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A B S T R A C T   

The end-Permian mass extinction was the most severe biotic crisis of the Phanerozoic. Oceanic anoxia has long 
been considered one of the main drivers of the biotic crisis. We examined the molybdenum isotope compositions 
of bulk carbonate samples from two Permian–Triassic boundary sections in southern China: the Meishan Global 
Stratotype Section and Point and the Dajiang section (an isolated carbonate platform). We also measured the Mo 
contents of the carbonate phases, oxides, and sulfides of the carbonate samples via sequential extraction to 
investigate the samples’ Mo-bearing minerals. In the Meishan section, from Bed 23 to the middle of Bed 24, the 
δ98/95Mocorr.Al values decrease slowly from +0.89‰ to +0.35‰, while from the middle of Bed 24 to Bed 25, the 
δ98/95Mocorr.Al values abruptly increase from +0.35‰ to +1.78‰. In the Dajiang section, samples below the mass 
extinction boundary have relatively low δ98/95Mocorr.Al values with a narrow variation range (− 0.05‰ to 
+0.46‰; average + 0.19‰); the δ98/95Mocorr.Al values of the five samples directly above the extinction boundary 
increase abruptly (vary from +1.38‰ to +1.63‰; average of +1.53‰), and the δ98/95Mocorr.Al values of other 
samples above the mass extinction boundary fluctuate slightly before returning to pre-extinction values. The 
results of the sequential extraction procedure indicate that carbonate-phase Mo accounts for a small portion of 
the total Mo (average of 13.6 and 18.4 wt% for the Meishan and Dajiang sections, respectively), oxidized and 
sulfided Mo are the dominant forms in the carbonate samples. Moreover, the carbonate samples with high δ98/ 

95Mo values tend to have high contents of sulfided Mo. We suggest that marine carbonate sediments record 
paleo-ocean Mo isotopic signals by a mechanism similar to that of other open-ocean sediments (e.g., shales): 
higher δ98/95Mo values in the sediments indicate a more reducing sedimentary environment. Based on this 
assumption, the δ98/95Mo values of the studied sections indicate that during the Permian–Triassic transition, 
oceanic anoxia coincided with or slightly predated the mass extinction, and the ocean anoxic event lasted for a 
relatively short time, likely less than 0.061 Myr.   

1. Introduction 

The end-Permian mass extinction was the most severe biotic crisis of 
the Phanerozoic. Over 90% of marine species became extinct, resulting 
in the destruction of marine ecosystems (Erwin, 1994; Jin et al., 2000). 
However, the cause of this mass extinction event is still subject to debate 
(Chen et al., 2015). A leading hypothesis is that the global oceans, from 
deep water through the photic zone, became depleted in oxygen (i.e., 
global anoxia) (e.g., Wignall and Twitchett, 1996; Isozaki, 1997; Grice 
et al., 2005; Shen et al., 2011). A range of geochemical and paleoeco-
logical proxies have been used to constrain the timing of the end- 

Permian mass extinction and to clarify the marine redox conditions 
during the Permian–Triassic transition, including authigenic uranium 
concentrations (Wignall and Twitchett, 1996, 2002), cerium anomaly 
changes (Kakuwa and Matsumoto, 2006; Algeo et al., 2007), the 
occurrence of biomarkers indicating photic zone euxinia (Grice et al., 
2005), the size distribution of pyrite framboids (e.g., Wignall and 
Newton, 1998; Wignall et al., 2005; Shen et al., 2007; Bond and Wignall, 
2010; Algeo et al., 2011; Chen et al., 2015; Li et al., 2015a), and U 
isotope compositions (δ238U) and Th/U ratios (Brennecka et al., 2011; 
Lau et al., 2016; Zhang et al., 2020). However, the details of the timing, 
extent, and intensity of the anoxia remain controversial. 
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Molybdenum is a redox-sensitive trace metal with a residence time in 
seawater of about 800 kyr, which greatly exceeds ocean mixing time-
scales (~1500 yr) (e.g., Emerson and Huested, 1991). Under oxic con-
ditions, light Mo isotopes are preferentially adsorbed by Fe-Mn oxides, 
resulting in the δ98/95Mo values of oxic sediments varying from − 1.0‰ 
to − 0.5‰ (− 0.7 ± 0.1‰ on average) (Barling et al., 2001; Siebert et al., 
2003; Poulson et al., 2006). Under anoxic conditions, the H2S concen-
tration is a “geochemical switch” and an important control on Mo iso-
topic fractionation. When the H2S concentration of the water column is 
>100 μmol/L, almost all of the aqueous MoO4

