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The petrogenesis of Late Carboniferous A-type granites and Early Cretaceous adakites in NE China offers new in-
sights into the geodynamic evolution of the Paleo-Asian and Paleo-Pacific oceans. This study reports new LA–ICP–
MS zircon U\\Pb ages, geochemical data, and zircon Hf isotopic compositions of syenogranites and quartz diorite
porphyries exposed on the northernmargin of the Songnen Block, NE China. Zircon U\\Pb age data indicate that
the syenogranites and quartz diorite porphyries were emplaced at ca. 319 and 120 Ma, respectively. The
syenogranites have high K2O contents of 4.15–4.79 wt% and (K2O + Na2O)/CaO ratios of 33–102, and low
MgO (0.06–0.20 wt%) and P2O5 (0.01–0.02 wt%) contents. Their remarkably high HREE contents and Y/Nb ratios
(2.07–2.40), significantly negative Eu anomalies (Eu/Eu⁎=0.15–0.28), and low Sr contents (29.7–85.8 ppm) in-
dicate that the syenogranites are A-type granites. They have positive zircon εHf(t) values of 8.4–12.1 and
Neoproterozoic Hf TDM2 ages of 795–561 Ma, suggesting a juvenile lower crustal source. The quartz diorite por-
phyries have relatively highNa2O andMgO, andmoderate K2O contents. Their A/CNK values (0.95–1.18) indicate
a transition from being metaluminous to weakly peraluminous. They are enriched in LILEs (e.g., Rb, K, and Ba)
and depleted in HFSEs (e.g., Nb, Ta, Ti, and P). Their low Y (11.1–14.4 ppm) and Yb (0.98–1.34 ppm) contents
and high Sr (589–1131 ppm), Cr, and Ni contents and Sr/Y ratios indicate that they were generated by partial
melting of oceanic crust. Based on these data and regional geological investigations, we propose that the
syenogranites on the northern margin of the Songnen Block were formed in a post-collision extensional setting,
likely due to closure of the Paleo-Asian Ocean between the Xing'an and Songnen blocks. Formation of the Early
Cretaceous quartz diorite porphyries may have been triggered by partial melting of the Paleo-Pacific flat slab.
Apart from rollback of the Paleo-Pacific oceanic slab, the main reason for the eastward migration of magmatism
during the Cretaceous was the trench-ward dehydration, eclogitization, and sinking of the residual Paleo-Pacific
flat slab.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The geological setting of NE China was characterized by multistage
subduction of the Paleo-Asian, Paleo-Pacific, and Mongol–Okhotsk oce-
anic plates (Deng et al., 2019; Sun et al., 2013; Tang et al., 2014; Wu
et al., 2011; Xu et al., 2015) and amalgamation of the Erguan, Xing'an,
Songnen, and Jiamusi blocks during the Phanerozoic (Fig. 1a–b;
Sengör et al., 1993; Ge et al., 2005; Xu et al., 2013; Zhou et al., 2018).
Deposit Geochemistry, Institute
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Studies of the widespread igneous rocks in NE China provide valuable
insights into the geodynamic evolution of both the Paleo-Asian and
Paleo-Pacific oceans within the same overlying plate (e.g., Ji et al.,
2019; Wang et al., 2019; Wu et al., 2011; Zhou et al., 2018). Previous
studies proposed that the Paleo-Asian Ocean closed during the late
Permian–Early Triassic along the South Tianshan–Beishan–Xar
Moron–Changhun Suture Zone (Sengör et al., 2018; Xiao et al., 2015;
Xu et al., 2015; Zhou et al., 2018; Zhou and Wilde, 2013). However,
the timing of its final closure between the Songnen and Xing'an blocks
is still debated, with proposals including the Paleozoic (e.g., ca.
400 Ma, Xu et al., 2015; ca. 383 Ma, Xu et al., 2001; ca. 351 Ma, Li
et al., 2013; ca. 333 Ma, Zhou et al., 2005), before the early Permian
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Fig. 1. (a) Tectonic map showing the Central Asian Orogenic Belt (after Jahn, 2004). (b) Geological map of NE China (modified from Wu et al., 2007), showing the locations of Late Car-
boniferous–early Permian A-type granites (black stars; after Zhang et al., 2013) and Early Cretaceous adakites (red stars; afterWang et al., 2019). (c) Simplified geologicalmap of the east-
ern Xing'an and Songnen blocks (after Chen et al., 2017a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Tong et al., 2015; Zhang et al., 2015;Ma et al., 2019; based on a study of
PermianA-type granites in NEChina and adjacent areas), or earlyMeso-
zoic (Miao et al., 2003). The northwestward subduction of the Paleo-
Pacific Plate beneath Eurasia during the late Mesozoic has been de-
scribed in terms of flat slab subduction during the Late Jurassic (Ji
et al., 2019; Kiminami and Imaoka, 2013), with slab rollback during
the late Early–Late Cretaceous causing steep subduction (Ji et al.,
2019; Ouyang et al., 2013; Wang et al., 2019). However, the switch of
Paleo-Pacific Plate subduction from flat to steep, which may be impor-
tant in explaining propagation of the late Mesozoic volcanic belt far
into the interior of NE China, remains poorly constrained.

