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ABSTRACT: Mercury (Hg) bioaccumulation in rice poses a
health issue for rice consumers. In rice paddies, selenium (Se) can
decrease the bioavailability of Hg through forming the less
bioavailable Hg selenides (HgSe) in soil. Rice leaves can directly
uptake a substantial amount of elemental Hg from the atmosphere,
however, whether the bioaccumulation of Hg in rice leaves can
affect the bioaccumulation of Se in rice plants is not known. Here,
we conducted field and controlled studies to investigate the
bioaccumulation of Hg and Se in the rice−soil system. In the field
study, we observed a significantly positive correlation between Hg
concentrations and BAFs of Se in rice leaves (r2 = 0.60, p < 0.01)
collected from the Wanshan Mercury Mine, SW China, suggesting
that the bioaccumulation of atmospheric Hg in rice leaves can
facilitate the uptake of soil Se, perhaps through the formation of Hg−Se complex in rice leaves. This conclusion was supported by
the controlled study, which observed significantly higher concentrations and BAFs of Se in rice leaf at a high atmospheric Hg site at
WMM, compared to a low atmospheric Hg site in Guiyang, SW China.

■ INTRODUCTION

Mercury (Hg) is a pollutant of global concern due to its long-
range transport in the atmosphere, and adverse effects on
ecosystems and human health.1,2 In aquatic ecosystems, a
fraction of mercury can transform into methylmercury
(MeHg), a potential neurotoxin that has a strong capacity to
bioaccumulate along the food chain.3−6 Mercury contami-
nation in Hg mines is receiving special attention due to the
extensive release of Hg into the surrounding environment (e.g.,
atmosphere, water, and soils) during Hg mining activities.7−13

Mercury pollution is serious in southwestern China because
this area has a number of large Hg mines, including the
Wanshan Mercury Mine (WMM) which is the world’s third
largest Hg mine.14 To make the situation worse, around these
mines, there are many rice paddies that contain a few to
hundreds of μg/g Hg in soils14,15 and tens to thousands of ng/
m3 Hg in the ambient air.16,17 Rice accumulates inorganic Hg
through (1) leaf uptake of gaseous elemental Hg (Hg0) from
the atmosphere and (2) root uptake of bioavailable Hg species
from the soil.18 More importantly, rice paddies are hotspots of
MeHg production.19−21 High levels of MeHg are commonly
found in rice near Hg mines.14,22−25 At mercury mining sites
and in inland China where rice consumption is higher
compared to fish consumption, rice is a major MeHg exposure
source to local residents.26

Selenium (Se), an essential element and antioxidant, can
antagonize the toxicity of Hg and many heavy metals (e.g., Cd
and Cr)27−35 via the formation of less bioavailable Hg−Se
particles in animal and human bodies.31,33,36,37 An approximate
daily intake of Se of 50 μg/day has been shown to be essential
and healthy for the human body.38 While approximately 72%
of Chinese land is in a Se-deficient state,39 many Se-rich areas
were recently found including WMM. A recent study
demonstrated that the soil in WMM contains 0.16 to 36.6
μg/g of Se,40 which is 1 to 3 orders of magnitude higher than
the abundance of Se in Earth’s crust (50 ng/g) and comparable
with that reported in soils from other seleniferous areas.41−44

At high concentrations, Se has been proven to result in 8−
72% of the decrease in the accumulation of Hg in rice grains
through the formation of less bioavailable mercury selenides
(HgSe) in soil and on the root surface.32,45,46 In flooded
paddies, the anaerobic and reducing conditions favor the
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interaction between Se and Hg due to the higher affinity
constant of Hg to Se (1045) and lower solubility constant of
HgSe (KSP = 1.0 × 10−59) than that of Hg sulfides (affinity
constant: 1039; KSP: 1.6 × 10−52 for α-HgS and 4.0 × 10−53 for
β-HgS).40,47,48 Mercury favors binding to thiol (−SH)
functional groups over other elements in organisms.49,50

However, due to the high-affinity constant of Hg to Se, the
complexation between Hg and −SeH has also been found in
organisms.36,51

