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h i g h l i g h t s
� A novel biochar composite was synthesized for phosphate adsorption.
� The maximum phosphate adsorption capacity reached 102.4mg g�1.
� The adsorption mechanism is mainly attributed to electrostatic adsorption, surface precipitation and ligand exchange.
� The composite can be used as high-quality adsorbent for phosphate removal.
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a b s t r a c t

A novel biochar composite was fabricated via the pyrolysis of distillers grains treated phosphogypsum for
phosphate removal from water. Batch adsorption experiments were performed on the adsorption
characteristics of phosphate. Effects of pyrolysis temperature, solution pH, the dosage of adsorbent,
ambient temperature on phosphate adsorption were also investigated. The results demonstrated that the
optimum initial solution pH for phosphate adsorption was 6.0, and high pyrolysis temperature was
favorable for phosphate adsorption. The optimal dosage of biochar was 1.25 g L�1. A pseudo-second-
order kinetic model can well explain the adsorption kinetics, indicative of the energetically heteroge-
neous solid surface of the composite. The maximum phosphate adsorption capacity of the phospho-
gypsum modified biochar obtained from Langmuir isotherm reached 102.4mg g�1 which was almost five
times that of distillers grains biochar alone (21.5mg g�1). The mechanism is mainly attributed to elec-
trostatic adsorption, surface precipitation and ligand exchange. The ideal adsorption performance indi-
cated that biochar supported phosphogypsum can be used as high-quality adsorbent for phosphate
removal in wastewater treatment.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Eutrophication of water has become a worldwide environ-
mental problem (Le et al., 2010; Schindler David, 2012; Zhang et al.,
2016). Eutrophication causes rapid propagation of algae and
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decreases dissolved oxygen in water bodies (Yin et al., 2018). It
affects water quality as well as the health of aquatic plants and
animals (Alimov and Golubkov, 2014; Li et al., 2015). Dead algae and
organisms are easily oxidized in the water, which makes water be
polluted and unusable (Carpenter, 2008). Phosphorus is the most
important limiting factor for eutrophication (Paerl et al., 2014). It is
also an indicator of surface water quality (Anderson et al., 2008;
Karunanithi et al., 2017). Thus, removing phosphate from waste
streams is imperative (Zheng et al., 2019). At present,
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comprehensive methods have been adopted to control water
eutrophication (Le et al., 2010; Garikiparthy et al., 2016). For the
removal of phosphate, physicochemical methods and biological
methods, such as ion exchange, coagulation-sedimentation,
adsorption, electrodialysis, and artificial wetland are often used
(Rittmann et al., 2011; Galvez-Cloutier et al., 2012; Zhang and Gao,
2013; Feng et al., 2017; Sophia A and Lima, 2018; Vikrant et al.,
2018). Since the cost of these treatment technologies is high,
more cost-effective and efficient technologies need to be
developed.

Currently, carbonaceous material has become the most
commonly used and effective adsorbent in the world to remove
various pollutants from water. As a unique carbonaceous material,
biochar is a new kind of low cost and high-efficiency adsorbent
(Ahmad et al., 2012a; Shen et al., 2012). Biochar refers to a porous
carbon-rich substance formed by carbonization of biomass such as
agricultural and forestry wastes under low temperature pyrolysis
under limited oxygen conditions (Lehmann, 2007; Lehmann and
Joseph, 2015; Kan et al., 2016; Wang et al., 2016). Due to its
strong stability and adsorption capacity, biochar has been widely
used as an appropriate adsorbent to remove pollutants fromwater
(Ahmad et al., 2014; Mohan et al., 2014; Wang et al., 2015a; Inyang
et al., 2016; Kizito et al., 2017; Vikrant et al., 2018).

Many solid wastes can be used as raw materials for biochar.
Distillers grains are fermented granules derived from distilled
solids. A large amount of distillers grains are produced during the
production of white wine as solid waste. They are a by-product of
the brewing industry and the alcohol industry. Because of its high
water content and high acidity, it is easy to corrupt and deteriorate,
which not only wastes valuable resources but also results in envi-
ronmental pollution (Olajire, 2012). Therefore, how to compre-
hensively make full use of distillers grains has become the concern
of the brewing industry. It is an effective way to prepare biochar
using distillers grains as feedstocks.