A-type and adakitic granitoids are increasingly being reported in NE
China (Fig. 1b; Zhang et al., 2013; Li et al., 2014; Deng et al., 2018a;
Wang et al., 2019), with previous studies indicating that Late
Carboniferous–early Permian A-type granites are mainly distributed
along the Hegenshan–Heihe Suture Zone (Li et al., 2014; Ma et al.,
2019; Tong et al., 2015; Wu et al., 2002; Zhang et al., 2013; Zhang
et al., 2015). These A-type granites serve as a temporal magmatic mile-
stone in the amalgamation of the Songnen and Xing'an blocks, and im-
prove our understanding of the tectonic evolution in the eastern Central
Asian Orogenic Belt (CAOB; Wu et al., 2002; Li et al., 2014; Tong et al.,
2015; Zhang et al., 2015; Ma et al., 2019). Cretaceous adakitic rocks
have mainly been discovered in eastern NE China, and are suggested
to have been generated by subduction of the Paleo-Pacific Plate beneath
Eurasia (Ji et al., 2019; Wang et al., 2019; Zhao et al., 2012). Previous
studies have shown that A-type granites are generally formed in an ex-
tensional setting (Eby, 1992; Sylvester, 1998), while adakites have a
convergentmargin affinity (Sun et al., 2011, 2012). Studies of the petro-
genesis of Late Carboniferous A-type granites and Early Cretaceous
adakites may thus provide new insights into the geodynamic evolution
of NE China during the Late Carboniferous and Early Cretaceous.

Here we present new zircon U\\Pb ages, whole-rock geochemical
data, and zircon Hf isotopic compositions for A-type granites and
adakites in the northeastern Songnen Block, NE China (Fig. 1c).We con-
strain the petrogenesis of the studied rocks and discuss the geodynamic
evolution of the Paleo-Asian and Paleo-Pacific oceans.

2. Geological setting and sample descriptions

The Songnen Block lies in the eastern CAOB, bordered by the Jiamusi
Block along the Jiamusi Suture Zone to the southeast, and connecting
with the Xing'an Block along the Hegenshan–Heihe Suture Zone to the
northwest (Fig. 1). Tectonism, magmatic activity, and crustal accretion
in the Songnen Block were mainly controlled by the evolution of the
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Paleo-Asian Ocean during the Paleozoic–early Mesozoic and the Paleo-
Pacific Ocean during the late Mesozoic (Wu et al., 2011; Xu et al.,
2013). A series of N\\S\\, NE–SW-, NW–SE-, and E–W-trending faults,
which provided favorable conditions for the generation of igneous
rocks and polymetallic deposits (Chen et al., 2017b), developed in the
Songnen Block through complex tectonic processes. The Precambrian
crystalline basement of the Songnen Block comprises predominantly
the Proterozoic Dongfengshan and Zhangguangcailing groups, which
are dominated by marble, phyllite, mica schist, sericite–quartz schist,
amphibolite, biotite granulite–gneiss, and granulite, with a few areas
of these rocks being exposed in the northern block (Xu et al., 2015;
Yang et al., 2012; Zhou et al., 2018). Paleozoic strata in the Songnen
Block were formed during the Cambrian, Ordovician, and Permian,
and comprise mainly marine sedimentary strata that were associated
with intense magmatism and deformation, and are intruded by large
volumes of Late Triassic–Early Jurassic coarse-grained granites (Wu
et al., 2011). Mesozoic strata are dominated by voluminous Early Juras-
sic basalt, trachyandesite, andesite, and rhyolite,withminor Triassic and
Jurassic fluvial and lacustrine deposits (Xu et al., 2013). In addition to
thewidely distributed I- andA-type Late Triassic–Early Jurassic granites,
there are intrusive rocks in the form of batholiths and stocks comprising
Early Cretaceous granites, and minor A-type Paleozoic and I-type early
Mesozoic granites (Deng et al., 2018a; Liu et al., 2008; Zhang et al.,
2013).