In WMM, which is the “Capital of Mercury in China”,
historic large-scale mining activities and ongoing illegal
artisanal Hg mining activities have resulted in extremely high
Hg levels in the soil and atmosphere.15,17 In such a high Hg
background, while the inhibition of Hg bioaccumulation in rice
by Se has been reported,40 the effects of Hg contamination on
Se bioaccumulation in rice remains a mystery. As Se may
antagonize the toxicity of Hg, understanding the effects of Hg
contamination on Se bioaccumulation in rice is critical to
evaluate the risk and toxicity of Hg in rice. A laboratory-
controlled study demonstrated that adding Hg into the culture
solution can promote the translocation of Se to garlic tissues,
and suggested that Se can balance the Hg stress by the
formation of reduced Se (Se2−) in garlic tissues.52 As plant
leaves mainly uptake Hg0 from the atmosphere,18 the
coexistence of the reduction state of Se forms (Se0 or Se2−)
and the oxidation state of Hg (Hg0 or Hg2+) in leaves provided
a possible reaction site where Hg may react with Se. On the
basis of the garlic study, there may be an increase in Se
translocation in rice plants at regions where soil and
atmospheric Hg concentrations are high. In these regions,
more Se is possibly needed to antagonize the toxicity of Hg in
plant tissues.
Here, we conducted field and controlled studies to

investigate the bioaccumulation of Hg and Se in the rice−
soil system. In the field study, we investigated the distribution
of Hg and Se in rice plants and corresponding rhizosphere soil
at both artisanal mining sites and nonartisanal mining sites in
WMM. In the controlled study, we conducted pot experiments
regarding growing rice plants on a Se-rich soil at high TGM
site in the WMM and low TGM site in Guiyang (GY). We aim
to (1) test whether the excessive soil Hg could inhibit the
uptake of soil Se by roots due to the formation of more HgSe
in rhizosphere soil, or (2) test whether atmospheric Hg in rice
leaves could facilitate Se bioaccumulation in rice leaves.

■ MATERIALS AND METHODS
Field Study. To gain a first understanding of the

interactions between Hg and Se in the rice−soil system, rice
plants and the corresponding rhizosphere soil were collected at
25 sites in the WMM area, SW China (Figure S1 of the
Supporting Information, SI), in September 2017. Prior to
sample collection, the TGM concentration at each site (∼0.5
m above ground) was measured three times in July, August,
and September, with >30 min each time, using an automated
Hg vapor analyzer (LUMEX, RA-915 AM, Russia). The
averaged TGM data of each site was used to reflect a long-term
TGM concentration. Twelve of the sampling sites were near
artisanal Hg smelters (hereafter, artisanal mining sites), while
the remainder lacked artisanal Hg smelting activities (hereafter,
nonartisanal mining sites). At each site, three 2 × 2 m plots
were established for sample collection. At each plot, three rice
plants and corresponding rhizosphere soils (0 to 20 cm depth)
were randomly sampled. The rice and soil samples from the

three plots were combined to represent each site. Soil and rice
samples were stored in a cooler (−18 °C) and delivered to the
laboratory following collection. Soil samples were freeze-dried
(−79 °C), crushed, homogenized, and passed through 200
mesh. Rice plants were separated into different tissues (root,
stem, leaf, and grain). The hull and bran of grain samples were
removed to obtain polished rice. Then, root, stem, leaf, and
polished rice samples were washed thoroughly with tap water
followed by 18.2 MΩ water (Milli-Q Integral System), freeze-
dried (−79 °C), weighed, and powdered using a grinding
machine (IKAA11 basic).41 All soil and rice samples were
sealed in polyester plastic bags and stored at room temper-
ature, prior to further analysis.

