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A B S T R A C T

Soil moisture (SM) is a comprehensive variable of terrestrial ecosystems. However, the global SM trend in recent
decades and the future is uncertain, and the main factors causing soil drying and wetting are not fully under-
stood. This study using Extended Triple Collation, Mann-Kendall test, Theil-Sen estimate, Hurst exponent,
Ensemble Empirical Mode Decomposition and pertinent methods found that 1) at the pixel scale, the long-term
daily SM data from ERA-Interim was closest to the true SM compared with ESA CCI and GLDAS; 2) the global
average SM in 1979–2017 decreased remarkably and the declining trend accelerated in 2001–2017; 3) soil
drying was observed in seven major land covers; among which, urban area has the largest area proportion of soil
drying, about 80%; 4) the strong persistence of SM trend indicates that the global future soil will continuously be
dominated by a drying trend; 5) overall, 65.1% of the global soil drying trend was attributed to temperature
rising, whereas 82% of the wetting trend was affected by the combined action of temperature, precipitation, and
NDVI. Under global warming, the soil drying area expanded at a rate of 1% yr−1 in 1979–2017 and the global
SM will keep diminishing in the next years, which may increase the risks of extreme heatwaves, water resources
shortage, land degradation, and other eco-environmental problems.

1. Introduction

As a critical comprehensive variable of terrestrial ecosystems, soil
moisture (SM) is the carrier of soil material transport (Legates et al.,
2011), and sufficient SM is the basic condition for plant growth (Padilla
and Pugnaire, 2007); additionally, SM affects water cycle and has
mutual feedback effects with climate (Koster et al., 2003; Taylor et al.,
2012; Deng et al., 2018). Therefore, the changing trend of SM should be
studied for the soil water resources, hydrological processes, climate
prediction, especially under global warming (Cai et al., 2009; Valdes
et al., 2015; Deng et al., 2019). Currently, some progresses have been
achieved in this field on a global scale. However, divergence exists in
their conclusions due to different data and study periods. Sheffield and
Wood (2008) found that global SM experienced a wetting trend from
1950 to 2000 by using data from a land surface model; Albergel et al.
(2013) observed that the SM from ESA CCI and ERA-Land was

dominated by reduction from 1988 to 2010, which was different from
the result of MERRA-Land product that the areas where the global SM
changes significantly was mainly wetting in the same period. Moreover,
the future trend of global SM requires further understanding, which
plays an important role in the early warning of future agricultural
disasters and climate change.

Currently, SM data are available from diverse sources. Among them,
the multi-satellite SM from ESA CCI, the simulated SM from GLDAS
land surface models, and ERA-Interim reanalysis data, after validated
by many scholars based on in-situ observational data (Berg, et al.,
2005), are widely applied in spatial–temporal variations of SM, hy-
drometeorology, numerical simulation and other fields (Albergel et al.,
2012a, 2012b; Zhang et al., 2008). The verification from 197 stations
worldwide, such as the United States, Australia, and China, revealed
that time series of SM from ERA-Interim and ESA CCI well captured the
changes of in-situ SM from 2007 to 2010, with their average correlation
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coefficients of 0.68 and 0.60, respectively (Albergel et al., 2013). Zeng
et al. (2015) found that compared with ERA-Interim, the SM from ESA
CCI in the Qinghai-Tibet Plateau of China had a stronger correlation
with SM from stations; and, Kim et al. (2018) found that the average
correlation coefficient between SM from GLDAS-Noah and global in-
situ observations was 0.73, which performed better than ASCAT and
AMSR2; Dorigo et al. (2012) pointed out that the dominant trends of
SM from ESA CCI, GLDAS-Noah, and ERA-Interim in 1988–2010 were
consistent, that is, global soil was drying; however, spatial distributions
of their trends differ, which makes it essential to assess the reliability of
SM products. Many studies evaluate non-measured products at pixel
scale by using limited in-situ observations and then select better pro-
ducts to study SM further. Nonetheless, the in-situ SM is not necessarily
the “true” SM, and the scale differences between the site and the pixel
affect the evaluation results; more importantly, due to short observa-
tional time, the SM data from stations is usually applicable to the ver-
ification for short-term SM products, which fails to meet the trend
analysis demands for reliable long-term sequence data. The Triple
collation (TC), firstly introduced into the assessment of SM products
from remote sensing by Scipal et al. (2008), can solve the above pro-
blems and get three sets of data error estimates simultaneously. The
original TC is a robust, objective, and promising evaluation method
(Scipal et al., 2010), but it cannot estimate the correlation coefficients
between three datasets and the unknown true SM, which is critical to
the reliability of trend analysis of SM change; besides, TC is rarely
applied to assess SM products from land surface model and reanalysis.
Therefore, the new improved extended TC (ETC) can be used to eval-
uate multi-source SM products (Su et al., 2014; McColl et al., 2014;
Chen et al., 2018a).