The studied Late Carboniferous syenogranites and Early Cretaceous
quartz diorite porphyries are from the southern Heihe area in the
Fig. 2. Geological map of the northeastern Songnen Block, showing the distribution of Late C
locations.
northeastern Songnen Block (Fig. 1c). The syenogranites generally
occur as batholiths covered partially by the upper Permian Wudaoling
Formation comprising mainly andesites and rhyolites, and the Lower
Cretaceous Tamulangou Formation comprising mainly basaltic andes-
ites, trachyandesites, andesites, and brecciaswith calc-alkaline affinities
(HBGMR, 1997). The quartz diorite porphyries are distributed in the
northern part of the study area. This gray porphyritic rock intrudes the
syenogranites and upper Permian Wudaoling Formation as stocks and
veins (Fig. 2).

Outcrops of the syenogranites have gray weathered and red fresh
surfaces (Fig. 3). The syenogranites have medium-grained textures
(Fig. 3a–c) and comprise mainly quartz (25–30 vol%), perthite
(20–25 vol%), orthoclase (20–30 vol%), biotite (3–5 vol%), and plagio-
clase (5–10 vol%), with accessory minerals including titanite, zircon,
and apatite. The quartz diorite porphyries are massive in structure and
porphyritic in texture with a microgranular groundmass (Fig. 3d–f).
Phenocrysts in the quartz diorite porphyries make up ~40 vol% of the
rocks, including 20–30 vol% medium–fine-grained plagioclase,
10–15 vol% medium-grained biotite, and sparse hornblende.

3. Analytical methods

3.1. Zircon U\\Pb dating

Samples of two syenogranites (samples BQH-9 and BQH-11) and
two quartz diorite porphyries (BQH-1 and BQH-5) were chosen for
arboniferous syenogranites and Early Cretaceous quartz diorite porphyries, with sample



Fig. 3. (a) Hand specimenphotograph and (b, c) photomicrographs of syenogranite; (d) hand specimenphotograph and (e, f) photomicrographs of quartz diorite porphyry. Abbreviations:
Pth = perthite; Pl = plagioclase; Or = orthoclase; Qz = quartz; Bt = biotite.
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zircon U\\Pb dating. Zirconswere handpicked under a binocularmicro-
scope at Guangzhou Tuoyan Analytical Technology, Guangzhou, China.
About 200 zircons for each sample were mounted in epoxy resin disks
and polished for cathodoluminescence (CL) imaging with a scanning
electron microscope (JSM–IT100) connected to a GATAN MiniCL sys-
tem. Zircon U\\Pb dating was undertaken at Wuhan Sample Solution
Analytical Technology (WSSATCL), Wuhan, China, using a GeolasPro
laser ablation system coupled to an Agilent 7700e inductively coupled
plasma mass spectrometer (ICP–MS), with an ablation frequency of
5 Hz and spot diameter of 32 μm. Zircon 91,500 was used as an external
standard for U\\Pb age determinations and US National Institute of
Standards and Technology (NIST) glass 610 was used for trace element
calibrations. U\\Pb and trace element analyses were processed with
ICPMSDataCal software, following the method of Liu et al. (2010).
Weighted-mean 206Pb/238U ages and concordia diagrams were pro-
duced using Isoplot/Ex Ver. 3 software (Ludwig, 2003). Zircon U\\Pb
isotopic data for the syenogranites and quartz diorite porphyries are
given in Supplementary Table 1.

3.2. Whole-rock geochemical compositions

Nine samples of each rock type were collected for whole-rock geo-
chemical analysis at WSSATCL. Major elements were analyzed by X-
rayfluorescence (XRF) spectrometry on fused glass disks. Trace element
compositionswere determined by ICP–MS following themethod of Gao
et al. (2002). The analytical uncertainty for trace elements was better
than ±10%, and for major elements better than ±1%. These analytical
results are presented in Supplementary Table 2.