2− species become MoS4
2−

species and are precipitated; this process imparts negligible Mo isotope 
fractionation. Thus, the δ98/95Mo value of euxinic sediment (H2S > 100 
μmol/L) reflects the Mo isotope composition of its overlying seawater 
(Barling et al., 2001; Arnold et al., 2004; Poulson et al., 2006; Siebert 
et al., 2006). In contrast, when H2S concentrations are between 0.1 and 
100 μmol/L, MoO4

2− , MoO4− xSx
2− , and MoS4

2− coexist in the water col-
umn, and only a fraction of the dissolved Mo precipitates and is 
deposited in the underlying sediments. Therefore, the Mo isotope 
composition of the sediments varies, with the δ98/95Mo value being 
between − 0.5‰ and + 1.3‰ under dysoxic conditions, and ~ 1.6‰ 
under anoxic conditions (Anbar, 2004; Tossell, 2005; Poulson et al., 
2006; Siebert et al., 2006). 

In recent decades, Mo and its isotopes have been used to investigate 
the paleo-redox conditions of the Earth’s atmosphere and oceans (e.g., 
Barling et al., 2001; Siebert et al., 2003, 2006; Arnold et al., 2004; Wille 
et al., 2007; Scheiderich et al., 2010; Kendall et al., 2011; Wen et al., 
2011, 2015; Zhou et al., 2011, 2012; Scott and Lyons, 2012; Proemse 
et al., 2013; Kurzweil et al., 2016; Ruebsam et al., 2017; Cheng et al., 
2018; Magnall et al., 2018; Chen et al., 2019). These studies have mostly 
focused on sediments deposited under euxinic conditions (e.g., black 
shales); however, the sedimentary strata that have recorded important 
geological events throughout geologic history (especially after the 
Cambrian) are mostly carbonates. Voegelin et al. (2009) hypothesized 
negligible Mo isotopic fractionation during Mo uptake into non-euxinic, 
non-skeletal marine carbonates. The mechanism of this hypothesis is 
still not well constrained, but it provides an important proxy for tracing 
oceanic paleo-redox evolution through geologic history. However, one 
recent study reported a ~ 0.7‰ offset in the δ98/95Mo value between 
seawater and carbonate-rich sediments (Bura-Nakić et al., 2020). 
Therefore, it is necessary to understand how Mo isotopes in seawater are 
preserved in carbonates before using their Mo isotope compositions to 
reconstruct the Mo isotope evolution of ancient seawater. 

In this study, we leached three Mo-associated phases (carbonate, 
oxide, and sulfide) and measured the Mo isotope compositions of bulk 
carbonates from two sections in South China (the Meishan and Dajiang 
sections) to constrain the changes in ocean redox conditions during the 
mass extinction event at the Permian–Triassic boundary (PTB). Based on 
these results, we suggest that the intensification of oceanic anoxia 
coincided with or slightly predated the end-Permian mass extinction, 
and the ocean anoxia may have lasted for a short period. 

2. Geologic setting 

During the late Carboniferous to early Permian, Laurentia and 
Gondwanaland were amalgamated to form Pangea. The Paleo-Tethys 
Ocean was a horn-shaped open ocean near the middle of the eastern 
margin of Pangea, and the South China Plate occurred as an isolated 
island in the Paleo-Tethys Ocean (Fig. 1a) (Nie, 1991; Yin and Song, 
2013). At the PTB, the centre of the South China Plate was marked by the 
Yangtze carbonate platform, of which the northern and southern mar-
gins were deep-water basin facies (Fig. 1b) (Yin et al., 2014). These 
basins had different origins on the northern and southern margins. The 
northern basin has a normal sedimentary framework indicative of a 
marginal sea with continental shelf–continental slope–deep sea facies. In 
contrast, the southern basin was a NE–SW-trending rift zone controlled 
by stretching, along which isolated carbonate platforms developed 

within and between the rift zone and the Yangtze Platform (Lehrmann 
et al., 1998, 2003; Yin et al., 2014). Thus, the South China Plate is an 
ideal area for studying PTB marine and terrigenous strata and related 
geological events. We chose the Meishan and Dajiang sections as being 
representative of the northern and southern marginal basins of the 
Yangtze Platform, respectively. 