The spatiotemporal variability of SM is influenced by many factors,
such as precipitation, temperature, land use and vegetation (Cheng and
Huang, 2016; Wang et al., 2013). The spatial distribution of SM and its
hydraulic properties are different under various land use types. Chen
et al., (2009) found that SM contents of forest, shrub, and grassland
were 30.5%, 20.1%, and 10.2%, respectively, higher than that of bare
area. Precipitation is an important income of SM (Wu et al., 2002), and
temperature affects SM through the balance of land surface energy
budget. The rising of temperature increases land surface evapo-
transpiration and then reduces SM (Cheng and Huang, 2016). Vegeta-
tion has the ecological functions of storing and conserving water but
can also absorb and consume plenty of soil water (Li, 2001; English
et al., 2005; Wang et al. 2018). The effects of various factors on SM
have been studied, but the main factors affecting the drying and wetting
trends of global SM in previous studies are lacking.

Thus, this study aims to 1) apply ETC to evaluate the applicability of
three SM products; 2) choose the best SM product to reveal the trend
characteristics of global SM; 3) analyze global SM trend after the study
period; and 4) explore the major causes affecting the trend of SM and
the impacts of soil drying.

2. Materials and methods

2.1. Data and preparing

ESA CCI SM product (http://www.esa-cci.org/) is obtained from
European Space Agency (ESA) in the implementation of the Global
Basic Climate Change Initiative (CCI) by combining SM products from
active and passive microwave (Dorigo et al., 2015). It contains three
products, namely, the Passive microwave product by merging four
passive microwave SM data sets with the AMSR-E SM as the reference,
the Active microwave product by merging two active microwave SM
data sets with ASCAT SM as the reference and the Combined product by
merging the Passive and Active products. Previous studies have found
that except for ASCAT, the Combined product of ESA CCI is better than
any microwave products it has merged (Dorigo et al., 2015). Therefore,
the Combined product is used in this study, which covers a long period

(Table 1). The SM depth detected by the product is ~ 5 cm.
ERA-Interim SM product (https://www.ecmwf.int/) is created by the

European Centre for Medium-Range Weather Forecasts (ECMWF) by
using TESSEL land surface model and 4D-VAR assimilation algorithm
(Dee et al., 2011). Compared with the previous ERA-40, ERA-Interim
has shown great advantages in global atmospheric quality, moisture,
energy, and angular momentum budget, and its SM product has made
many improvements in time coverage, prediction model and error
correction. Meanwhile, the product contains four layers of SM, and
their depths are 0–7, 7–28, 28–100 and 100–289 cm.

GLDAS, Global Land Surface Data Assimilation System, is developed
jointly by the Goddard Space Flight Center of NASA and the National
Center for Environmental Forecasting of the United States Oceanic and
Atmospheric Administration (https://disc.gsfc.nasa.gov/). Based on
surface observations and satellite remote sensing monitoring data, its
four land surface process models including Noah have simulated SM
products with various spatiotemporal resolutions (Rodell et al., 2004).
This study adopted SM product from Noah (version 2.7.1) model, which
contains four layers of SM data with their depths of 0–10, 10–40,
40–100 and 100–200 cm, respectively. The product uses the SM content
of the average layer, unit: kg/m2.

