
1. Introduction
Mercury (Hg) is a globally distributed pollutant. In aquatic ecosystems, a small fraction of Hg can be meth-
ylated to MeHg, a neurotoxin that can bioaccumulate through aquatic food chains and reach concentra-
tions that are 106 to 107 times higher in fish than in the surrounding water (Chumchal et al., 2011; Lavoie 
et al., 2013; Poste et al., 2015). A similar MeHg biomagnification was reported in terrestrial food chains as 
well (Kwon et al., 2015; Rodenhouse et al., 2019; Tsui et al., 2012). Fish consumption is well known as a ma-
jor MeHg exposure pathway for the global population (Mergler et al., 2007). In recent years, scientists have 
realized that rice paddies are also hot spots of Hg methylation (Liu et al., 2012; Rothenberg & Feng, 2012; 
Zhang, Feng, Larssen, Shang, & Li, 2010). At Hg-polluted sites, rice accumulates a substantial amount of 
MeHg in grains, and the consumption of rice can be another important human exposure pathway (X. Feng 

Abstract Rice can accumulate a substantial amount of mercury (Hg). At the Wanshan Mercury 
Mine (WMM), the bioaccumulation of Hg by rice was complicated by historical large-scale mining and 
active artisanal smelting activities. This study investigated the concentration and isotopic composition 
of Hg in rice roots, leaves and paddy soil collected from abandoned Hg mining sites and active artisanal 
smelting sites at the WMM. At all sites, correlations between δ202Hg and 1/THg were observed in soil, 
suggesting a mixing of Hg from waste calcine and unroasted Hg ore. Significantly positive correlations 
were also observed in THg concentrations between roots and soil (r2 = 0.84, p < 0.01) and between leaves 
and total gaseous mercury (r2 = 0.87, p < 0.01), reflecting that roots and leaves receive Hg mainly from 
soil and atmosphere, respectively. Large differences of −0.87 ± 0.57‰ and −1.85 ± 0.57‰ in δ202Hg 
between the root and soil were observed at abandoned Hg mining sites and active artisanal smelting sites, 
respectively, suggesting that roots preferentially accumulate lighter Hg isotopes from the soil. Offsets of 
0.05‰ and 0.27‰ in Δ199Hg between rice roots and leaves, with higher Δ199Hg values in roots than leaves, 
were observed at abandoned Hg mining sites and active artisanal smelting sites, respectively. The Hg-
mass-independent fractionation signal is believed to be caused by Hg(II) photoreduction in paddy water; 
however, the extent of photoreduction is variable among rice paddies. Overall, this study suggests that Hg 
isotopes can be a useful tool to understand the sources and bioaccumulation of Hg in rice paddies.
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et al., 2008; Zhang, Feng, Larssen, Qiu, & Vogt, 2010). However, unlike fish, which mainly contain MeHg 
(Al-Reasi et al., 2007; Kwon et al., 2012; Onsanit et al., 2012; Schartup et al., 2019), the majority of Hg in 
rice tissues (e.g., root and leaf) is in the inorganic Hg (IHg) form (Meng et al., 2010; Zhang, Feng, Larssen, 
Shang, & Li, 2010). According to Meng et al. (2010), the MeHg (methylated Hg)/THg (total Hg) ratios in 
roots and leaves are only 0.0015 ± 0.0012 and 0.00028 ± 0.00026, respectively, at the Wanshan Mercury 
Mine (WMM).