Controlled Study. To further investigate if the bioaccu-
mulation and translocation of Se can be affected by Hg
accumulation in rice leaf, pot experiments regarding growing
rice plants on Se-rich soil, were performed at high TGM site in
the WMM and low TGM site in Guiyang (GY) in 2018. An
active Hg related chemical plant was located nearby the WMM
site. According to our study, the TGM concentration at the
WMM site during the entire growing season ranges from 24 to
23 842 ng/m3 (geomean: 1556 ng/m3), which are 1−3
magnitudes higher than that at the Guiyang site (range: 5 to
19 ng/m3; geomean: 9.6 ng/m3). The Se-rich soil, containing
7.66 ± 0.16 μg/g of Se and 389 ± 16 ng/g of Hg, was collected
from the Enshi seleniferous area, Hubei province, China. The
soil was fully mixed before use in the pot experiment. Storage
boxes, 45 × 34 × 30 cm3 in size and each contains ∼20 kg of
the Enshi soil, were used for rice growing. Three boxes at each
site and the soil layer is ∼20 cm deep in each box. Three rice
seeds (Oryza. Sativa L) were planted in each box. During the
growing season, commercial drinking water of the same brand
(Long Men drinking water Co., Ltd.) was used for irrigation at
the same time-frequency. A transparent plastic cloth was
placed ∼2 m above the box to prevent wet Hg deposition to
the box. The TGM concentrations at the Guiyang site and the
Wanshan site were measured three times in July, August, and
September, with >30 min each time, using the LUMEX
automated Hg vapor analyzer. Rice samples were harvested at
the end of September 2018. Soil and rice plants were sampled
and processed following the method described above.

Mercury Concentration Analysis. For THg analysis,
approximately 0.1 g of soil samples were digested in a water
bath (95 °C, 6 h) using 5 mL of aqua regia (HCl/HNO3 = 3/
1, v/v), and measured by F732−VJ cold vapor atomic
absorption spectrometry (detection limit: 0.05 ng/mL Hg)
following a previous method.18,53 Approximately 0.2 g of rice
tissues were digested with 5 mL of HNO3 and H2SO4 (4/1, v/
v) and measured by Tekran 2500 cold vapor atomic
fluorescence spectroscopy (detection limit: 0.1 pg Hg)
following the US EPA Method 1631.54

Se Concentration Analysis. TSe concentrations of soil
and rice samples were measured following a previous
method.41 Briefly, approximately 0.1 g of soil samples and
approximately 0.2 g of rice samples were weighed into 15 mL
Teflon bombs. Soil samples were digested by 2.5 mL HNO3
and 0.5 mL of HF, and rice samples were digested by 2.9 mL
HNO3 and 0.1 mL of HF. The Teflon bomb was placed in a
steel can and heated in an oven (155 °C) for 36 and 18 h,
respectively, for soil and rice samples. The bombs were then
screwed open and supplemented with 1 mL of 30% (v/v)
H2O2 and heated on a hot plate (90 °C) until the solution was
evaporated to near dryness. The residual solution was added to
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3 mL of 6 mol/L HCl and heated in a water bath (95 °C) for 2
h, and then diluted to 15 mL with 18.2 MΩ water for hydride
generation atomic fluorescence spectrometry analysis (HG-
AFS 9700, BJHG, China).
Quality Control. The standard reference materials

GBW07405 (yellow-red soil), GBW10020 (citrus leaf), and
BCR-482 (lichen), and sample replicates were included during
both THg and TSe analysis. The recoveries of Hg for
GBW07405, GBW10020 and BCR-482 are 109 ± 6% (n = 6),
101 ± 7% (n = 6), and 88 ± 2% (n = 3), respectively, and the
recoveries of Se for GBW07405 and GBW10020 are 106 ± 5%
(n = 5) and 93 ± 4% (n = 9), respectively. Duplicate analysis
of soil and rice plant tissue samples were conducted in every
ten samples, and the relative standard deviations of THg and
TSe of all duplicate samples were all within 5% (n = 22).
Bioaccumulation Factors of Hg and Se in Rice

Tissues. Bioaccumulation factors (BAFs) of Hg and Se in
rice tissues were calculated using the following equation:

=BAF C /Ctissue tissue soil (1)

where Ctissue is the THg (or TSe) concentration of rice tissue
and Csoil is the THg (or TSe) of the corresponding rhizosphere
soil.
Statistical Analysis. Correlation analyses and t test were

performed using IBM SPSS 22.0 software. Correlation
coefficients (r2) and significance probabilities (p > 0.05 is
insignificant; p < 0.05 is significant; p < 0.01 is very significant)
were computed for regression fits. A t test was performed to
compare whether Hg or Se concentrations and BAFs in rice
tissues differed significantly between artisanal and nonartisanal
mining sites. Graphical analyses were performed by Origin
2019 and Microsoft Office 365.