Global land cover dataset is provided by ESA CCI (http://maps.elie.
ucl.ac.be/CCI/viewer/download.php), which contains 37 types of land
cover (ESA, 2018; Li et al., 2018). Precipitation and Temperature data
(http://www.cru.uea.ac.uk/data) are reconstructed by the Climate
Research Institute of the University of East Anglia (CRU) by integrating
several well-known databases. It is a complete, high-resolution, non-
missing global grid dataset (Harris et al., 2014). GIMMS NDVI3g
(https://ecocast.arc.nasa.gov/data/pub/gimms/) is produced by NA-
SA's Global Inventory Modeling and Mapping Studies (GIMMS) team
based on the Advanced Very High Resolution Radiometer (AVHRR)
images on NOAA series satellites, which are processed with strict
quality control to generate maximum synthetic products (Tian et al.,
2015).

An overview of the above data is shown in Table 1. The major
properties of surface SM and deeper SM are similar (Brocca et al., 2011;
McColl et al., 2017). Therefore, ERA-Interim SM at 7 cm and GLDAS SM
at 0–10 cm were adopted in this study. To compare with other SM
products, the SM unit, kg/m2, of GLDAS was converted into m3/m3, soil
volumetric moisture content. Then, three SM products were processed
into daily data at 1-degree resolution; and, to ensure the reliability of
the results, the ETC method was conducted in areas where the corre-
lation coefficients among three SM daily data in 1979–2016 were sig-
nificantly over zero (P value ≥ 0.05). Meanwhile, based on the
1992–2015 global land cover data, the perennial snow-covered areas of
glaciers were masked out; following IPCC land categories, land cover
types were merged into seven major types: Agriculture, Forest, Grass-
land, Shrubland, Sparse vegetation, Urban and Bare area.

2.2. Methods

The improved ETC method based on TC requires three sets of spa-
tiotemporal matching and independent datasets and has the same
conditions as the TC method (McColl et al., 2014). The detailed algo-
rithms can be found in Text S1. To avoid the numerical problems in the
error estimation process, the sample number of each independent da-
taset in this paper is over 100.

Mann-Kendall (MK) test is a non-parametric statistical test to detect
change trend and mutation point of time series (Yue et al., 2002), which
is generally combined with Theil-Sen trend analysis to analyze the
changing trend of research elements (Fernandes and Leblanc, 2005).
When the time series has a changing trend after identified by the MK
test, the Theil-Sen slope is estimated (Sen, 1968).

Hurst exponent can be used to characterize the long-range depen-
dence of time series of research elements quantitatively. By the Hurst
value, whether the SM trend is persistent or not can be judged, which
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reflects the trend of SM in the future. 1) ∊Hurst (0, 0.5) indicates that
SM time series has anti-persistence, and the future trend is contrary to
that of the current research period, and the closer to 0, the stronger the
anti-persistence; 2) =Hurst 0.5 indicates that SM time series does not
have long-range dependence and is a random sequence; 3)

∊Hurst (0.5, 1), the SM time series is persistent, and its future trend is
consistent with the past, and the closer to 1, the stronger the persistence
(Wu et al., 2017). V-statistics can test the stability of Hurst results and
quantitatively describe the stable and lasting time of the time series in
the future. Detailed calculation methods can be referred to Text S1.

EEMD (Ensemble Empirical Mode Decomposition) is a signal ana-
lysis method improved by Huang Pi's team based on Empirical Mode
Decomposition. Compared with wavelet analysis, it does not need any
basis function (Qin et al., 2012). A non-stationary time series can obtain
intrinsic mode functions with different scales and a residual term re-
presenting the overall trend of the original signal by adopting EEMD
decomposition. According to Huang et al. (1998), the perturbed white
noise with the signal-to-noise ratio of 0.2 to the original signal was used
in the present study, and the number of samples was 100. The detailed
steps can be found in Text S1.