2.1. Meishan section 

The Meishan section is located in Meishan Town, Changxing County, 
Zhejiang Province, China. The section is ideal for investigating the 
evolution of the biota and environment during the Permian–Triassic 
transition due to the excellent preservation of fossils. The section was 
established as the Global Stratotype Section and Point of the PTB in 2001 
(Yin et al., 2001). During the Permian–Triassic transition, the Meishan 
section was located on the northern margin of the Yangtze platform, 
which was a relatively deep-water platform–margin slope and an in-
termediate or transitional zone between the shallow shelf and the deep- 
water basin (Fig. 1b); the section’s water depth was ~150 m (He et al., 
2005; Li et al., 2015a). The stratigraphic sequence of the Meishan sec-
tion, from bottom to top, consists of bioclastic limestone of the late 
Permian Changhsing Formation and mudstone and muddy limestone of 
the early Triassic Yinkeng Formation (Fig. 1c). The main mass extinction 
boundary of the end-Permian mass extinction is thought to be at the 
bottom of Bed 25 (Yang et al., 1993; Yin, 1996; Xie et al., 2005; Yin 
et al., 2007; Song et al., 2013). The bottom of Bed 27c has been iden-
tified as the PTB where the conodont H.parvus was first discovered (Yin 
et al., 2001). 

2.2. Dajiang section 

The Dajiang section is located in Bianyang Town, Luodian County, 
Guizhou Province, China. Due to the continuous record and good 
exposure of the PTB strata, the Dajiang section is ideal for investigating 
shallow water platform facies. As a result of the eruption of the 
Emeishan basalt and the formation of related basement fractures during 
the late Permian, the northern margin of the Yangtze Platform exhibits 
an apparent paleogeographic pattern of platform–platform margin-
–basin, with some isolated carbonate platforms within the platform 
margin and basin zones. The Nanpanjing Basin was located on the 
southern margin of the Yangtze Platform, and the isolated carbonate 
platform, which was located on the southern margin of the Nanpanjing 
Basin, is called the Great Bank of Guizhou (Lehrmann et al., 1998, 
2005). The Dajiang section was located on the interior of the Great Bank 
of Guizhou (Fig. 1b), and the water depth was <20–30 m (Lehrmann 
et al., 1998). 

The stratigraphic sequence of the Dajiang section, from bottom to 
top, consists of bioclastic limestone of the Upper Permian Wujiaping 
Formation and massive microbialite and thin- to medium-bedded 
limestone of the Lower Triassic Daye Formation (Fig. 1d). In this sec-
tion, the mass extinction boundary of the end-Permian mass extinction is 
thought to lie in the interface between the bioclastic limestone and the 
microbialite. However, the precise location of the PTB is controversial. 
Some researchers have proposed that the boundary is located within the 
microbialite (Lehrmann et al., 2003; Chen et al., 2009), while others 
suggest that the PTB coincides with the mass extinction boundary be-
tween the bioclastic limestone and the microbialite (Ezaki et al., 2003; 
Jiang et al., 2014; Song et al., 2014). 

3. Samples and methods 

3.1. Sampling and sample preparation 

Samples were obtained from the two PTB sections, including 24 
carbonate and 4 claystone samples from the Meishan section and 24 
carbonate samples from the Dajiang section. All samples were freshly 
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exposed. Prior to geochemical analysis, each sample was cleaned with 
deionized water and dried, and then crushed to 200 mesh (0.074 mm). 
All the acids used in this study were purified by sub-boiling distillation; 
the water used was 18.2 MΩ grade obtained from a Millipore system. 