3.3. In situ zircon Hf isotopic analyses

Samples used for zircon U\\Pb dating were also used for in situ Hf
isotopic analysis at WSSATCL with a Neptune multi-collector ICP–MS
equipped with a 193 nm laser, following the method of Hu et al.
(2012). The laser ablation spot diameter was 50 μm, and a single spot
ablation mode was used for all zircon analyses. Zircon 91,500 was
again used for external standardization, yielding a weighted-mean
176Hf/177Hf ratio of 0.2823079±0.0000049 (2σ; n=10). Zircon Lu\\Hf
isotopic data for the Late Carboniferous syenogranites and Early Creta-
ceous quartz diorite porphyries are presented in Supplementary
Table 3.

4. Results

4.1. LA–ICP–MS zircon U\\Pb geochronology

Zircons in the syenogranites and quartz diorite porphyries are color-
less to pale green and display significant oscillatory zoning typical of
magmatic zircons (Fig. 4), with high Th/U ratios of 0.36–1.34 and
0.62–1.26, respectively, also indicating an igneous origin (Koschek,
1993).

Syenogranite samples BQH-9 and BQH-11 yielded weighted-mean
206Pb/238U ages of 319 ± 2 Ma (n = 11; MSWD = 0.32) and 319 ±
2 Ma (n = 19; MSWD = 0.61), respectively (Fig. 4a–d), with the age
of 319 ± 2 Ma reflecting the crystallization age of the syenogranite.

Quartz diorite porphyry samples BQH-1 and BQH-5 yielded
weighted-mean 206Pb/238U ages of 120 ± 1 Ma (MSWD = 0.40) and
120 ± 1 Ma (MSWD = 0.74), respectively (Fig. 4e–h), with the
120 ± 1 Ma age indicating that the quartz diorite porphyry was in-
truded during the Early Cretaceous.

4.2. Whole-rock geochemistry

Whole-rock geochemical data for the nine syenogranites and quartz
diorite porphyries are plotted in Figs. 5a–b and 6a–d. Geochemical data
for late Paleozoic A-type granites from the Songnen and Xing'an blocks
reported by Guo et al. (2011), Shi et al. (2004), Wu et al. (2002), Zhang
et al. (2013) and Zhao et al. (2013), and Early Cretaceous adakitic rocks
from eastern NE China reported by Zhao et al. (2012) and Wang et al.
(2019) are included in Figs. 5 and 6 for comparison.

4.2.1. Syenogranite
The Late Carboniferous syenogranites have high SiO2 contents of

76.07–77.23 wt%, low TFe2O3 (0.56–1.19 wt%), CaO (0.08–0.25 wt%),
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and MgO (0.06–0.20 wt%) contents, and low Mg# values of 14.5–36.7.
TheyhavehighK2O contents of 4.15–4.79wt%, total alkali (K2O+Na2O)
contents of 7.82–8.82wt%, andK2O/Na2O ratios of 0.96–1.29 (average=
1.14) characteristic of K-rich granites (Barbarin, 1999),whichplot in the
high-K calc-alkaline field in a K2O–SiO2 diagram (Fig. 5a; Peccerillo and
Taylor, 1976). They have Al2O3 contents of 11.75–12.87wt%with A/CNK
(Al2O3/[CaO + Na2O + K2O]) ratios of 1.00–1.15, typical of weakly
peraluminous granite (Fig. 5b).

The chondrite-normalized rare earth element (REE) patterns
(Fig. 6a) of the syenogranites exhibit light REE (LREE) and heavy REE
(HREE) fractionation ([La/Yb]N = 4.69–7.06) and obvious negative Eu
anomalies (Eu/Eu*=0.15–0.28). Primitive-mantle-normalized trace el-
ement patterns (Fig. 6b) exhibit depletion in Nb, Ta, P, and Ti, and en-
richment in Rb, Th, U, K, and Ba.
4.2.2. Quartz diorite porphyry
The Early Cretaceous quartz diorite porphyry samples from the

northeastern Songnen Block display little variation in SiO2 contents
(60.67–62.56 wt%), with high Na2O (4.21–5.61 wt%), CaO
(1.84–3.94 wt%), Al2O3 (16.30–16.71 wt%), and MgO (1.89–2.99 wt%)
contents, and Mg# values of 55–65. They plot in the calc-alkaline field
in a K2O–SiO2 diagram (Fig. 5), with geochemical characteristics similar
to those of Cretaceous adakitic rocks of eastern NE China (Fig. 5a–b). A/
CNK ratios of 0.95–1.18 indicate a transition from being metaluminous
to weakly peraluminous in the A/NK–A/CNK diagram (Fig. 5).