In recent years, many natural clay minerals, nanomaterials or
other newmaterials have been used for the modification of biochar
to enhance its adsorption capacity for pollutants (Wang et al.,
2017). Some of these modification methods result in an increase
in the cost of engineered biochar production due to the use of
chemical reagents or nanomaterials as modifiers, thereby limiting
the application of engineered biochar. Metal oxides can effectively
improve the adsorption performance of biochar on phosphorus,
such as magnesium, iron, aluminum, etc. Therefore, to increase
biochar adsorption capacity for phosphate, a lot of research has
been carried out to modify biochar by supporting metal ions such
as Ca, Mg, Fe and Al. Mineral addition not only improves the
retention and stability of carbon in biochar (Li et al., 2014) but also
has good potential for phosphate removal from water (Liu et al.,
2016; Dai et al., 2017; Saadat et al., 2018). Compared with other
metal modification methods, Ca2þ and Mg2þ are the nutrients
required for plants. The biochar after phosphorus adsorption con-
tains more calcium, magnesium and phosphorus, and can be used
as a soil amendment after being applied to the soil. This not only
reduces soil toxicity, but also has good phosphorus removal
efficiency.

Phosphogypsum (PG: CaSO4$2H2O) is an industrial by-product
produced in phosphoric acid and phosphate fertilizer production
(Rashad, 2017). It is estimated that world production of this waste
exceeds 160e280million tons per year (Rutherford et al., 1994). The
massive discharge of phosphogypsum not only occupies a large
area of land but also poses a great threat to environmental safety
and the health of residents. Therefore, how to utilize phospho-
gypsum effectively has become an important problem world
widely (Rutherford et al., 1994; Tayibi et al., 2009). As a calcium-
rich substance, phosphogypsum may change the functional
groups, surface charges of biochar after being attached to the sur-
face of biochar, thus affecting its adsorption capacity for pollutants.

Based on the above idea, we assume that phosphogypsum
modification of distillers grains biochar can improve its adsorption
capacity to aqueous phosphate. The aims of this study are to (1)
fabricate a novel adsorbent for phosphate adsorption in water; (2)
examine the effects of pH and adsorbent dosage on phosphate
adsorption, and (3) determine the adsorption kinetics and iso-
therms of phosphate adsorption.

2. Materials and methods

2.1. Chemicals and reagents

Reagents including potassium dihydrogen phosphate (KH2PO4)
(Acros), sulfuric acid (H2SO4), sodium hydroxide (NaOH), ascorbic
acid (C6H8O6), potassium antimony tartrate (KSbC4H4O7$1/2H2O),
and ammonium molybdate (NH4)6Mo7O24$4H2O] were obtained
from Tianjin Kermel Chemical Reagent Co., Ltd.

2.2. Preparation of biochar

Distillers grains were sampled from a local distillery, Guizhou
province, China. Phosphogypsum was collected from a phosphate
fertilizer plant, Guizhou province, China. The distillers grains and
phosphogypsum were dried in the oven to constant weight at
105 �C. The dried phosphogypsum and distillers grains were mixed
in a weight ratio of 1:2, and then uniformly mixed with an equal
volume of water, and dried in an oven at 105 �C. Biochar was pre-
pared from a mixture of distillers grains and phosphogypsum in a
Tubular carbonization furnace. The treated raw materials were
pyrolyzed at 300 �C, 400 �C, 500 �C, and 600 �C, respectively under
a nitrogen atmosphere. The residence time and heating rate are the
same as our previous study (Wang et al., 2015a). Biochar prepared
at different pyrolysis temperatureswere labeled as: Distillers grains
biochar (300 �C), Distillers grains biochar (400 �C), Distillers grains
biochar (500 �C), Distillers grains biochar (600 �C), PG-biochar
(300 �C),PG-biochar (400 �C), PG-biochar (500 �C), and PG-biochar
(600 �C).

