (Liu et al., 2019; 
Zhang et al., 2019). 

Fig. 2. GAM results (a) the fitted TGM vs observed TGM (b) the time series of observed TGM, simulated TGM and residuals.  
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The TGM decline peaked in winter while the decrease in autumn was 
minimal (Figure S6). According to the emission inventory, the emission 
decline in winter reached 32%, much higher than the results in other 
seasons (26–27%) (Table S3). This especially obvious decline in winter 
was due to the substitution of coal with natural gas or electricity during 
heating season (Nov 15 through March 15) and off-peak industrial 
production during winter (Fig. 4). These actions reduced the consump
tion of coal and other raw materials where Hg was an impurity, which 
further led to the decrease of atmospheric Hg emissions in source areas 
and TGM concentrations in Beijing. The seasonal decline in Hg emissions 
could be validated by the Hg/CO ratios for power plants (25.2), indus
trial boilers (2.9), and residential coal combustion (0.4) (Wang et al., 
2005; Wu et al., 2006). We observed a decreasing Hg/CO ratio 
throughout the spring, summer, and autumn (Figure S8), which we 

attributed to emission reductions from sources with high Hg/CO, such as 
power plants. The ultra-low emission standard in coal-fired power plants 
led to significant Hg emission reductions from 2013 to 2017 (Fig. 4). In 
winter, the substitution of coal with natural gas or electricity in rural 
northern China during winter led to dramatic decreases in emissions 
from residential coal combustion (Fig. 4); the low Hg/CO ratio of this 
source means that such reductions would increase Hg/CO in the ambient 
air. This mutual authentication between the Hg emission inventory and 
Hg/CO ratio verified the feasibility of characterizing atmospheric Hg 
emissions using CO as applied in this study. 

3.3.2. Meteorological conditions 
Meteorological conditions influence the reemission, transport, and 

diffusion of atmospheric Hg; these contributed to decreasing TGM 
concentration in Beijing at a level nearly equal to anthropogenic Hg 
emissions. An analysis of PM2.5 pollution from 2015 to 2018 also found 
that the meteorology with better diffusion condition improved air 
quality, indicating the overall positive effect of meteorological condi
tions on the mitigation of air pollution in Beijing (Li et al., 2019). 

Surface meteorological conditions important for TGM variation in 
this study included RH, P, VAVG, and TDELTA. These affected TGM by Hg 
dilution, evaporation, and transformation, contributing to 25.6% of 
TGM variation. RH was the most dominant of all surface meteorological 
parameters considered for reasons explained in Section 3.2. The fre
quency of high-RH events (RH > 80%) in 2015 reached 26.5% of total 
sampling days (Table 2), but fell to ~10.2–12.5% in the other years. This 
clear reduction in frequency of high-RH events from 2015 to 2018 made 
RH an important independent variable influencing TGM variation dur
ing the study period. Enhanced VAVG and low P also accelerated the 
evaporation and dilution of TGM, jointly leading to 10.5% of atmo
spheric Hg decrease. The average wind velocity in 2015 was ~2.64 ±
1.30 m3 s− 1, much lower than that in other years. The atmospheric 
pressure in 2015 was 10154 ± 108 Pa, lower than in 2017 and 2018 
(Table 2). TDELTA variation accounted for 4.5% of variation from 2015 to 
2018. Sunny and rainy days provide good diffusion and convection 
conditions, respectively, which would be reflected in TDELTA and lead to 
lower TGM. 

DOY contributed to 11.7% of total TGM variation, acting as a com
plementary synthetic meteorological condition that reflects diffusion 
processes such as boundary layers and convection conditions that are 
not characterized by current meteorological data. The contribution of 

Fig. 3. Spline of TGM to individual parameters (a) CO, (b) DOY, (c) RHAVG. 
The grey background around the line are 95% confidence bounds for the 
response. The short lines on x axes show the distribution of data points. The 
number in the bracket of ordinate title is the estimated degree of freedom. The 
dots in the figure are the residuals. 

Table 1 
Relative importance of independent variables.  

Variable 
name 

Description Identification Relative 
importance 

CO Average CO 
concentration 

Anthropogenic 
emission 

51.5% 

RHAVG Average relative 
humidity 

Surface air 
meteorological 
condition 

10.6% 

P Average pressure Surface air 
meteorological 
condition 

5.8% 

VAVG Average wind speed Surface air 
meteorological 
condition 

4.7% 

TDELTA Temperature difference Surface air 
meteorological 
condition 

4.5% 

DOY Day of the year Synthetical 
meteorological 
condition 

11.7% 

Temp700 Temperature at 700 mb Regional 
transportation 

7.3% 

TrajLong Longitude after 24 h 
backward trajectory 

Regional 
transportation 

2.5% 

GBC Global background 
concentration 

Global background 
concentration 

1.4%  
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DOY in this study indicated a significant impact of diffusion conditions 
on TGM concentrations. The boundary layer height was lower in winter 
while convection always existed in summer (Figure S7), indicating that 
the reduced diffusion and convection conditions in winter were detri
mental to the mitigation of TGM pollution. 