3. Results

3.1. ETC results

In Fig. 1a-c, the correlation between ERA-Interim SM product and
the unknown true SM is the strongest, followed by ESA CCI, and SM
simulated by GLDAS performs the worst. The statistics show that the
global average R2 values of the three products are 0.56, 0.52, and 0.16,
respectively, i.e., the global average correlation coefficients are 0.748,
0.721, and 0.4. Meanwhile, the SM products from three different
sources are poor in high latitude land areas (near 60 °N) of the northern
hemisphere; and, the correlation of ESA CCI in the Sahara Desert area
also performs poorly. The RMSE results are consistent with those of R2

(Fig. 1d-f). Concretely, ERA-Interim SM has the highest accuracy, with
its RMSE ranging from 0 to 0.058 m3/m3 and the average RMSE of
0.021 m3/m3, followed by ESA CCI with RMSE varying between
0–0.077 m3/m3 and the average RMSE of 0.033 m3/m3. RMSE of
GLDAS is between 0–0.103 m3/m3 with the average RMSE of 0.038 m3/
m3. In summary, ERA-Interim SM in regions meeting ETC conditions is
closest to the unknown true SM in 1979–2016. Therefore, combined
with its good performance validated by the global in-situ data in pre-
vious research (Albergel et al., 2013), the SM product from ERA-Interim
is used later to analyze global soil moisture trend, causes and impacts of
soil drying, and the study period is 1979–2017.

3.2. Trend characteristics of soil moisture

3.2.1. Global soil moisture dynamic trend and its spatial distribution
The global average annual SM in 1979–2017 ranged from 0.265 to

0.275 m3/m3 with an average of 0.271 m3/m3. In Fig. 2, the MK test
demonstrates that the global SM declined from 1979 to 2017 with the
trend changing suddenly in 2001; SM decreased significantly during
2001–2017 (the UF curve exceeding the 95% confidence interval) with
the rate of −0.126 × 10−3 m3/m3 yr−1 being twice that of 1979–2000
(−0.046 × 10−3 m3/m3 yr−1); after 2001, global SM was lower than
the multi-year average, namely, the global soil was in an overall dry
status. Integrated with the MK trend test, the Theil-Sen slope of the
global average SM is estimated to be −0.145 × 10−3 m3/m3 yr−1 with
the 95% confidence interval from −0.174 to −0.116 × 10−3 m3/m3

yr−1, and the linear regression shows that the global SM changing rate
was −0.2 × 10−3 m3/m3 yr−1 with its determination coefficient over
0.69 in the study period.

Regional differences exist in the spatial distribution of the SM trend
detected by the MK test (Fig. 2c1). But, the area with SM reducing
accounts for 67.96%, indicating that the global soil was spatially
dominated by a drying trend in 1979–2017; and, 35.66% of the global
SM decreased significantly, mainly distributed in eastern China, Mon-
golia, southern Russia, eastern European Plain, north-central Africa, the
United States, and eastern Brazil, which is consistent with the conclu-
sion of Dorigo et al. (2012). The African Sahel with serious soil drying
problem in previous studies is also observed in our study (Alonge et al.,
2007; Rodriguez-Fonseca et al., 2015). Meanwhile, SM in 12.76% of the
global area significantly elevated, located in India, Bangladesh, and
other South Asia areas as well as the East African Plateau and the
northwest of South America. The spatial pattern of Theil-Sen slope is
similar to that of the Z value from the MK test and it is found that the
average rate of soil drying area (−0.373 × 10−3 m3/m3 yr−1) is faster
than that of soil wetting area (0.257 × 10−3 m3/m3 yr−1). By Z value
and the spatial mean of global SM Theil-Sen slope, the Theil-Sen slope
was divided into five grades (Table S1) and the SM drying rate in
32.39% of the globe covered with SM data was significantly faster than
the global average level.