■ RESULTS
Mercury and Selenium Distribution in the Field

Study. THg and TSe concentrations in the field study are
summarized in Table 1 and described in detail in Text S1.
Briefly, artisanal mining sites show significantly higher TGM
levels (geomean: 369 ng/m3) and soil THg concentrations
(geomean: 36.8 μg/g) than nonartisanal mining sites (geo-
mean TGM: 38.8 ng/m3; geomean soil THg: 13.5 μg/g), as
shown in Figure 1. Slightly lower soil TSe can be found at

artisanal mining sites (geomean: 1.65 μg/g) over nonartisanal
mining sites (geomean: 2.13 μg/g). Significantly positive
correlations between soil THg and soil TSe can be observed at
nonartisanal mining sites (r2= 0.32, p < 0.01) and at artisanal
mining sites (r2 = 0.35, p < 0.05), suggesting Hg and Se may
share a similar source.
The concentrations and BAFs of Hg and Se in rice tissues in

the field study are summarized in Table 1. Briefly, significantly
higher geomean values of THg and TSe were observed at
artisanal sites, compared to nonartisanal mining sites (Table
1). At all studied sites, root and leaf have higher THg
concentrations and Hg BAFs than grain and stem (Figure S2).
Similarly, at all studied sites, higher TSe concentrations and Se
BAFs were also observed in root and leaf, compared to grain
and stem (Figure S3).

Mercury and Selenium Distribution in the Controlled
Study. THg and TSe concentrations of rice tissues in the
controlled site are shown in Table 2 and Figure 2. During the

Table 1. Concentrations and BAFs of Hg and Se in Soil and Rice Tissues at Non-artisanal Mining Sites (n = 13) and Artisanal
Mining Sites (n = 12)

nonartisanal mining sites artisanal mining sites

THg (μg/g) Hg BAFs THg (μg/g) Hg BAFs

range mean range mean range mean range mean

TGM (ng/m3) 13−113 38.8 64−1287 369
soil 0.35−833.7 13.5 12.5−115 36.8
root 0.12−20.1 1.13 0.02−0.69 0.08 0.96−20.6 2.94 0.04−0.20 0.08
stem 0.018−0.64 0.058 1 × 10−4 ∼ 0.06 0.0043 0.09−1.50 0.34 0.002−0.02 0.0093
leaf 0.24−3.16 0.65 0.004−0.87 0.048 2.31−7.19 4.09 0.029−0.27 0.11
polished rice 0.015−0.081 0.031 2.04 × 10−5∼0.12 0.0023 0.065−0.45 0.14 0.0007−0.0081 0.0038

TSe (μg/g) Se BAFs TSe (μg/g) Se BAFs

range mean range mean range mean range mean

soil 0.43-21.7 2.13 0.63−4.20 1.65
root 0.19−5.79 0.99 0.04−2.02 0.40 0.18−3.58 1.02 0.23−1.11 0.62
stem 0.022−0.56 0.11 0.02−0.22 0.05 0.023−0.82 0.16 0.03−0.20 0.10
leaf 0.065−0.98 0.24 0.04−0.46 0.12 0.077−1.53 0.39 0.10−0.55 0.24
polished rice 0.029−0.91 0.12 0.016−0.18 0.055 0.026−0.68 0.15 0.032−0.19 0.091

Figure 1. Site characteristics of TGM, Hg, and Se in soil and rice
leaves in artisanal mining sites and nonartisanal mining site (TGM:
ng/m3; Hg and Se in soil and rice leaves: μg/g).
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growing season, the THg of soil placed at the Wanshan site
increased from 389 ng/g to 535 ng/g, whereas soil placed at
the Guiyang site showed consistent THg concentration (395 ±
24 ng/g). The increase of soil THg at the Wanshan site is
thought to be caused by the intensive release of Hg from the
nearby artisanal Hg sites. Soil Se showed no significant
variation at both sites (Wanshan: 7.77 ± 0.04 μg/g; Guiyang:
7.54 ± 0.14 μg/g) during the growing season.
The concentrations and BAFs of Hg in rice tissues at the