Chondrite-normalized REE and primitive-mantle-normalized trace
element patterns (Fig. 6c–d) exhibit enrichment in LREE, depletion in
HREE ([La/Yb]N = 14.8–22.7), negligible Eu anomalies (Eu/Eu* =
0.82–1.18; Supplementary Table 2), depletion in Nb, Ta, Ti, and P, and
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enrichment in Rb, K, and Ba. Significantly, the Early Cretaceous quartz
diorite porphyries have high Sr (589–1131 ppm) and low Yb
(0.98–1.34 ppm) and Y (11.1–14.4 ppm) contents, typical of adakites
(Sr N 400 ppm, Yb b 1.9 ppm, and Y b 18 ppm; Defant and
Drummond, 1990; Fig. 7).

4.3. Zircon Hf isotopes

Zircon initial 176Hf/177Hf ratios for the syenogranites and quartz dio-
rite porphyries are 0.282825–0.282923 and 0.282883–0.282918, with
εHf(t) values of 8.4–12.1 and 6.5–7.7, respectively, and plot between
chondrite and depleted mantle evolution lines in εHf(t)–age diagrams
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(Fig. 8). The samples yielded two-stage model ages of 795–561 and
764–685 Ma, respectively (Supplementary Table 3).

5. Discussion

5.1. Petrogenesis

5.1.1. Late Carboniferous syenogranites from juvenile lower crust
Compared to typical I- and S-type granites described by Whalen

et al. (1987) and King et al. (1997), the Late Carboniferous
syenogranites of the northeastern Songnen Block have remarkably
high HREE contents, significantly negative Eu anomalies, and low Sr
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contents, with such characteristics being similar to those of A-type gran-
ites (Bonin, 2007; Eby, 1992; Whalen et al., 1987). Furthermore, in the
commonly used A-type granite discrimination diagrams (Fig. 9a–d;
Whalen et al., 1987; Frost et al., 2001; Wu et al., 2017), all syenogranite
samples display TFeO/(TFeO + MgO), (K2O + Na2O)/CaO, TFeO/MgO,
and Ga/Al ratios similar to those of late Paleozoic A-type granites of
NE China (Guo et al., 2011; Ma et al., 2019; Shi et al., 2004; Wu et al.,
2002; Zhang et al., 2013; Zhao et al., 2013).

Their high SiO2 and low TFe2O3, MgO, Cr, and Ni contents (Supple-
mentary Table 2), and the absence of coeval mafic igneous rocks indi-
cate that the syenogranites were unlikely to have been generated
through fractionation of upper mantle-derived magma as suggested
by Bonin (2007). Small variations in whole-rock geochemistry (Supple-
mentary Table 2) and a lack of inherited zircons also preclude an origin
through magmamixing between mantle and crustal melts as proposed
by Kemp et al. (2005). Rather, the syenogranites display geochemical
characteristics similar to that of melt derived experimentally from the
partial melting of crustal rocks (Patiño Douce, 1996). Their positive εHf
(t) values (8.4–12.1; Supplementary Table 3) and two-stage model
ages (795–561 Ma; Supplementary Table 3) imply a juvenile lower
crustal source that was accreted during the Neoproterozoic.
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Previous studies have shown that Late Carboniferous–early Permian
A-type granites of NE China and adjacent areas were formed through
fractional crystallization of magma (Tong et al., 2015; Zhang et al.,
2015), as appears to be the case for the studied syenogranites. Their
negative Eu anomalies and depletions in Sr, P, and Ti may have resulted
from fractional crystallization during magma evolution. Negative Eu
anomalies and Sr depletion are indicative of plagioclase fractionation;
Ti depletion is usually related to fractionation of titanite; P depletion is
due to fractionation of apatite. Furthermore, the high HREE contents
and low (La/Yb)N ratios (4.69–7.06) indicate a garnet-free source, con-
sistent with low Sr/Y ratios (0.90–2.89), and implying that the melts
were generated at low pressures (Kay and Mpodozis, 2002).