3.2.2. Soil moisture trends under different land covers
The multi-year average SM values of global Agriculture, Forest,

Grassland, Shrubland, Sparse vegetation, Urban area, and Bare area are
0.257, 0.301, 0.253, 0.242, 0.266, 0.256 and 0.166 m3/m3, respec-
tively. In Fig. 3a-g, all the land covers showed declining trends in SM
from 1979 to 2017. SM in Bare area decreased fastest with its rate
of −0.41 × 10−3 m3/m3 yr−1, followed by Agriculture, Urban area,
Grassland, Shrubland, while SM in Forest and Sparse vegetation re-
duced the slowest with their rates of −0.1 × 10−3 and −0.08 × 10−3

m3/m3 yr−1, respectively. Compared with Bare area, Forest and other
vegetation-covered land covers have higher SM values and slower rates
of SM reduction, and SM in Shrubland and Grassland decreases faster
than SM in Forest. It may be because vegetation has the function of
water storage and water conservation (Zhang et al., 2016) and the
function varies with the vegetation types. Moreover, the differences in
SM change rates among Forest, Agriculture and Urban area suggest that

Table 1
Overview of datasets used in this study.

Data Data type Spatial coverage Temporal coverage Spatial resolution Temporal resolution

ERA-Interim Reanalysis −90–90°N,
0–359.5°E

1979–Present 0.5° 1 d

ESA CCI Remote sensing −89.875–89.875°N,
−179.875–179.875°E

1978–2016 0.25° 1 d

GLDAS Land model −60–90°N,
−180–180°E

1979–Present 1° 3 h

Land cover Remote sensing −90–90°N,
−180–180°E

1992–2015 300 m Annual

Precipitation and temperature Reanalysis −89.75–89.75°N,
−179.75–179.75°E

1901–2016 0.5° Monthly

GIMMS NDVI3g Remote sensing −90–90°N,
−180–180°E

1981.7–2015.12 8 km 15 d
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intensive human activities may accelerate the soil drying trend. Espe-
cially, in Fig. 3h, the areas with negative Theil-Sen slope in seven land
covers are over 50% with Urban area largest approaching 80%. Hence,
soil drying trend occupied a spatial dominant position in these land
covers. In addition, on the global scale, the soil drying areas mainly
come from Forest, Grassland and Bare area and the soil wetting areas
are largely from Forest, Grassland and Sparse vegetation (Fig. S1).

3.3. Consistency of future soil moisture trend

In Fig. 4, the mean value of Hurst exponent of global soil moisture is
0.71 with Hurst over 0.5 accounting for 87.69%. Thus, for the majority
of the global land, the SM change trends during the study period have
persistence in the future. Combining Hurst exponent with Theil-Sen
slope, the proportion of the areas with SM persistently decreasing is
59.33%, remarkably larger than that (28.36%) of areas with SM per-
sistently increasing, indicating that the global surface soil will keep
drying for a certain period in the future; meanwhile, 10.4% of study
area, such as central Australia, will perform an inverse SM trend. Fig. 4b
shows the coupling information of the grades and future persistence of
SM change. Specifically, the largest proportions of the areas with per-
sistent and no change and persistent and strong decrease are 30.92%
and 30.55%, respectively, followed by persistent and strong increase

(10.68%) and persistent and slight decrease (10.54%); the areas with
anti-persistent change account for 8.08%, mainly located in the central
Siberian Plateau, Oceania and so on, manifesting that the SM trend in
these areas will fluctuate in the future. The areas with anti-persistent
and decrease, anti-persistent and slight decrease, anti-persistent and
increase, and anti-persistent and slight increase account for 0.85%,
1.08%, 0.28%, and 0.11% respectively and their spatial distributions
are scattered.