Wanshan site decrease in the following order: leaf > root >
stem > grain (Figure 2A, Table 2). However, at the Guiyang
site, the concentrations and BAFs of Hg decrease as follows:
root > leaf > stem > grain. The concentrations and BAFs of Se
at both sites show a consistently decreasing order: root > leaf >
grain > stem (Figure 2B, Table 2).

■ DISCUSSION

Hg Distribution in Rice Plants in the Field Study. At
both artisanal and nonartisanal mining sites, roots and leaves
showed much higher THg concentrations and Hg BAFs than

other tissues (Table 1, Figure S2). Meanwhile, THg
concentrations of leaf and stem showed significantly positive
linear correlations with TGM, whereas root THg was positively
correlated with soil THg (Table S1). As discussed in Text S2,
these correlations are consistent with previous studies that
demonstrated that rice takes up Hg by root and leaf from the
soil and ambient air,18 respectively, and Hg is not readily
translocated among plant tissues.55,56

The bioaccumulation of Hg in rice tissues may be inhibited
by elevated soil TSe concentrations.40 Such a hypothesis can
be supported by the negative correlations (p < 0.01) between
soil TSe and BAFs of Hg in rice tissues at nonartisanal mining
sites (Figure 3A). At nonartisanal mining sites, a positive
correlation between TGM and soil THg can be observed (r2=
0.82, p < 0.01), suggesting that TGM mainly originated from
the in situ emission of Hg0 from the soil. It is likely the
elevated soil TSe at nonartisanal mining sites can reduce the
bioavailability of soil Hg or the emission of Hg0 from the soil,
through the formation of less soluble HgSe in soil.57−60 At
artisanal mining sites, however, we did not observe any clear

Table 2. Hg and Se Concentrations and BAFs of Pot Rice Plants Grown in GY (Low TGM, n = 3) and WMM (High TGM, n =
3)

GY WMM

THg (μg/g) Hg BAFs THg (μg/g) Hg BAFs

sites range mean range mean range mean range mean

TGM (ng/m3) 5−19 9.6 24−23842 1556
soil 0.37−0.42 0.40 0.44−0.59 0.54
root 0.17−0.30 0.24 0.45−0.71 0.60 1.26−1.86 1.58 2.13−3.68 3.02
stem 0.009−0.012 0.011 0.02−0.03 0.028 1.51−1.53 1.53 2.60−3.41 2.89
leaf 0.056−0.062 0.059 0.14−0.16 0.15 11.8−13.7 12.54 21.1−26.7 23.7
polished rice 0.003−0.003 0.003 0.007−0.009 0.0078 0.095−0.12 0.11 0.17−0.24 0.20

TSe (μg/g) Se BAFs TSe (μg/g) Se BAFs

range mean range mean range mean range mean

soil 7.42−7.70 7.54 7.73−7.81 7.77
root 16.4−19.5 18.3 2.14−2.55 2.40 12.1−13.4 12.8 1.58−1.74 1.67
stem 2.21−2.87 2.53 0.29−0.37 0.33 2.34−3.37 2.74 0.31−0.44 0.36
leaf 3.83−4.60 4.22 0.50−0.60 0.55 4.78−5.59 5.33 0.62−0.73 0.70
polished rice 2.40−2.92 2.63 0.31−0.38 0.34 2.40−2.75 2.58 0.31−0.36 0.34