2.3. Determination of physicochemical properties of biochars

The pH value of biochar samples was determined with a
biochar-to-water ratio of 1:20 (w/v). The electrical conductivity
(EC) of biochar was determined byweighing 1.0 g of biochar sample
and adding 20mL of ultrapure water. After shaking for 1 h, and the
supernatant was filtered with a 0.45 mm nylon filter. The EC of the
filtrate was determined using a portable EC meter (HANNA
HI9033). Proximate analysis was performed using ASTM D1762-84
Chemical Analysis ofWood Charcoal (ASTM, 2007). The surface zeta
potential values of the biochars were measured by a Malvern Zeta
meter (Nano ZSE þ MPT2, Malvern Panalytical Instruments Ltd.,
UK).

Surface morphology of biochars was determined using a scan-
ning electron microscope (SEM) (JSM-6460 LV Scanning Micro-
scope (JEOL, Tokyo, Japan). The surface functional groups of the
biochars were determined using a Nicolet iS50 Fourier transform
infrared (FTIR) (Thermo Fisher Scientific, USA). In order to get the
detectable FTIR spectrum, the biochar was ground up, blendedwith
KBr to 0.1 wt%, and afterward pressed into the pellets. Infrared
spectra were obtained at room temperature (22± 0.5 �C) in the
spectral range from 400 cm�1e4000 cm�1. Elemental C H N ana-
lyses were completed using a CHN elemental analyzer (Elementar
Vario MACRO).



B. Wang et al. / Chemosphere 238 (2020) 124684 3
2.4. Adsorption experiments

The adsorption experiment was carried out in a 50mL PE cen-
trifugal tube at room temperature (22± 0.5 �C). The concentration
of phosphate was determined by the ascorbic acid method
(American Public Health Association, 2017), and the absorbance of
700 nm was determined by UVevis spectrophotometer (V-1600,
Shanghai Mapada Instruments Co., Ltd, China).

In order to choose the optimal adsorbent dosage, the adsorption
experiment was performed with an adsorbent dosage of 0.0250 g/
40mL, 0.0500 g/40mL, 0.1000 g/40mL, and 0.2000 g/40mL,
respectively. The supernatant was taken and phosphate concen-
tration was measured immediately after filtration with 0.45 mm
nylon filter.

The effect of pH on phosphate adsorption was analyzed with
initial pH of 100mg L�1 phosphate solutions adjusted to 3.0, 4.0,
5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 and 12.0 using 0.1M H2SO4 and 0.1M
NaOH solution. Sorption kinetics of phosphate was analyzed by
phosphate standard solution at an interval time between 0.083 and
24 h, respectively. Sorption isotherms were examined at different
concentrations between 5 and 500mg L�1. Adsorption thermody-
namics were conducted in the ambient temperature of 16 �C, 26 �C
and 36 �C. Themeasurement methods and procedures are the same
as described above.

3. Results and discussion

3.1. Characterization of the samples

The physicochemical properties of distillers grains biochar and
PG-biochar are shown in Table S1, both biochars were alkaline.
From the point of chargeability, the distillers grains were negatively
charged, and the modified biochar was positively charged. It is
indicated that the distillers grains biochar modified by phospho-
gypsum has electrostatic adsorption to the negatively charged
phosphate. After the modification, the electrical conductivity (EC)
was greatly improved. This indicates that conductive ions are
generated after the phosphogypsum is doped to the surface of the
distillers grains biochar, which causes an increase in EC. Compared
with the distillers grains biochar, the PG-biochar had a higher H/C
value, indicating that its structure contains abundant functional
groups (Ahmad et al., 2012a). Surface morphologies of the distillers
grains biochar and PG-biochars pyrolyzed at different temperatures
as well as phosphogypsum are shown in Fig. S1. Many phospho-
gypsum particles were found on the surface of distillers grains
biochar after pyrolysis.