4. Discussion

4.1. Trend analysis based on EEMD and V statistic

This study adopted EEMD to decompose the time series of the global
annual average SM from 1979 to 2017 and obtained four intrinsic mode
functions (IMFs1–4) and its residual term. In Fig. 5, the global SM has
average variation cycles of 3.25 yr (IMF1) and 7.8 yr (IMF2) on the
interannual scale and 18.5 yr (IMF3) on the interdecadal scale. The
average period of IMF4 is uncertain due to the limitation of temporal
length. The residual component representing the general trend of the
original signal showed a decreasing trend from 1979 to 2017. The
contribution of components from EEMD to the original data can be
evaluated by the variance contribution rate. It is found that the residual

Fig. 1. Spatial distributions for correlation coefficient’ square (a-c) and RMSE (d-f) of SM products from ERA-Interim, ESA CCI, and GLDAS with unknown true SM.
Blank areas mean no data, e.g., ESC CCI has no SM data in tropical rain forest areas such as Congo Basin in Africa, or mean that ETC conditions are not satisfied in
these places.
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has the maximum variance, about 38.19%, and the variance contribu-
tion rates of IMFs1–4 are 24.19%, 16.77%, 18.63%, and 2.22%, re-
spectively.

Fig. 6 shows that Hurst exponents of the global average original SM
series and the residual term of EEMD decomposition are identical; they
are 0.9707 and 0.989, respectively. Thus, the trend of the global
average SM has very strong persistence. However, several inflection
points exist in the V statistic of the original sequence in Fig. 6a. The first
inflection point reveals that the SM trend of the study period can last for
four years in the future, while the V statistic of the EEMD residue has no
inflection point in Fig. 6b, i.e., the stable trend of change will last for at
least 39 years in the future. In summary, the global SM will keep a
steady decreasing trend in the next four years and then still decrease
overall but there will be fluctuations in varying degrees.

4.2. Causes of soil drying and wetting trends

To clarify the effects of precipitation, temperature, and NDVI on SM,
partial correlation was conducted at the pixel scale. The partial corre-
lation coefficients (Rp) between three influencing factors and SM in
Fig. 7 show that SM mainly positively correlates with precipitation and
the Rp values range from −0.64 to 0.92. SM largely negatively

correlates with temperature and Rp values vary from −0.89 to 0.81;
spatially, their positive (negative) correlation areas have good con-
sistency with the spatial distributions of soil wetting (drying) across the
globe. The Rp values between SM and NDVI are from −0.86 to 0.85
with the area ratio between positive and negative correlation about 6:4.
The positive correlation is distributed in South Asia, southern Africa,
and other areas with soil wetting, and is also partly located in northern
Europe and other areas with soil drying. The negative correlation is
distributed in the north of Africa and other soil drying areas; also, it is
fragmentarily distributed in the east of Russia and other soil wetting
areas. The results reflect the double-sided effect of vegetation on SM.
The maximum of absolute partial correlation coefficient (the strongest
correlation) can potentially reveal the relative action intensity of three
factors on SM change. The strongest correlation coefficients in Fig. 7d
demonstrate that precipitation may play a dominant role in global SM
change at the pixel scale with the area ratio between precipitation,
temperature, and NDVI about 27:13:10.

The absolute value of the maximum partial correlation coefficient
can distinguish the effect degree of each factor on SM. However, it has
masked the situation that the partial correlation coefficients between
influencing factors and SM are close, that is, the change of SM is pos-
sibly affected by the coupling of precipitation, temperature, and NDVI.

Fig. 2. Trend characteristics of SM from 1979 to 2017 at the global average scale and the pixel scale. Fig. 2a-b shows the MK test and the linear trends for global
average SM anomalies; y1-3 in Fig. 2b are regression equations for 1979–2000, 1979–2017, and 2001–2017, respectively; Fig. 2c1-2 shows the spatial distribution and
its statistics of the MK test; Fig. 2d and 2e1 are spatial distributions of Theil-Sen slope and its re-classification and Fig. 2e2 is the area statistic of Fig. 2e1.
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Fig. 3. SM trends (a-g) and the area statistics of Theil-Sen slope (h) under different land cover types in 1979–2017. Fig. 3h shows the area percentage of Theil-Sen
slope based on the Z value of the MK test for each land cover. *, **, *** indicate significance at P value ≤ 0.05, P value ≤ 0.01, P value ≤ 0.001, respectively.