5.1.2. Early Cretaceous quartz diorite porphyries from ocean slab melting
The Early Cretaceous quartz diorite porphyries from the northeast-

ern Songnen Block have whole-rock geochemical characteristics similar
to those of adakites, such as high Sr contents (589–1131 ppm), low Y
and Yb contents (10–1404 and 0.98–1.34 ppm, respectively), and high
Sr/Y ratios (Fig. 7a–b; Defant and Drummond, 1990). Their insignificant
variations in SiO2, Al2O3, and TFe2O3, and zircon εHf(t) values (6.5–7.1)
preclude a derivation from the mixing of crustal and mantle melts
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(e.g., Jiang et al., 2006; Wang et al., 2019). Experimental studies have
shown that melts of metamorphosed basement associated with thick-
ened lower crust generally have Mg# values of b43 (Fig. 10; Rapp and
Watson, 1995). Here, the quartz diorite porphyries have Mg# values of
55–66 and higher Ni and Cr contents than adakites derived from thick-
ened lower crust (Fig. 10). Moreover, they have low K2O/Na2O ratios
(0.28–0.74; average=0.55) and high CaO contents (1.84–3.94wt%; av-
erage= 2.77wt%), similar to those of oceanic slab-derived adakites de-
scribed by Yogodzinski et al. (1995) and Stern and Kilian (1996).
Significantly, Cu\\Mo mineralization occurs in areas of quartz diorite
porphyry stocks and adjacent syenogranite plutons. Previous studies
have shown that porphyry Cu deposits in active convergent margin
settings generally have strong affinities with oceanic slab-derived
adakites (Sun et al., 2011). This was further supported by Zhao et al.
(2012) who studied the petrogenesis of Early Cretaceous ore-forming
adakitic diorite porphyries associated with the Jinchang porphyry
Au\\Cu deposit and proposed an oceanic slab-melt source for these
adakites.

The quartz diorite porphyries have lowNb/Zr andNb/Ti and high Ba/
Ce and Ba/Zr ratios, which plot between enriched mantle and subduc-
tion components (Fig. 11a–b), further suggesting they were generated
by partial melting of oceanic crust, with a degree of interaction with
mantle-derived melts. The lack of inherited zircons and positive zircon
εHf(t) values (6.5–7.1) indicate limited contamination by continental



Mantle melts

SiOSiO 2
50 60 70 8050 60 70 80

0

1

2

3

4

5

6

7

0

20

40

60

80

)
%( 

Og
M

#g
M

Oceanic slab-derived
adakites

50 60 70 80
0

20

40

60

80

100

120

140

)
mpp( i

N

Thickened lower
crust-derived adakites

2

300

400

500

120 140

S
r/

Y

Arc adakite

(slab melts)

0

100

200

0 20 40 60 80 100

(La/Yb)N

Dabie adakite

(Continental crust melts)

SiO2

d

ba

c

(%) (%)

(%)

Cretaceous adakites in eastern NE China

Quartz diorite porphyry (this study)

Fig. 10. Diagrams illustrating the differences between adakites derived from an oceanic slab and thickened lower crust. (a) MgO–SiO2 diagram (after Wang et al., 2006). (b) Mg#–SiO2

diagram (after Long et al., 2015). (c) Ni–SiO2 diagram (after Wang et al., 2006). (d) (Sr/Y)–(La/Yb)N diagram (after Sun et al., 2012, 2018). Data for Cretaceous adakites of eastern NE
China are from Zhao et al. (2012) and Wang et al. (2019).