3.2. Major and trace element analysis 

The major and trace elements were analysed using X-ray fluores-
cence (Axios, PW4400) and inductively coupled plasma–mass spec-
trometry (PE ELAN DRC-e), respectively, at the State Key Laboratory of 
Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy 
of Sciences. The analytical uncertainty of the elemental contents was 
generally better than 5%. 

3.3. Analysis of Mo phases 

Our sequential extraction method used HAc, HCl, and HNO3 as the 
extracting solutions to draw the carbonate-phase, oxidized, and sulfided 
Mo from the samples, respectively (Nothdurft et al., 2004; Rock and 
Mineral Analysis Group, 2011; Rongemaille et al., 2011; Cao et al., 
2020). First, a 0.2 g subsample of each powdered sample was weighed 
and placed in a 50 mL centrifuge tube with 30 mL of 1.5 mol/L HAc. 
After the strong reaction of the carbonate with the HAc subsided and 
stabilized, the centrifuge tubes were closed and shaken using an oscil-
lator for at least 24 h. Subsequently, each mixture was centrifuged to 
separate the supernatant from the residue. The supernatants were 
evaporated to dryness, dissolved in 0.15 mol/L HNO3, and analysed to 
determine their HAc-phase Mo (carbonate-phase Mo) concentrations 
(Nothdurft et al., 2004; Rongemaille et al., 2011; Cao et al., 2020). Then, 
20 mL of 3 mol/L HCl was added to digest the residues, and the 
centrifuge tubes were heated in a boiling water bath for 1 h. The solution 
aliquots were centrifuged after cooling. The supernatants were trans-
ferred to PTFE beakers that were heated on a hot plate at 120 ◦C to 
evaporate the liquid. After the supernatants had dried, they were dis-
solved in 0.15 mol/L HNO3 and analysed to determine their HCl-phase 
Mo (oxidized Mo) concentrations. Next, 10 mL of HNO3 was added to 
the centrifuge tubes to dissolve the residues, the solutions were trans-
ferred to PTFE beakers, and the beakers were heated on a hot plate at 
120 ◦C for 8 h. Quantitative filter paper was used to filter the solution 
aliquots after cooling. The filtrates were evaporated to dryness, dis-
solved in 0.15 mol/L HNO3, and analysed to determine their HNO3- 
phase Mo (sulfided Mo) concentrations (Rock and Mineral Analysis 
Group, 2011). The residues were transferred from the filter paper to 
crucibles for ashing. Aqua regia and HF were added to digest the sam-
ples. Finally, the samples were dissolved in 0.15 mol/L HNO3 and 
analysed to determine their residue-phase Mo concentrations. The HAc- 
phase, HCl-phase, HNO3-phase, and residue-phase Mo concentrations 
were added to obtain the total Mo concentrations of the samples. 

3.4. Mo isotope analysis of bulk samples 

Sample purification, Mo isotope measurements, and data processing 
are described in detail by Zhang et al. (2009), Wen et al. (2010, 2011, 

2015), and Liu et al. (2016). Briefly, after determining the samples’ Mo 
contents, a powdered subsample containing >0.15 μg of Mo was 
digested with 6 mol/L HCl and a trace amount of 30% H2O2 to remove 
the carbonate matrix. Once the strong reaction between the carbonate 
and the HCl subsided and stabilized, the beakers were capped and placed 
on a hot plate at 120 ◦C for at least 24 h. Subsequently, the residual 
material in the beakers was separated from the solution by centrifuga-
tion, and the solution was transferred into another PTFE beaker. Then, 4 
mL of 48% (v/v) HF and 8 mL of 15 mol/L HNO3 were added to dissolve 
the residual material, and the beakers were heated on a hot plate at 
120 ◦C. After complete dissolution, the samples were evaporated to 
dryness. Then, 10 mL of 7.5 mol/L HNO3 was added to the beaker and 
mixed with the supernatant. A 97Mo-100Mo double-spike solution 
(97Mo/100Mo ≈ 1; see Liu et al. (2016) for more information about the 
double-spike solution) was added to each sample to achieve a ratio of Mo 
spike to sample of ~2. The samples were then placed in an oscillator for 
24 h to allow them to fully react and attain isotopic equilibrium. Sam-
ples were then evaporated to dryness on a hot plate at 100 ◦C, and 6–10 
mL of 6 mol/L HCl was added to dissolve the residues. An improved 
anion–cation exchange resin double-column procedure was used to 
separate the Mo from other elements, as described in Table 1 (Zhang 
et al., 2009; Wen et al., 2015; Liu et al., 2016). This method yields Mo 
recovery of 97.49 ± 0.27%; and the elements that potentially interfere 
with the Mo isotopes, including Zr, Ru, Fe, Mn, and other interfering 
matrix elements, were present in negligible amounts relative to the 
amount of Mo (Zhang et al., 2009). 