Fig. 4. Future persistence of SM trend from 1979 to 2017. Fig. 4a1-2 is the spatial distribution for Hurst exponent of SM and its statistical results; Fig. 4b is the re-
classified spatial distribution obtained by overlaying Hurst exponent and Theil-Sen slope grade maps.
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Furthermore, it just reflects the relationship on the pixel (local) scale.
Consequently, the causes of soil drying and wetting trends were studied
at the global/regional average scale. Before that, the time series of
global/regional average precipitation, temperature, NDVI, and SM were
standardized by their standard deviations. For the whole research
area, global soil-drying areas and soil-wetting areas, the annual pre-
cipitation, the annual average temperature, and NDVI increased sig-
nificantly from 1982 to 2015 and the change rate of precipitation in
global soil-drying areas is more than three times that in global soil-
wetting areas (Fig. S2).

In Table 2, the change of global average SM is significantly nega-
tively correlated with temperature, which is consistent with the con-
clusion of Cheng and Huang (2016). More importantly, temperature is
the chief factor for the overall trend of global average SM with the
explanatory power of 53.8%. It may be that the increase in soil eva-
poration and vegetation transpiration induced by the rising in tem-
perature exceeds the supply from precipitation and ultimately leads to
global soil drying. According to the result of Oki and Kanae (2006),

evapotranspiration returns 60% of the total precipitation to the atmo-
sphere. The average SM change of global soil-drying areas also has a
significant negative correlation with temperature, and the stepwise
regression shows that the trend of soil drying is mainly affected by the
increase of temperature with the explanatory power of 65.1%. In the
global soil-wetting areas, SM is significantly positively correlated with
precipitation, temperature, and vegetation, but the correlation with
precipitation is the strongest, followed by temperature and NDVI.
Nevertheless, the results show that the increase of SM is caused by the
combination of the increase of precipitation, temperature, and vegeta-
tion, and their influence on SM is similar according to the standardized
coefficients with the combined explanatory power over 80%.

4.3. Impacts of soil drying trend

Across the globe, areas, where the annual average SM is lower than
their multi-year average, were expanding at a rate of 1% per year in
1979–2017 (Fig. S3). Based on the global population density data with

Fig. 5. IMF components and the residual of the global average SM from 1979 to 2017. In Fig. 5, SM means soil moisture.

Fig. 6. Hurst exponents and its V statistics for the original global average SM (a) and the residual term of EEMD (b). In Fig. 6, the unit of lag is yr and T is the average
cycle length of the system.
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a five-year temporal resolution (Center for International Earth Science
Information Network (CIESIN), Columbia University, 2017), we find
that potential populations affected by soil drying have grown sig-
nificantly, and the spatial distribution can be found in Fig. S4. Hurst
exponent indicates that the global SM will decrease persistently in the
future. It is supported by the results of Feng and Fu (2013) that the
global arid areas have expanded in the past 60 years and will continue
to increase in the 21st century. Also, Dai (2013) proposed that under
global warming, drought areas in many lands would expand.

The dynamic changes of SM affect soil ecological environment
(Zhang et al., 2013). Under drying conditions, the depth of soil water
exchange decreases, and the regulating capacity of soil reservoirs is
weakened; in water-restricted areas, such as the Loess Plateau of China,
the perennial SM shortage has generated soil drying layer (Wang et al.,
2010); additionally, soil organic carbon will be physically broken and
mineralized (Achat et al., 2012), thereby increasing the loss of wetland
organic carbon (Chen et al., 2018b), and soil microbial respiration rate
will decrease (Manzoni and Katul, 2014). Bad soil conditions can lead
to soil quality degeneration and ecosystem degradation (Shangguan,
2007; Whitmore and Whalley, 2009; Huber et al., 2011; Wang et al.,
2018a). And, soil drying can result in frequent agricultural droughts
and food security problems. According to crop maps in the study of
Urban et al. (2017), SM in the United States, Southern Europe, Northern
China, and South America, which are the primary producers of maize
and wheat in the world, decreased in 1979–2017. Furthermore, soil