9G. Xu et al. / Lithos 366–367 (2020) 105575
crust. Their trace element and REE compositions, with enrichment in Sr,
depletion in Y andHREE, and concavemiddle REE (MREE) patterns, sug-
gest both amphibole and garnet were present in the source (e.g., Mao
et al., 2018; Oh et al., 2016). The low Nb/Ta (14.38–16.79) and Zr/Sm
(31.03–46.74) ratios suggest the melting of amphibolite rather than
eclogite (Martin et al., 2005), indicating that the magma was derived
from a shallow oceanic slab.
1.010.0

1

10

100 1

Nb/Zr

e
C/a

B

EM

DM

Sediments

Subduction component
(fluids+melts)

r
Z/a

B

Fig. 11. (a) (Ba/Ce)–(Nb/Zr) and (b) (Ba/Zr)–(Nb/Ti) diagrams for quartz diorite porphyry (afte
(2019).
5.2. Implications for geodynamic evolution

5.2.1. Final closure of the Paleo-Asian Ocean
At least four stages of A-type granites have been reported in NE

China: Early Ordovician (Deng et al., 2018b; Wu et al., 2019); Late
Carboniferous–Permian (Li et al., 2014; Ma et al., 2019; Zhang et al.,
2013); Late Triassic–Early Jurassic (Wu et al., 2002); Cretaceous (Ji
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et al., 2019;Wang et al., 2019;Wu et al., 2002). Unlike the irregular spa-
tial distribution of A-type granites of other stages, the Late
Carboniferous–Permian A-type granites are mainly distributed along
the Hegenshan–Heihe Suture Zone (Ma et al., 2019; Tong et al., 2015;
Zhang et al., 2015), which is considered to have formed after final clo-
sure of the Paleo-Asian Ocean between the Xing'an and Songnen blocks
(Li et al., 2014; Ma et al., 2019; Tong et al., 2015; Wu et al., 2002; Zhang
et al., 2015; Zhao et al., 2010). The petrogenesis of these particular gran-
ites may therefore elucidate key stages of the tectonic evolution of the
Paleo-Asian Ocean.

Previous studies have indicated that A-type granites were generally
produced in post-collisional or intraplate extensional settings (Eby,
1992; Wu et al., 2002). Eby (1992) subdivided A-type granites into
mantle-derived A1 and crust-derived A2 subgroups according to their
different origins. The former was generally emplaced in an intraplate
tectonic setting with Y/Nb ratios of b1.2, while the latter was likely pro-
duced in post-collision or back-arc tectonic environments with higher
Y/Nb ratios (Eby, 1992). The Late Carboniferous syenogranites have
high Y/Nb ratios (2.07–2.40) and plot in the A2 subgroup field in the
Ce–Nb–Y diagram (Fig. 9e, f; Eby, 1992), similar to Late
Carboniferous–Permian A-type granites distributed along the
Hegenshan–Heihe Suture Zone (Ma et al., 2019; Wu et al., 2002;
Zhang et al., 2013), indicating that these A-type granites formed in sim-
ilar tectonic environments. Zhao et al. (2010) suggested that the strati-
graphic transformation from early Carboniferous marine sediment to
Late Carboniferous continental sediment was likely related to the colli-
sion and merging of the Songnen and Erguna–Xing'an blocks, which is
supported by geochemical and isotopic data for Late Carboniferous–
Permian A-type granites formed in a post-collision extensional setting
(Ma et al., 2019; Wu et al., 2002). This is consistent with our
syenogranite samples plotting in the post-collisional rather than volca-
nic arcfield in the Rb–(Y+Nb) diagram(Fig. 12; Pearce, 1996). Liu et al.
(2017) proposed that ridge subduction during the Late Devonian may
have caused large-scale magma underplating in the Late
Carboniferous–Permian in east Junggar, NW China, but Paleozoic ridge
subduction has not yet been confirmed in the study area. Overall, a
post-collision setting appears to provide a reasonable explanation of
the distribution of Late Carboniferous–Permian A-type granites along
the Hegenshan–Heihe Suture Zone. This is also supported by previous
studies that suggested that late Paleozoic A-type granites in NE China
and Central Inner Mongolia were formed in a post-collision extensional
setting (Ma et al., 2019; Tong et al., 2015; Zhang et al., 2015). Consider-
ing that the Early Cretaceous igneous rocks in the eastern CAOB have
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geochemical characteristics similar to those of subduction-related I-
type granites (Gou et al., 2013; Zhou and Wilde, 2013), we infer that
the tectonic shift of the Paleo-Asian Ocean between the Songnen and
Xing'an blocks, from plate subduction to closure, likely occurred during
the late early–early Late Carboniferous. Based on this, we suggest that
final closure of the Paleo-AsianOceanbetween the Songnen andXing'an
blocks occurred prior to the Late Carboniferous.