Our understanding of the bioaccumulation of Hg in rice plants has been improved by measuring the isotop-
ic ratios of Hg. Mercury has seven natural stable isotopes (196Hg, 198Hg, 199Hg, 200Hg, 201Hg, 202Hg, and 204Hg), 
which undergo both mass-dependent fractionation (MDF, reported as δ202Hg) and mass-independent frac-
tionation (MIF, reported as Δ199Hg, Δ200Hg, and Δ201Hg) during their cycling in the environment. Hg-MDF 
occurs during various biogeochemical processes, while Hg-MIF occurs mainly via photochemical processes 
(Blum et al., 2014). The MIF of odd isotopes (199Hg and 201Hg) in natural samples has been demonstrated to 
be mainly caused by aqueous Hg(II) photoreduction or MeHg photodegradation (Bergquist & Blum, 2007). 
In contrast, MIF of even isotopes (e.g., 200Hg) has been mainly observed in atmospheric samples and has 
been attributed to the photochemical oxidation of gaseous Hg(0) in the atmosphere (Chen et al., 2012; Gratz 
et  al.,  2010; Sun et  al.,  2016). In a previous study, distinct Hg isotopic signatures were observed in rice 
tissues (e.g., root, stem, leaf, and grain), soil, and atmospheric samples from the WMM, which is the most 
Hg-polluted site in China and the world (Yin, Feng, & Meng, 2013). In general, the Δ199Hg values of roots 
(−0.03‰–0.02‰) and leaves (−0.37‰–0.14‰) are similar to those of soil (−0.02‰–0.07‰) and atmos-
pheric Hg (−0.34‰ to −0.24‰), respectively, which suggests that vegetation takes up Hg from the soil 
and atmosphere by roots and leaves, respectively (Yin, Feng, & Meng, 2013). However, much lower δ202Hg 
values were observed in plant tissues than those in soil and atmospheric Hg, suggesting that Hg-MDF (with 
preferential uptake of lighter Hg isotopes) could occur during the uptake of soil and atmospheric Hg by 
roots and leaves, respectively (Yin, Feng, & Meng, 2013). Hg-MDF has been observed for vegetation uptake 
of Hg in many vegetated ecosystems, such as temperate forests and tundra (Demers et al., 2013; Douglas 
et al., 2019; Enrico et al., 2016; Jiskra et al., 2019; Obrist et al., 2018; Olson et al., 2019; Zheng et al., 2016).

Mercury mining in the WMM has lasted for >2000 years since the Qin Dynasty. Large-scale Hg mining has 
been officially banned in the WMM since 2003; however, long-term mining activities have resulted in the 
intense release of Hg to nearby farmlands, where rice is commonly grown. At these abandoned Hg mining 
sites, high levels of Hg in soil (0.26–496 μg/g)(Zhang et al., 2012) and ambient air (17–2,100 ng/m3)(Dai 
et al., 2012) have been reported. With the temptation of profits, illegal active artisanal Hg smelting activities 
are still ongoing at a few sites in the WMM. At these new sites, soil Hg and total gaseous Hg (TGM) con-
centrations are higher than those at abandoned Hg mining sites. Regarding the WMM, it is believed that 
rice plants at the abandoned Hg mining sites are predominantly polluted by legacy Hg emitted from aban-
doned mine tailings, whereas rice plants at the illegal active artisanal Hg smelting sites receive Hg that was 
released from active artisanal smelting activities. Recent studies have demonstrated that newly deposited 
Hg is more bioavailable than legacy Hg and is more easily bioaccumulated in rice plants (Zhao et al., 2016). 
Vegetation takes up soil Hg by roots and takes up atmospheric Hg by leaves (Yin, Feng, & Meng, 2013). 
Given the differences in Hg pollution sources, bioavailable fractions and Hg levels, the isotopic signature 
of Hg in rice plants may be different at abandoned Hg mining sites and active artisanal Hg smelting sites.

In this study, rice plants and the corresponding rhizosphere soil were systematically collected from the 
WMM for Hg isotopic composition analysis. This study aims (1) to test whether the Hg isotope signals of 
rice roots and leaves are different at abandoned Hg mining and at active artisanal Hg smelting sites and (2) 
to understand the isotope fractionation of Hg during the uptake of Hg from the soil and the atmosphere by 
rice roots and leaves, respectively.