To further demonstrate that the phosphate does adsorb on the
surface of PG-biochar, the SEM-EDS analysis of biochar samples
before and after adsorption was performed. It can be seen from the
SEM-EDS images in Fig. 1 that the biggest difference between the
600 �C distillers grains biochar and the modified biochar is that the
carbon content of the distillers grains biochar is much higher than
that of the modified biochar. After the adsorption of phosphorus,
phosphorus content in the distillers grains biochar did not change
too much, while the content of phosphorus in the modified biochar
increased greatly after the adsorption, indicating that the modified
biochar had obvious adsorption effect on phosphate. The SEM-EDS
spectra of the PG-biochar also showed the presence of more Ca and
S compared to that of distillers grains biochars. The results indi-
cated that the precipitation of calcium-phosphate might be an
important mechanism for phosphate removal. Moreover, the zeta
potential of PG-biochar is higher than distillers grains biochar.
Protonation may occur on the PG-biochar surface which creates a
partial positive charge helping phosphate sorption via electrostatic
attraction.
Fig. 2 shows the infrared spectrum of different biochars before
adsorption. In the Fourier transform infrared spectroscopy of all
biochars, there is an absorption peak between the wavenumbers of
3600-3300 cm�1, which is mainly caused by the intermolecular
hydrogen bond-associated alcohol and the phenol-OH stretching
vibration. The absorption peaks at a wavenumber of
1600e1670 cm�1 are mainly C]O and conjugated aromatic ring
stretching C]C (Angın, 2013). In the infrared spectrum of PM-
biochar, we can clearly see that there are distinct absorption
peaks between the wavenumbers of 1635, 1065 and 698 cm�1.
Among them, the characteristic peak with an absorption peak of
1635 cm�1 may be the carbonyl group of the carboxyl group in
biochar. A vibrating zone with a wavenumber of approximately
1065 cm�1 indicates that the biochar contains C]O, C]C, and CeO
bonds. A vibration band with a wavenumber of approximately
600 cm�1 indicates the presence of an aromatic CeH bond. The
characteristic peak of 698 cm�1 is generated by CaeO stretching
vibration, which indicates that Ca is successfully embedded in the
biochar as CaO or Ca(OH)2. The SEM-EDS, Zeta potential and FTIR
results indicated that the phosphate sorption mechanisms may
involve surface precipitation and electrostatic attraction.

3.2. Effect of pyrolysis temperature

Pyrolysis conditions directly affect the physicochemical prop-
erties of biochar (Wang et al., 2016). The adsorption of phosphate
by PG-biochar increased as the pyrolysis temperature increased,
while there is no considerable difference between the adsorption
capacity of distillers grains biochar (Fig. 3). This may be due to the
fact that the pyrolysis temperature largely affects the surface
morphology of the biochar. As the pyrolysis temperature increased,
a large amount of energy was released from the interior of the raw
material, and the internal pores were opened. The pore distribution
of the biochar became disordered, increasing the surface roughness
and area, which is beneficial for phosphate adsorption (Ahmad
et al., 2012b).

3.3. Effects of dosage

The adsorption and removal rate of phosphate by biochar are
shown in Fig. S2. Under the same initial concentration of phos-
phate, the adsorption amount increased initially and then
decreased. The removal rate of phosphate by biochar sharply
increased when the dosage shifted from 0.0200 g/40mL to
0.0500 g/40mL, and then gradually raised and kept it at around
95%. When the dosage of adsorbent continued to increase, the
phosphate removal rate did not change much. This is due to an
increase in the dosage of adsorbent, which increases the effective
functional groups and the adsorbed active sites. When the dosage
was 0.0500 g/40mL, the maximum adsorption amount was
reached. From the perspective of economic costs, the optimum
dosage is 0.0500 g/40mL.

3.4. pH effect on phosphate adsorption

Previous studies have shown that solution pH is a key factor
affecting phosphate adsorption (Cui et al., 2011). In this study, the
effect of pH on the adsorption of phosphate by two different ad-
sorbents in the range of 3.0e12.0 was investigated. For both bio-
chars, the maximum adsorption amount was at pH¼ 6 (Fig. S3).