5.2.2. Evolution of the residual Paleo-Pacific flat slab and its implications
Previous studies have indicated that flat slab subduction of the

Paleo-Pacific Plate beneath eastern Eurasia occurred during the Late Ju-
rassic (Maruyama et al., 1997; Zhang et al., 2011; Fig. 13a), as supported
by the Middle Jurassic–early Early Cretaceous magmatic gap in eastern
NE China (Kiminami and Imaoka, 2013; Fig. 13a). A slab rollback
model for the Paleo-Pacific Ocean during the late Early–Late Cretaceous
was suggested as the causative mechanism for the temporospatial mi-
gration of late Mesozoic extension-related magmatism in NE China (Ji
et al., 2019; Wang et al., 2019). However, few studies have considered
the key subduction stage of the Paleo-Pacific Plate during the switch
from flat to steep subduction.

Geochemical characteristics of our quartz diorite porphyry samples in-
dicate that oceanic slabmelts were involved, supported by an earlier sug-
gestion that oceanic slab-derived melts had an important role in the
generation of adakitic andesites (114–110 Ma) in eastern NE China
(Wang et al., 2019). Considering the low Nb/Ta and Zr/Sm ratios of the
quartz diorite porphyry and low garnet content of the magma source
(Fig. 7a), we conclude that partial melting of the oceanic slab occurred
at a relatively shallow depth (e.g., Li et al., 2016). Compared with coeval
mantle-derived andesite in the adjacent area (MgO, Cr, and Ni contents
of 2.22–4.53 wt%, 102–299 ppm, and 51–109 ppm, respectively; Wang
et al., 2019), the lower MgO (1.89–2.92 wt%), Cr (13.2–49.8 ppm), and
Ni (11.2–39.0 ppm) contents of the Early Cretaceous quartz diorite por-
phyries from the northeastern Songnen Block indicate limited interaction
between slab-derivedmelts andmantle peridotites (e.g., Stern and Kilian,
1996), implying the existence of a thinmantlewedge as in themodel pro-
posed by Gutscher et al. (2000) (Fig. 13b).

It has been suggested that acceleration of subduction of the Paleo-
Pacific Plate triggered steep subduction (Wang et al., 2019). The drag
force from the steeper slab led to the deformation and downwarping
of the Paleo-Pacific flat slab, triggering dehydration, eclogitization, and
partialmelting of the slab (Fig. 13c). A sinking slab commonly generates
upwelling of asthenospheric mantle to compensate for the loss of man-
tle volume (Hamilton, 2007). Together with fluids derived from the flat
slab, this would have led to large-scale partial melting of the
metasomatized mantle and lower continental crust (Fig. 13c), forming
the ca. 120–105 Ma volcanic rocks of eastern NE China (Wang et al.,
2019). With completion of the trench-ward eclogitization of the resid-
ual Paleo-Pacific flat slab, volcanism in the interior continent would
have gradually ceased (Fig. 13d). Considering that the temporospatial
migration of volcanism in NE China is consistent with the eastward
eclogitization of the residual Paleo-Pacific flat slab, we propose that
the dehydration and eclogitization processes of the residual flat slab, to-
gether with rollback of Paleo-Pacific Plate, played an important role in
controlling the formation and temporospatial migration of Cretaceous
igneous rocks in NE China.

6. Conclusions

This study led to the following key conclusions.

(1) Late Carboniferous A-type granites and Early Cretaceous adakites
occur in the northeastern Songnen Block.

(2) The A-type granites were derived by partial melting of juvenile
basaltic lower crust, while the adakites were produced by partial
melting of an oceanic slab with a degree of contamination by the
mantle wedge.



Fig. 13. Diagrammatic depictions of the evolution of westward subduction of the Paleo-Pacific Plate beneath NE China during the Early–Late Cretaceous.
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(3) The petrogenesis of the late Paleozoic A-type granites along the
Hegenshan–Heihe Suture Zone indicates that final closure of
the Paleo-Asian Ocean between the Songnen and Xing'an blocks
occurred before the Late Carboniferous.

(4) The occurrence of Early Cretaceous adakites in eastern NE China
indicates that the residual Paleo-Pacific oceanic flat slab has an
important role in controlling the generation of Cretaceous igne-
ous rocks in the interior of the NE China continent.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.lithos.2020.105575.
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