2. Materials and Methods
2.1. Study Area and Sampling

The WMM in Guizhou Province, SW China, is located in a typical karstic area with elevations from 205 to 
1,149 m high. This region has a subtropical monsoon climate, with an annual precipitation rate of 1,200–
1,400 mm and an annual temperature of 17°C (Zhang et al., 2012). Known as China's largest Hg deposit 
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and the world's third-largest Hg deposit, the WMM is also called the “Mercury Capital” of China. Although 
large-scale mercury mining and smelting have not occurred for >10 years, mercury pollution remains seri-
ous in the WMM, especially at historical abandoned Hg mining sites and at ongoing illegal active artisanal 
smelting sites, as shown in Figure 1.

Paired rice plant and rhizosphere soil (0–25 cm depth) samples were collected at 25 sites in the harvest season 
in September of 2017. These sites include 13 abandoned Hg mining sites and 12 illegal active artisanal smelt-
ing sites (Figure 1). Three rice plants and in situ rhizosphere soil samples were randomly obtained at each site, 
and then samples at each site were uniformly mixed as one sample. Sample pretreatment details have been 
described in our previous study (Chang, Yin, Wang, et al., 2019). Briefly, stones and wood dust were picked 
out of the soil samples. The soil samples were then freeze-dried (−79°C), crushed, and passed through a 200 
mesh sieve. The roots and leaves of rice plant tissues were thoroughly washed with tap water, washed with 
Milli-Q water (18.2 MΩ), freeze-dried (−79°C), and then powdered using a grinder (IKA®A11 basic). Before 
each sample was ground, the machine was wiped with alcohol pads to avoid cross-contamination. The TGM 
concentration at each site was measured three times during the growing season (July, August, and September) 
using an automated Hg vapor analyzer (LUMEX, RA-915AM, Russia), which has a detection limit of 0.5 ng/
m3 (Chang et al., 2020). The data were averaged to represent the long-term TGM concentration of each site.

2.2. Mercury Concentrations in Paddy Water, Soil, Roots, and Leaves

For THg analysis, approximately 0.1 g of soil samples were weighed into 25 mL colorimetric tubes and di-
gested in a water bath (95°C, 3 h) using 5 mL of aqua regia (HCl/HNO3 = 3/1, v/v). The solutions were then 
diluted to 25 ml by Milli-Q water and measured with F732−VJ cold vapor atomic absorption spectrometry 
(detection limit: 0.05 ng/mL Hg) following SnCl2 reduction (Chang, Yin, Zhang, & Yao, 2019; Yin, Feng, & 
Meng, 2013). For plant samples, approximately 0.2 g of rice tissues were digested with 5 mL of HNO3 and 
H2SO4 (4/1, v/v) in a water bath (95°C, 3 h) and measured with F732-VJ cold vapor atomic absorption spec-
trometry following BrCl oxidization, Milli-Q water dilution, and SnCl2 reduction. Standard reference ma-
terials (SRMs), such as GBW07405 (yellow-red soil), GBW10020 (citrus leaves) and BCR-482 (lichen), were 
used to ensure quality control, and the recovery of the three reference materials are averaged at 109 ± 2% 
(2SD, n = 3), 91 ± 4% (2SD, n = 3), and 87 ± 5% (2SD, n = 3), respectively. The relative standard deviations 
of THg were all within 5% for sample duplicates.

Paddy water (0–8 cm depth) was sampled before the grain pustulation period in early August. The water 
samples were filtered (0.45 μm filter membrane, PES, JIN TENG®), transferred to 100 mL borosilicate glass 
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bottles; 0.5% (v/v) distilled ultra-pure HCl was added, and the solution was preserved in a refrigerator (4°C) 
under dark conditions. THg concentrations of paddy water samples were determined following BrCl (0.5%, 
v/v) oxidation, NH2OH·HCl neutralization, and SnCl2 reduction using a dual-stage Au amalgamation meth-
od and cold vapor atomic fluorescence spectrophotometer (CVAFS) detection (Tekran 2500, Tekran Inc., 
Toronto, Ontario, Canada) (USEPA, 2002). The relative standard deviations of THg were within 10% for 
sample duplicates.