When the initial solution pH is less than 3, phosphate mainly
exists in the form of H3PO4 (pKa¼ 2.12, pKa is the negative loga-
rithm of the acid dissociation constant), and the binding force of
H3PO4 to biochar is weak (Zhang et al., 2011). Although the phos-
phate removal rate was high, the adsorption amount was only



Fig. 1. SEM images of distillers grains biochar and PG-biochar pyrolyzed under 600 �C before and after absorption of phosphate.
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Fig. 2. FTIR spectra of different biochars (PG-biochar means phosphogypsum sup-
ported distillers grains biochar, DGT biochar means distillers grains biochar).

Fig. 3. Adsorption of phosphate by biochar pyrolysis at different temperatures. Error
bars represent standard error of triplicate samples (n¼ 3). Initial phosphate concen-
tration 100mg L�1. Contact time 24 h.

Fig. 4. The relationship between the amount of phosphate adsorption and the contact
time. Error bars represent standard error of triplicate samples (n¼ 3). Symbols may
cover error bars. Initial phosphate concentration 100mg L�1. Contact time 24 h.
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75mg g�1. When the pH was between 3 and 7, the phosphate
removal rate reached a maximum (96.7%) at pH¼ 6. At the same
time, the amount of adsorbed phosphate reached a maximum of
79mg g�1 probably because phosphate was mainly present in the
form of H2PO4

� (pKa¼ 7.21). H2PO4
� may have strong interactions

with the hydroxyl groups on the surface of phosphogypsum/bio-
char through ligand exchange (Chen et al., 2012).

When the pH of the solution was between 8 and 12, the phos-
phate removal rate was between 83% and 86%. Phosphate mainly
existed in the form of HPO4

2� (pKa¼ 12.67). The high concentration
of OH� in the solution might inhibit the coordination of hydroxyl
groups on the biochar with HPO4

2�. The exchange between the
bodies may compete with the HPO4

2� in the solution for the
adsorption site on the surface of the biochar. Since the zero point
charge pHpzc of the modified distillers grains biochar is 7.74, the
modified biochar surface is positively charged when pH< pHpzc,
and it is easier to adsorb anions through electrostatic adsorption. As
the pH increases, the OH� concentration increases rapidly, which is
competitive with the phosphate and not conducive to the adsorp-
tion. Therefore, based on the result of the removal rate and
adsorption capacity of biochar on phosphate, all subsequent sorp-
tion experiments were conducted at pH¼ 6.0.
3.5. Adsorption kinetics

The adsorption kinetics data were simulated by different
mathematical models. In addition to the commonly used pseudo-
first-order, pseudo-second-order models, Elovich model, and
Ritchie model were tested with the following equation (Ho, 2006;
Zhang et al., 2013).

qt ¼ qe
�
1� e�kt

�
Pseudo� first� order model (1)

qt ¼ kq2e t
1þ kqet

Pseudo� second� order model (2)

qt ¼ 1
b
lnðbatþ1Þ Elovich model (3)

qt ¼ qe �
�
q1�n
e � k

1� n
t
� 1

1�n

Ritchie model (4)

As shown in Fig. 4, the adsorption rate of phosphate was very
fast at the beginning. The adsorption of phosphate increased
rapidly in the first 4 h, reaching 70% of the maximum adsorption
amount, then the curve slowly slowed down and finally reached the
adsorption equilibrium at 24 h. Under the same initial phosphate
concentration, the concentration of phosphate decreased with the
process of adsorption, and the diffusion rate of phosphate
decreased, which leads to the increase of the thickness of the
boundary layer and abruptly changes. The decrease of phosphate
concentration can be attributed to the calcium-induced calcium
phosphate precipitation. Overall, the pseudo-second-order model
provided the best fit of the experimental data for both adsorbents
(Table S2), indicating that phosphate adsorption kinetics by dis-
tillers grains biochar or PG-biochar was mostly through chemical
sorption process.