Figure 2. Distribution of Hg (A) and Se (B) of pot rice plants placed in GY and WMM.
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correlation between soil TSe and BAFs of Hg in rice tissues
(Figure 3B). Unlike nonartisanal mining sites, no significant
correlation between TGM and soil THg was observed at
artisanal mining sites, suggesting that the TGM was not mainly
emitted from soil, but directly from artisanal mining activities.
Therefore, soil Se seems not to significantly limit the
bioaccumulation of Hg in rice tissues at artisanal mining
sites, because of the fact that atmospheric Hg (mainly emitted
from the Hg smelters) was directly uptaken by rice leaves, and
there is little chance for soil Se to complex with atmospheric
Hg.
Se Distribution in Rice Plants in the Field Study. The

distribution patterns of TSe and Se BAFs in rice tissues in the
field study, as illustrated in Table 1 and Figure S3. At
nonartisanal and artisanal mining sites, the TSe concentrations
of rice tissues are all positively correlated with soil TSe
concentrations (p < 0.01 for all), consistent with the fact that
rice plant uptakes Se mainly from soil.41,44

As shown in Figure 3C, the BAFs of Se in rice tissues are all
negatively correlated with soil THg concentrations at non-
artisanal mining sites (p < 0.01 for all). Hence, we
hypothesized that the uptake of soil Se by rice plant may be
inhibited by high soil THg concentrations, although other
mechanisms may exist. This can be explained by the formation
of less soluble HgSe in paddy soil. Indeed, previous studies
have demonstrated that Hg−Se interaction can occur in the
rhizosphere by detecting a proportion of Hg−Se in root
surface.45,46 Under flooded conditions, oxidized Se species
(SeO4

2−, SeO3
2−) can transform to reduced Se species (Se2− or

Se0).40 Reduced Se species can react with dissolved Hg2+ or

Hg0 in soil solutions, forming Hg−Se complex in soil and rice
rhizosphere. HgSe has much lower mobility and bioavailability
compared to Hg-sulfides, due to their much lower KSP than
HgS.40,47,48

At artisanal mining sites, however, we observed no clear
correlation between soil THg and BAFs of Se in rice tissues
(Figure 3D). However, compared to nonartisanal mining sites,
relatively higher TSe concentrations and higher BAFs of Se
were observed in rice leaves at artisanal sites (p = 0.039, t =
−2.193). This is contradicting with the slightly lower soil TSe
concentrations at artisanal mining sites, indicating that
environmental conditions in the regions of artisanal Hg mining
activities facilitated the bioaccumulation of Se in rice leaves. As
mentioned above, soil Hg tends to decrease the bioavailability
of Se in soils, therefore it should not be the reason for the
higher BAFs of Se in rice leaves at nonartisanal mining sites.
For rice leaf, significantly positive correlations were observed
between Hg concentrations and Se BAFs (Figure 4A) and
between TGM and Se BAFs (Figure 4B), which implies that
the bioaccumulation of Hg facilitated the uptake of soil Se by
leaf.
Artisanal Hg mining activities significantly increased the

TGM levels at artisanal Hg mining sites, which resulted in
elevated THg levels in rice leaves, perhaps forming Hg−Se
complex in rice leaf. A substantial amount of atmospheric Hg0

can pass through stomata, and be oxidized to Hg2+ and
accumulated by leaf of plant tissue.49,61 In leaf and other
tissues, a substantial amount of Hg2+ binds with sulfur-
containing groups (e.g., −SH) to form less soluble Hg sulfides
(e.g., β-HgS), which combat the toxicity of Hg.49 It should be

Figure 3. (A) Correlations between soil TSe and BAFs of Hg in rice tissues collected from nonartisanal mining sites of the Wanshan Mercury
Mine; (B) correlations between soil TSe and BAFs of Hg in rice tissues collected from artisanal mining sites of the Wanshan Mercury Mine; (C)
correlations between soil THg and BAFs of Se in rice tissues collected from nonartisanal mining sites of the Wanshan Mercury Mine; and (D)
correlations between soil THg and BAFs of Se in rice tissues collected from artisanal mining sites of the Wanshan Mercury Mine.
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noted that the leaf is also the site where the transformation of
inorganic Se (e.g., Se6+ and Se4+) to organic Se species occurs.
Inorganic Se6+ and Se4+ are transported from the root to leaf by
sulfate and phosphate transporters and are transformed to
organic Se (Se-Met, Se-Cys, Se-MeSeCys, DMSe, DMDSe,
etc.) and reduced Se (Se2− or Se0) species, with the
involvement of many enzymes.62−64 Here, we speculate that
the formation of Hg−Se may occur in rice leaf due to the
presence of reduced Se (Se2− or Se0) species, considering the
stronger chemical bonding ability of Se−Hg (1045) than of S−
Hg (1039). The free functional groups of −SeH are
preferentially bound with Hg2+ over −SH,36,37 even capturing
the Hg that has formed Hg−(SR)2 by ligand exchange
reaction.65 The sulfur in β-HgS is readily replaced by Se
through isomorphism.66 To test our hypothesis, more studies
are needed in the future.
Se Distribution in Rice Plants in the Controlled