2.3. Mercury Isotope Analysis

After the samples were digested, the digested solutions were diluted to 0.5 ng/mL Hg by adding a 10% HCl 
(v/v) solution before Hg isotope analysis using Nu-Plasma II multiple-collector inductively coupled plasma 
mass spectrometry (Yin et al., 2010). NIST SRM 3133 solution, with the Hg concentration and acid matrices 
matched to the sample solution, was measured before and after the samples. The δ202Hg, Δ199Hg, Δ200Hg, and 
Δ201Hg values were calculated relative to the NIST SRM 3133 solution, following the protocol by (Bergquist 
& Blum, 2007). The UM-Almadén secondary standard solution (0.5 ng/mL Hg in 10% HCl (v/v)) was meas-
ured in every 10 samples, which yielded average values of −0.56 ± 0.10‰, 0.02 ± 0.08‰, 0.02 ± 0.06‰ 
and −0.01  ±  0.14‰ for δ202Hg, Δ199Hg, Δ200Hg, and Δ201Hg, respectively (2SD, n  =  7), consistent with 
the recommended values (Blum and Bergquist, 2007). The results of BCR 482 (δ202Hg = −1.70 ± 0.16‰; 
Δ199Hg = −0.60 ± 0.08‰; Δ200Hg = 0.04 ± 0.02‰; Δ201Hg = −0.65 ± 0.08‰; 2SD, n = 3) also agree well with 
those reported in previous studies (Estrade et al., 2010; Wang et al., 2017; Yu et al., 2016). The larger values 
of standard deviation (2SD) for either UM-Almadén or SRMs are used to reflect analytical uncertainties.

3. Results and Discussion
3.1. THg Concentrations

Active artisanal smelting sites showed a median TGM of 369 ng/m3 (range: 64–1,290 ng/m3), which is approx-
imately 10 times higher than that at abandoned Hg mining sites (median: 38.8 ng/m3; range: 13–113 ng/m3). 
Active artisanal smelting sites showed a median soil THg concentration of 36.8 μg/g (range: 15.0–114.6 μg/g), 
which is approximately 2.7 times higher than that at abandoned Hg mining sites (median: 13.5 μg/g; range: 
0.35–833.7 μg/g) (Chang et al., 2020). Filtered THg in paddy water at active artisanal smelting sites ranges 
from 5.3 to 107.8 ng/L, with a median value of 43.7 ng/L, which is approximately 3.1 times higher than that at 
abandoned Hg mining sites (median: 13.9 ng/L; range: 2.4–82.9 ng/L). Soil THg showed positive correlations 
with filtered THg in paddy water both at abandoned Hg mining sites (r2 = 0.96, p < 0.01) and active artisanal 
smelting sites (r2 = 0.91, p < 0.01), indicating that Hg level in paddy water is determined by soil Hg. The higher 
Hg levels in soil, paddy water, and the atmosphere at active artisanal smelting sites have been attributed to the 
active artisanal smelting activities, which intensively released Hg to the surrounding environment.

Rice roots and leaves at active artisanal smelting sites also showed higher THg concentrations than those 
at abandoned Hg mining sites. The median THg concentrations of rice roots and leaves at active artisanal 
smelting sites are 2.81  μg/g (range: 0.96–20.6  μg/g) and 4.09  μg/g (range: 2.31–7.19  μg/g), respectively, 
which are approximately 2.5 and 6.3 times higher than those in rice roots (median: 1.13 μg/g; range: 0.12–
20.0  μg/g) and leaves (median: 0.65  μg/g; range: 0.24–3.16  μg/g), respectively, at abandoned Hg mining 
sites (Chang et al., 2020). Some abandoned mining sites show higher THg concentration in soil and roots 
than those in active artisanal smelting sites (Table S1), due to the impact by Hg waste calcines. At all sites, 
the root THg positively correlates with the soil THg (r2 = 0.84, p < 0.01, Figure 2a), which suggests roots 
mainly take up Hg from the soil although newly deposited Hg is generally more bioavailable than legacy Hg 
(Branfireun et al., 2005; Zhao et al., 2016). The high correlations between THg concentrations in soil and 
paddy water mentioned above demonstrate that soil Hg, rather than newly deposited Hg, plays a key role in 
controlling Hg levels in paddy water. The leaf THg also positively correlates with TGM both at abandoned 
Hg mining sites (r2 = 0.80, p < 0.01) and active artisanal smelting sites (r2 = 0.86, p < 0.01, Figure 2b), 
which is consistent with the fact that leaves receive the majority of Hg from the ambient air (Yin, Feng, & 
Meng, 2013). However, the relationship between Hg in air and leaves for the active Hg smelting sites ap-
pears to have a smaller log-log slope than for the abandoned mining sites (Figure 2b), which may indicate a 
decrease in gaseous Hg uptake by rice in paddies near the more contaminated active artisanal mining sites.
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3.2. Isotopic Composition of Hg in Soil