Fig. 5. Adsorption isotherms of phosphate onto adsorbents. Error bars represent
standard error of triplicate samples (n¼ 3). Symbols may cover error bars. Initial
phosphate concentration 5e500mg L�1. Contact time 24 h.
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3.6. Adsorption isotherms

Two isotherm models were used to simulate the adsorption of
phosphate from biochar.

S ¼ SmaxKC
1þ KC

Langmuir model (5)

S ¼ Kf C
n Freundlich model (6)

The phosphate adsorption capacity of biochar increased with
the increase of initial phosphate equilibrium concentration (Fig. 5).
This is because the amount of phosphate contacting between the
solid and liquid phases is increased so that the reactivity of the
adsorption site on the surface of the adsorbent is enhanced. As the
initial phosphate concentration increased, the phosphate exposed
to per unit biochar mass increased, resulting in more active sites to
be occupied. Table S3 shows the best-fit parameters of these
isotherm models. According to the fitting curves, both models fit
well on the phosphorus adsorption process. While the adsorption
Table 1
Previously reported adsorption capacities of phosphate onto various biochar.

Biochar Temperature

Oak sawdust biochar by Lanthanum (La)-involved 500
Anaerobically digested sugar beet tailings biochar 600
Mixed hardwood feedstock biochar 300
Mg-enriched tomato tissues biochar 600
Anaerobically digested sugar beet tailings biochar 600
Biochar/AlOOH nanocomposite 600
MgO-biochar nanocomposites 600
Magnesium ferrite (MgFe2O4)/biochar magnetic composites 800
Soybean stover derived biochar 700
MgO particle-impregnated biochar 500
Montmorillonite/bamboo biochar 400
Tomato leaves biochar 600
Poultry manure biochar 650
Magnesium-pretreated biochar 600
MgO decorated magnetic biochar 550
Rice straw-derived biochar 600
Magnesium-alginate/chitosan modified biochar 500
Wheat straw biochar 450
Distillers grains biochar 600
PG-biochar 600
process of PG-biochar is more consistent with the Freundlich
isotherm adsorption model, which belongs to the monolayer sur-
face chemisorption. This is consistent with the results of previous
studies of phosphate removal by other adsorbents (Zhang et al.,
2012, 2013). The maximum adsorption capacity of PG-biochar
reached 102.4mg g�1, which is almost five times that of distillers
grains biochar (21.5mg g�1). The Langmuir constants kL is between
0.005 and 0.08mg L�1, indicating that the adsorption of phosphate
by biochar was chemisorption, while the Freundlich constant was
more than 1 indicating that the phosphorus adsorption is primarily
a single layer chemical adsorption of the surface of PG-biochar. The
higher adsorption capacity of PG-biochar than distillers grains
biochar is partly due to a large amount of divalent cation (Ca2þ)
bridging of phosphate on the surface of biochar contributing
greatly to the precipitation of phosphate ions. Another possible
phosphate adsorption mechanism on the biochar surface could be
attributed to ligand exchange reaction between the phosphate-
hydroxyl surface reaction.

The adsorption capacity of PG-biochar on phosphate is almost
comparable to that of other modified biochars (Table 1). Although
the phosphate adsorption capacity obtained in this studywas not as
high as some previous works, the most remarkable point is that the
PG-biochar is low cost and modification method is simple. Because
both distillers grains and phosphogypsum belong to solid wastes,
PG-biochar could be widely used as a very cost-effective and novel
adsorbent due to the perspective of solid waste management.
3.7. Adsorption thermodynamics

By studying some thermodynamic parameters, we can deduce
the possibility and extent of adsorption reactions. The thermody-
namics of phosphate adsorption on the PG-biochar at 289.15 K,
299.15 K, and 309.15 K were analyzed. As shown in Fig. 6, the
adsorbed amount of phosphorus increased with the increase of
ambient temperature, indicating that the phosphate adsorption
process is chemical. In order to understand the adsorption process
more comprehensively, some thermodynamic data calculation is
needed. The Freundlich model was used to calculate the differential
enthalpy of adsorption, adsorption free energy, and adsorption
entropy. The thermodynamic equations can be written as follows
(Huang et al., 2014).
(�C) Q0 (mg g�1) pH Ref