drying may reduce or even exceed the potential benefits of rising
temperature on photosynthesis in seasonally cold regions (Seo et al.,
2019). For climate, when SM becomes dry, soil evaporation reduces and
then precipitation generally decreases (Cheruy et al., 2017) due to less
water vapor. Alonge et al. (2007) proposed that soil drying in the Sahel
of West Africa resulted in a 55% reduction in precipitation. In energy
balance, the decrease in SM makes latent heat reduce and sensible heat
increase, and then temperature rises. Previous studies have revealed
that SM drying can exert an important impact on heatwaves and ex-
tremely high temperature in large-scale areas, such as the extreme heat
wave events in Europe in 2003 and Russia in 2010 (Della-Marta et al.,
2007; Weisheimer et al., 2011). Under the conditions of global tem-
perature rising and population growing, the decreasing trend of global
SM will further lead to more population exposed to extreme heatwaves,
land degradation, and other harsh environments.

5. Conclusions

Using ETC method, SM products from various sources were eval-
uated. Then, Theil-Sen estimate, EEMD, and other methods were used
to reveal the trend of SM change at global average and pixel scales, and
the trend of SM change after the study period was predicted by Hurst
exponent. Finally, the reasons for SM change were analyzed by using
partial correlation and stepwise regression. The conclusions are as fol-
lows:

Fig. 7. Partial correlation coefficients between annual precipitation, annual average temperature, annual average NDVI, and SM in 1982–2015 (a-c) and the strongest
partial correlation coefficient (d).

Table 2
Partial correlation and stepwise regression of global/regional average soil moisture with time series of annual precipitation, annual average temperature, and annual
average NDVI from 1982 to 2015. The soil drying (wetting) areas are places where Theil-Sen slopes are under (over) zero in Fig. 2d. Significant mark of partial
correlation coefficient: '***', 0.001.

Factors Partial correlation coefficient Stepwise regression

Global Soil drying Soil wetting Global Soil drying Soil wetting

Precipitation (x1) −0.12 −0.11 0.61*** y = −0.734x2,
R2 = 0.538

y = −0.807x2, R2 = 0.651 y = 0.374x1 + 0.374x2 + 0.364x3
R2 = 0.82Temperature (x2) −0.65*** −0.74*** 0.56***

NDVI (x3) 0.16 0.20 0.54***
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(1) ERA-Interim SM reflects the change of the true value best with the
global average correlation coefficient of 0.748 and average RMSE of
0.021 m3/m3, followed by ESA CCI product, while SM product from
GLDAS performs the worst.

(2) The global average SM experienced a significant drying trend in
1979–2017 and the trend accelerated in 2001–2017. In space, soil
in 67.96% (32.39%, Sig.) of the globe covered with SM data, in-
cluding Europe and central Africa, was drying.

(3) Overall, SM under land cover types declined in the study period. SM
in Bare area decreased fastest with the rate of −0.41 × 10−3 m3/
m3 yr−1, whereas SM in Sparse vegetation decreased slowest with
its rate of −0.08 × 10−3 m3/m3 yr−1.

(4) With the global average Hurst exponent of SM over 0.7 and 59.33%
of the global SM persistently drying, and the global SM change will
be dominated by a decreasing trend in the next years.

(5) The trend of SM reduction is mainly induced by the rising of tem-
perature with the explanation power over 60%, while soil wetting is
caused by the interaction of temperature, precipitation, and NDVI
with the explanation power of 82%.

(6) Under global warming, the global soil drying area in 1979–2017
increased rapidly at the rate of 1% yr−1, and this trend will con-
tinue in the future.

In this study, ETC was not applied to every location in the world due
to objective factors, possibly affecting the reliability of three soil
moisture products. However, literature has verified that these products
used in our study perform well among the existing products; moreover,
the areas verified by ETC cover different land types, altitudes, and la-
titudes. Therefore, the results of this study are reliable and can provide
a theoretical basis for the dynamic change of soil moisture and re-
spective applications in soil hydrology, climate prediction, agricultural
drought, and other fields.
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