As shown in Figure  3, soil collected from abandoned Hg mining sites 
showed δ202Hg values of −1.33 to 0.03‰ and Δ199Hg values of −0.08 to 
0.04‰, which are similar to those of soils collected from active artisanal 
smelting sites (δ202Hg: −1.17 to −0.22‰; Δ199Hg: −0.04 to 0.06‰). These 
values are within the range of those previously reported for the WMM 
soils (δ202Hg: −2.38 to 0.72‰; Δ199Hg: −0.06 to 0.14‰, Figure  3) (Sun 
et al., 2019; Yin, Feng, & Meng, 2013).

Negative correlations can be observed between δ202Hg and 1/THg for the 
soil at abandoned mining sites (Figure 4a, r2 = 0.40, p = 0.04) and active 
artisanal smelting sites (Figure 4b, r2 = 0.37, p = 0.08) in WMM, which 
suggests a mixing of Hg from two sources, the Hg waste calcines and 
the unroasted Hg ore. We noticed that soil associated with the highest 
THg concentrations was characterized by higher δ202Hg values of ∼ 0‰. 
For instance, soil samples collected near the SK tailing (230 ± 17 μg/g; 
1SD, n = 2) and the JJC active artisanal smelting waste (75 ± 24 μg/g; 
1SD, n = 3) have mean δ202Hg values of 0.14 ± 0.32‰ (2SD, n = 2) and 
−0.26  ±  0.10‰ (2SD, n  =  3), respectively. These values are consistent 
with previous values of Hg waste calcines in the WMM (0.08 ± 0.20‰, 
2SD, n = 11)(Yin, Feng, Wang, Li, et al., 2013) and other mining systems 
in the world (Donovan et al., 2013; Gehrke et al., 2011; Pribil et al., 2020). 
Hg waste calcines are therefore proposed as an important source end-
member of Hg in WMM soil. The other endmember is characterized by a 
lower δ202Hg of ∼ −1.3‰, which is close to previous results on the WMM 
Hg ore (δ202Hg: −1.08 ± 0.2‰) (X. B. Feng et al., 2010; Yin, Feng, Wang, 
Li, et al., 2013). Overall, we suggest that the majority of Hg in the WMM 
soil was originally derived from mining activities; either mine waste cal-
cines or unroasted Hg ore contributed Hg to the soil. The Δ199Hg values 
of paddy soil (−0.04 to 0.06‰) also suggest that Hg was sourced from Hg 
ores and mine waste because these materials are associated with near-ze-
ro Δ199Hg values (Yin, Feng, & Meng, 2013).