142.7 Wang et al. (2015b)
100 5.2 Yao et al. (2011a)
1.13 Sarkhot et al. (2013)
>100 Yao et al. (2013b)
133 5.2 Yao et al. (2011b)
120 Zhang and Gao (2013)
835 Zhang et al. (2012)
163.02 3.0 Jung et al. (2017)
90.9 5.5 Karunanithi et al. (2017)
398 4.0 Li et al. (2017)
105.28 Chen et al. (2017)
116.6 5.2 Yao et al. (2013a)
163.6 Novais et al. (2018)
66.7 5.2 Haddad et al. (2018)
121.25 4.0 Li et al. (2016b)
40 3.0 Cui et al. (2011)
46.56 3.0 Cui et al. (2016)
16.58 7.0 Li et al. (2016a)
21.5 6.0 This study
102.4 6.0 This study



Fig. 6. The relationship between adsorption capacity and ambient temperature. Error
bars represent standard error of triplicate samples (n¼ 3). Initial phosphate concen-
tration 100mg L�1. Contact time 24 h.
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DG0 ¼ �RTlnKd (7)

DG0 ¼ DH0 � TDS0 (8)

Equation (9) is obtained from the rearrangement of Eqs. (7) and
(8):

ln Kd¼DS0

R
� DH0

RT
(9)

In the above equation, DG0, DH0, and DS0 represent the Gibbs
free energy change (kJ$mol�1), enthalpy change (kJ$mol�1) and
entropy change (J$mol�1) of biochar on the isothermal adsorption
process of phosphate, respectively; R is the ideal gas state equation
constant 8.314 Jmol�1 K�1; T is the thermodynamic temperature,
K; Kd is the adsorption equilibrium constant (K) from the value of
the best fit nonlinear isotherm equilibrium model (Lima et al.,
2015), which is calculated using the method recommended by
Eder C. Lima et al. (2019).

At the three temperatures, the DG0 in the process of biochar
adsorption of phosphate was negative and gradually decreased
with the increase of temperature. The DH0 and DS0 in the process of
biochar adsorption of phosphate were both positive (Table S4). The
negative values ofDG0 from�7.813 to�9.381 kJmol�1 indicate that
the adsorption of phosphate onto PG-biochar is feasible and
spontaneous, and a larger negative value indicates that the reaction
proceeds more thoroughly and more phosphate adsorbed with the
increasing temperature (Mezenner and Bensmaili, 2009). The
positive value of DS0 reflects good affinity of phosphate ions to-
wards the PG-biochar and the increasing spontaneity (randomness)
of liquid-solid phase interaction at the biochar surface during the
adsorption process. In the system composed of biochar and phos-
phate, biochar can adsorb phosphate more firmly. The DH0 is pos-
itive, indicating that the phosphate adsorption process is primarily
endothermic and chemical. The above results indicate that: (1) the
adsorption process of phosphate on biochar is a spontaneous
endothermic process, and the increase of temperature is beneficial
to increase the adsorption capacity of biochar to phosphate; (2) the
adsorption of biochar to phosphate is relatively firm; (3) The
adsorption of phosphate on biochar is mainly chemical adsorption,
supplemented by physical adsorption.
4. Conclusions

Distillers grains biochar supported phosphogypsum composites
could be a novel and effective adsorbent for removal of phosphate
fromwater. The optimum pH for phosphate adsorption was 6.0 for
biochar supported phosphogypsum composites. Langmuir model
can better fit the isothermal adsorption data and the maximum
phosphate adsorption capacity of the phosphogypsum modified
biochar reached 102.4mg g�1, which is almost five times that of the
distillers grains biochar. The main adsorption mechanism is mainly
attributed to electrostatic adsorption, surface precipitation and
ligand exchange. The preparation method of the biochar supported
phosphogypsum composite is simple and easy, and the cost is low
which provides an alternative way for expanding the resource
utilization of industrial wastes such as distillers grains and phos-
phogypsum in treating eutrophic water.
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