Study. Compared to the field study, significantly higher Se
BAFs were observed in the controlled study. This is due to the
use of Enshi soil in the controlled study. The Enshi soil has
previously been shown to have high Se bioavailability, as
indicated by the high concentrations of bioavailable Se species
such as water-soluble Se (0.008−0.175 μg/g), ligand-
exchangeable Se (0.10−1.45 μg/g), and organically bound Se

(0.61−8.11 μg/g).41 The controlled study further supported
our hypothesis that the high TGM, which is the major source
of Hg in rice leaves, facilitates the uptake of soil Se by rice
leaves. As shown in Figure 2B, the concentrations and BAFs of
Se in root at the Wanshan site was much lower (p = 0.006, t =
5.274) than that at the Guiyang site, which may be due to
intensive Hg deposition that decreased Se bioavailability by
forming less bioavailable HgSe species in soil. However, the
concentrations and BAFs of Se in rice leaves at the Wanshan
site were surprisingly higher than those at the Guiyang site. In
particular, statistic tests suggested the concentrations and BAFs
of Se in leaf at the Wanshan site are significantly higher (p =
0.035, t = −3.148) than that at the Guiyang site. Rice leaves
receive the majority of Hg from the atmosphere.18 As the same
soil and water were used throughout the controlled study at
both sites, we suggest that the high TGM is an important
driver for the relatively higher concentrations and BAFs of Se
in leaves at the Wanshan site.

Environmental Implications. The Hg−Se interaction in
the rice−soil system, as demonstrated in this study, provided
some new insights into the biogeochemical cycling of both Hg
and Se in the environment. As a toxin, the bioaccumulation of
Hg in plants is a critical step for Hg entering the food web.67

Selenium in soil has great potential to limit the bioavailability

Figure 4. (A) Correlation between Hg concentrations and BAFs of Se in rice leaves collected from the Wanshan Mercury Mine; and (B)
correlation between TGM and BAFs of Se in rice leaves collected from the Wanshan Mercury Mine.
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of Hg in soil, through the formation of less soluble HgSe,
especially in Se-rich regions.40,53 In highly Hg-polluted regions,
mercury, in turn, has an undeniable effect on the
biogeochemical fate of Se. According to our study, elevated
Hg concentrations could decrease the mobility of Se in soil,
due to the formation of HgSe. Meanwhile, plants receive a
substantial amount of Hg0 from ambient air, and the uptake of
atmospheric Hg by plant leaves can facilitate the uptake of Se
by rice, especially in areas associated with high TGM levels.
Although the mechanism behind this phenomenon remains
not well explained by this study, we hypothesized that
interactions between Hg and Se may readily form HgSe in
leaf, where atmospheric Hg0 and soil Se are transformed to
oxidation and reduction states, respectively. The formation of
less soluble HgSe exhausts the available Se species (Se6+ and
Se4+) in rice leaves, which, in turn, facilitates the uptake of soil
Se by leaves. The complex of Hg to Se has been observed in
many animal tissues, and such kind of complex has been
assumed to prevent negative effects of Hg in animals.68 The
present study implies the same mechanism may also occur in
plant leaves that exposed in a high TGM environment.
However, it is worth mentioning that this study failed to detect
the in situ presence of HgSe. To verify the possibility of HgSe
formation in rice plant and other plant species, we encourage
researchers to conduct further studies using relevant
techniques (e.g., XANES). It also has been reported that the
intervention of massive Hg can promote the uptake of soil Se
by garlic plant in which a substantial amount of HgSe was
detected by the XANES.52
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