3.3. Isotopic Composition of Hg in Roots

Rice root samples collected from abandoned Hg mining sites and active 
artisanal smelting sites showed δ202Hg values of −1.57  ±  1.42‰ (2SD) 
and −2.58 ± 1.30‰ (2SD), respectively, which are all significantly lower 
than those of soil samples (Figure 3). A negative shift of −0.87 ± 0.57‰ in 
δ202Hg was observed from soil to roots collected from abandoned Hg min-
ing sites (Figure 5a). Correlation analysis reveals that the δ202Hg of roots 
is significantly positively correlated with the δ202Hg of soil (r2  =  0.36, 
p < 0.05) at abandoned Hg mining sites, which is again consistent with 
the fact that roots receive the majority of Hg from the soil, and roots pref-
erentially take up lighter Hg isotopes from soil (Yin, Feng, & Meng, 2013). 
However, such a correlation was not found at active artisanal smelting 
sites (r2 = 0.25, p = 0.17), and a larger shift of −1.85 ± 0.57‰ in δ202Hg 
was observed between roots and soil at active artisanal smelting sites 
(Figure  5a). The weak positive correlations between δ202Hg in soil and 
roots demonstrate that MDF associated with root uptake is highly var-
iable from plant to plant at each site, it is difficult to collect represent-
ative soil samples in heterogeneously contaminated sites, or other fac-
tors control the isotopic composition of Hg in roots (e.g., translocation 
from leaves). The higher shift in δ202Hg between roots and soil at active 
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Figure 2. THg correlations between rice plant roots and soil (a) and 
between rice plant leaves and TGM (b) in the Wanshan Mercury Mine 
region, Guizhou Province, China. TGM, total gaseous mercury.

Figure 3. δ202Hg versus Δ199Hg in Hg ore, waste calcine, TGM, soil, roots, 
leaves and lichens at the Wanshan Mercury Mine. TGM, total gaseous 
mercury.
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artisanal smelting sites has also been reported in a previous study (Yin, 
Feng, & Meng, 2013). Rice roots receive the majority of Hg from the soil; 
however, not all soil Hg is bioavailable to roots. Among soil Hg species, 
water-soluble Hg is most bioavailable to roots (Issaro et al., 2009). The 
difference in the δ202Hg shift between roots and soil at abandoned Hg 
mining sites and active artisanal smelting sites may be explained by the 
difference in water-soluble Hg isotope signatures. However, as soil col-
lected from abandoned Hg mining sites and active artisanal smelting sites 
showed similar Hg isotopic signals, water-soluble Hg in the WMM soil is 
likely characterized by similar δ202Hg values. This can be supported by a 
previous study, which reported a consistent δ202Hg of 0.69 ± 0.24‰ (2SD) 
in the water-soluble Hg in the WMM soil with a large range of soil THg 
levels (10–682  μg/g) (Yin, Feng, Wang, Bao, et  al.,  2013). We therefore 
hypothesized that the differences in the shift of δ202Hg between roots and 
soil were caused by different extents of Hg-MDF during the uptake of Hg 
at abandoned Hg mining sites and active artisanal smelting sites. As roots 
preferentially take up lighter Hg isotopes, the extent of Hg-MDF during 
the uptake of water-soluble Hg should theoretically increase when a low-
er percentage of water-soluble Hg is taken up by roots. This is exactly 
the case at active artisanal smelting sites. The significantly higher THg 
concentrations in soil collected from active artisanal smelting sites theo-
retically should release more water-soluble Hg to paddy water and result 
in higher THg concentrations in paddy water at active artisanal smelting 
sites. The THg in paddy water at active artisanal smelting sites is approxi-
mately 3.1 times higher than that at abandoned Hg mining sites, whereas 
the THg in rice roots at active artisanal smelting sites is approximately 2.5 
times higher than that at abandoned Hg mining sites, suggesting that less 
water-soluble Hg was taken up by roots, thereby resulting in a larger shift 
in δ202Hg between roots and soil.