Regional transportation also affected TGM variation by 9.8% during 
the sampling period. Compared to the non-significant effect of TrajLa, 
TrajLong contributed to 2.5% of total TGM decrease, indicating that 
longitudinal transportation of TGM was much more important than 
latitudinal transportation to TGM concentration in Beijing. According to 
Hua et al. (2018), the transmission channels of atmospheric pollutants 
affecting Beijing mainly pass through cities in the provinces of Shan
dong, Shanxi, and Henan, generally located south of Beijing. From 2015 
to 2018, stricter control measures for air pollutants also led to significant 
Hg emission reductions in these areas and reduced the impact of 
long-range transportation on Beijing (Liu et al., 2019). Temp700 
accounted for 7.3% of TGM variation from 2015 to 2018, reflecting 
large-scale vertical airmass circulation and airmass exchange. Higher 
Temp700 in 2015 implied a smaller temperature gradient between the 
middle atmosphere and the surface, driving the vertical diffusion of 
TGM. 

3.3.3. Global background concentration 
GBC is an important part of local TGM concentrations (Pirrone et al., 

2010). In the northern hemisphere, TGM measurements at background 
sites ranged from 1.3 to 1.5 ng m− 3 (Sprovieri et al., 2017), accounting 
for ~28–55% of annual TGM monitored in Beijing. However, GBC only 

contributed to 1.4% of the total TGN variation in Beijing in our study, 
indicating that although GBC accounts for a large proportion of atmo
spheric Hg, variations in GBC were less important in driving the 
observed decrease in TGM in Beijing. However, this does not mean that 
GBC variations should be excluded from the independent parameters in 
GAM, because global Hg reductions will increase the contribution of 
GBC at remote and suburban sites. 

3.4. Conclusions 

We used GAM to explain variations in observed Hg concentration 
trends in Beijing, China by coupling the model with parameters repre
senting GBC, anthropogenic emissions, and meteorological conditions; 
reductions in these explained 1.4%, 51.5%, and 47.1% of the decrease in 
airborne Hg concentration, respectively. Compared to chemical trans
port models, GAM assessment requires easily obtained meteorological 
parameters and uses a relatively simple computation process, making it 
suitable for rapid assessments. After the implementation of the Mina
mata Convention on Mercury, signatories face pressure to reduce Hg 
emissions and take corresponding actions. GAM provides a rapid and 
effective alternative for exploring long-term changes in atmospheric Hg 
and influential factors at the city level. 

We used the “identity link” function with Gaussian distribution 
because we assumed a normal distribution of TGM concentrations, but 
the TGM concentrations actually had a lognormal distribution 
(Figure S1). For improved normality within GAM, it would be better to 
conduct logarithmic transformations of TGM, in which results’ relative 
importance reflects the contributions of each independent variable to 
changes in the log concentration of TGM. Thus, it was difficult to 
calculate the direct contribution to TGM variation. The statistical model 
represented 56.7% of the variance in Hg concentration and the adjusted 
R2 reached 0.551 after log transformation of TGM, almost the same as 
when using normal assumptions. In addition, the approximate signifi
cance of the smoothed terms were almost the same, according to 
Table S2. Thus, the normality assumption for TGM would not change our 
basic conclusions. 

In future, when applying GAM at other sites, the distribution char
acteristics of target air pollutants should be analyzed before determining 
the characteristics of link functions and the representativeness of CO for 
anthropogenic emissions should be considered. At our study sites, 
combustion sources were the dominant sources and we demonstrated 
the feasibility of this assumption. However, for sites impacted by non- 

Fig. 4. Monthly Hg emissions by sector in 2013 and 2017.  

Table 2 
The annual variation of dominant meteorological parameters.  

Variables Studied year 

2015 2016 2017 2018 

Frequency of high RH 
(RHAVG>80%) 

26.7% 12.8% 10.5% 10.2% 

P (Pa) 10154 ±
108 

10189 ±
98 

10163 ±
106 

10145 ±
110 

VAVG (m s− 1) 2.64 ±
1.30 

2.95 ±
1.41 

2.92 ±
1.44 

2.74 ±
1.21 

TDELTA (◦C) 10.14 ±
4.09 

11.69 ±
3.78 

12.53 ±
4.58 

11.40 ±
4.96 

Temp700 (◦C) − 0.58 ±
8.24 

− 3.47 ±
9.21 

− 1.85 ±
9.19 

− 1.66 ±
11.19  
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combustion sources such as primary Hg production or artisanal gold 
production, such assumptions would be less reliable. To extend the 
applicability of this model, we recommend developing GAM with the 
Hidden Markov Model to avoid unavailable parameters. 
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