As shown in Figure 5b, no Hg-MIF was observed in root samples collected from abandoned Hg mining 
sites (Δ199Hg: 0 ± 0.10‰, 2SD); however, root samples collected from active artisanal smelting sites showed 
slightly positive or no Hg-MIF (Δ199Hg: 0.11 ± 0.12‰, 2SD). As the WMM soil lacks Hg-MIF (Δ199Hg ∼ 0‰), 
the positive Δ199Hg observed in this study suggests that aqueous Hg(II) photoreduction occurs in paddy 
water. As mentioned above, soil releases water-soluble Hg species to paddy water. Hg(II) photoreduction 
readily occurs in paddy water. In a laboratory study, photoreduction of aqueous Hg(II) with an initial Δ199Hg 
of ∼0, in the presence of natural dissolved organic matter (DOM), released gaseous Hg(0) with a negative 
Δ199Hg signal and left the residue Hg(II) with a positive Δ199Hg (Bergquist & Blum, 2007). In a previous 
study, TGM samples (which mainly contain Hg(0)) collected above rice paddies in the WMM showed neg-
ative Δ199Hg values (−0.34‰ to −0.24‰), which were attributed to the photoreduction of Hg(II) in paddy 
water (Yin, Feng, & Meng, 2013). The positive Δ199Hg values of root samples at the active artisanal smelting 
sites again imply that paddy water was an important source of Hg to rice roots. No significant difference 
in Δ199Hg was observed between the roots and soil at both abandoned Hg mining sites and active arti-
sanal smelting sites, considering the analytical error of Δ199Hg (±0.05‰, 2SD). This is consistent with pre-
vious studies demonstrating that no significant Hg-MIF occurs during the uptake of Hg by vegetation (Sun 
et al., 2019; Yin, Feng, & Meng, 2013).

3.4. Hg Isotopic Composition in Rice Leaves

The δ202Hg values of rice leaf samples collected from abandoned Hg mining sites and active artisanal smelt-
ing sites are −3.11 ± 1.52‰ (2SD) and −3.31 ± 0.51‰ (2SD), respectively, similar to previous results for rice 
leaf samples from the WMM (−3.38 to −2.88‰, according to Yin, Feng, & Meng, 2013). These values are 
much lower than previous results for TGM samples collected in the WMM in 2011 (δ202Hg: −2.14 ± 0.42‰, 
2SD, according to Yin, Feng, & Meng, 2013) and 2017 (δ202Hg: −1.52 ± 0.46‰, 2SD, [Sun et al., 2019]). 
Considering that leaves receive the majority of Hg from the atmosphere, the negative shift in δ202Hg from 
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Figure 4. δ202Hg versus 1/THg in paddy soil collected from the Wanshan 
Mercury Mine (a for abandoned mining sites; b for active artisanal 
smelting sites).
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TGM to leaves suggests that leaves also preferentially take up lighter Hg 
isotopes from the atmosphere. The preferential uptake of lighter Hg iso-
topes by vegetation has been suggested by many recent studies (Demers 
et al., 2013; Enrico et al., 2016; Obrist et al., 2018; Sun et al., 2019; Yin, 
Feng, & Meng, 2013; Zheng et al., 2016).

The Δ199Hg values of leaf samples are −0.05  ±  0.08‰ (2SD) and 
−0.16 ± 0.12‰ (2SD) at abandoned Hg mining sites and active artisanal 
smelting sites, respectively, indicating slightly negative or no Hg-MIF. As 
no significant MIF was observed in the WMM Hg ore, Hg waste calcine, 
and soil (Figure 3), they should not be a direct Hg source for rice leaves. 
In a previous study, more negative Δ199Hg values were observed in rice 
leaves (−0.37 to −0.14‰) and TGM (−0.34 to −0.24‰) in the WMM in 
2011, which were explained by the photoreduction of Hg(II) in paddy 
water (Yin, Feng, & Meng,  2013). This would be supported by reverse 
Hg-MIF signals between rice root and leaf samples. Especially at active 
artisanal smelting sites, roots showed a positive Δ199Hg (0.11 ± 0.12‰, 
2SD), and leaves showed a negative Δ199Hg (−0.16 ± 0.12‰, 2SD). It is be-
lieved that soil released a substantial amount of water-soluble Hg to pad-
dy water, and Hg(II) photoreduction in paddy water produced Hg(0) with 
negative Hg-MIF signals and Hg(II) with positive Hg-MIF signals in the 
residual in paddy water. Rice roots receive a substantial amount of Hg(II) 
from paddy water, whereas rice leaves take up a substantial amount of 
Hg(0) emitted from paddy water; therefore, they are characterized by pos-
itive and negative Hg-MIF signals, respectively.

According to this study, a larger offset of ∼ 0.27‰ in Δ199Hg was observed 
between rice roots and leaves at active artisanal smelting sites, whereas 
the offset was much smaller at abandoned Hg mining sites (∼0.05‰), 
indicating different extents of Hg(II) photoreduction in paddy water be-

tween abandoned Hg mining sites and active artisanal smelting sites. Different extents of Hg(II) photore-
duction result in variable degrees of Hg-MIF. Among different rice paddies, the photoreduction of Hg(II) 
in paddy water is thought to be variable because Hg photoreduction in paddy water is controlled by many 
factors, such as water clarity, water depth, and the geochemical fate of paddy water (e.g., TOC and pH). In 
this study, abandoned Hg mining sites were irrigated by the Dashuixi River, whereas active artisanal smelt-
ing sites were irrigated by the Gouxi River (Figure 1). Given Hg(II) photoreduction was governed by Hg and 
DOM concentrations (Bergquist & Blum, 2007), differences in Hg and DOM concentrations between the 
two rivers may be an important reason for the differences in Hg(II) photoreduction in paddy waters. In this 
study, the exact reason for the differences in Hg(II) photoreduction between abandoned Hg mining sites 
and active artisanal smelting sites will not be discussed because detailed information about paddy water was 
not collected during the growing season.

4. Conclusions and Environmental Implications
Mercury isotopes can be a robust tool to reveal details about the biogeochemical cycling of Hg in rice paddy 
ecosystems. A previous study investigated the isotopic composition fo Hg rice tissues and demonstrated that 
Δ199Hg values of root and leaf are similar to that of soil and atmospheric Hg, respectively, which suggest that 
vegetation takes up Hg from soil and atmosphere by root and leaf, respectively (Yin, Feng, & Meng, 2013; 
Yin, Feng, Wang, Bao, et al., 2013; Yin, Feng, Wang, Li, et al., 2013). Meanwhile, the much lower δ202Hg 
values in plant tissues compared to soil and atmospheric Hg, suggesting Hg-MDF could occur during the 
uptake of soil and atmospheric Hg by root and leaf, respectively (Yin, Feng, & Meng, 2013; Yin, Feng, Wang, 
Bao, et al., 2013; Yin, Feng, Wang, Li, et al., 2013). In this study, we demonstrated that different degrees 
of Hg-MDF can occur during the uptake of soil Hg by rice roots at different sites, which can be seen by 
the negative shifts in δ202Hg between root and soil at abandoned Hg mining sites (−0.88 ± 0.57‰) and 
active artisanal smelting sites (−1.85 ± 0.57‰). We also demonstrated that soil releases water-soluble Hg 
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Figure 5. Mercury isotopic composition (a for δ202Hg; b for Δ199Hg) of soil 
and corresponding rice roots, and their differences between soil and root at 
individual sites at the Wanshan Mercury Mine.
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into paddy water, which can be photoreduced. Hg(II) photoreduction not only generates negative Hg-MIF 
signals in gaseous Hg(0), which can be recorded in rice leaves, but also leaves positive Hg-MIF signals in 
paddy water, which is taken up by rice roots. However, we caution that the photoreduction of Hg(II) may 
be highly variable among rice paddies, resulting in different extents of Hg-MIF in rice roots and leaves. Al-
though the reason was not well explored in this study, we suggested that the Hg-MIF in rice paddies may be 
affected by water chemistry. As this study was based on field research, many factors were overlooked due to 
time considerations, and we expect to perform further laboratory studies to better investigate how the water 
chemistry (e.g., TOC and pH) will affect the extent of Hg-MIF in rice plants.

Data Availability Statement
Data sets of this research can be found in a public domain repository (http://www.dx.doi.org/10.11922/
sciencedb.00474).
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