The Mo isotope ratio measurements were performed on a Neptune 
Plus multicollector inductively coupled plasma mass spectrometer (MC- 
ICP-MS) (Thermo Fisher Scientific, Germany) at the State Key Laboratory 
of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Acad-
emy of Sciences. The purified Mo from the samples was dissolved in 0.15 
mol/L HNO3 for analysis by MC–IC–MS in low resolution with a Pt ‘Jet’ 
sampler and Ni ‘x-type’ skimmer cones. A Teflon nebulizer with an up-
take rate of 50 μL/min was used for sample introduction. The analysed 
sample solutions had Mo concentrations of ~0.15 μg/mL. Signal acqui-
sition was performed using the following collector configurations: 91Zr+, 
94Mo+, 95Mo+, 96Mo+, 97Mo+, 98Mo+, 99Ru+, and 100Mo+ ion beams were 
collected by Faraday cups at the L4, L2, L1, C, H1, H2, H3, and H4 po-
sitions, respectively. These parameters resulted in a total Mo signal in-
tensity of 120–150 V ppm− 1. All the samples and reference solutions were 
run in 3 blocks of 15 cycles of measurements for each amu. After each 
run, the sample-introduction system was rinsed with 0.6 mol/L HNO3 
until the signal intensity reached the original background level (~2 mV 
of 96Mo, which generally took about 3 min). 

Double-spike data reduction was performed offline using a MATLAB- 
based script, which is described in detail by Siebert et al. (2001) and Li 
et al. (2011, 2015b). Nägler et al. (2014) suggested setting the δ98/95Mo 
of NIST SRM 3134 to +0.25‰, which allows the canonical values of 
+2.3‰ for seawater and − 0.7‰ for marine Fe-Mn precipitates to be 
used for discussion and facilitates the comparison of existing and new 
data (Greber et al., 2012; Goldberg et al., 2013; Wen et al., 2015; Liu 
et al., 2016). Therefore, the final δ98/95Mo values relative to NIST SRM 
3134 = 0.25‰ were defined by the following relationship: 

Fig. 1. (a) Paleogeography of the Paleo-Tethys Ocean and location of the South China Plate during the Permian–Triassic transition (modified from Ziegler, 1988); (b) 
simplified paleogeographic map of southern China during the Permian–Triassic transition (modified from Yin et al., 2014); (c) lithostratigraphic profile of the 
Meishan section; and (d) lithostratigraphic profile of the Dajiang section. 

δ98/95 Mo(‰) =
{( 98Mo

/95Mo
)

sample

/[( 98Mo
/95Mo

)

NIST 3134 × 0.99975
]
− 1

}
× 1000   
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The δ98/95Mo values of the four Mo reference standards used in this 
study, which were prepared to monitor the chemical separation and 
mass spectrometry measurements, are listed in Table 2. 

4. Results 

4.1. Three-phase Mo extraction results 

The carbonate-, oxide-, and sulfide-associated Mo contents of the 
carbonate samples from the two sections are listed in Table 3 and shown 
in Figs. 2 and 3. In samples from both sections, the carbonate-phase Mo 
is a relatively minor proportion of the total Mo. 

4.1.1. Meishan section 
For the Meishan section, the sulfided Mo of the carbonate samples 

ranges from 42.3 to 80.8 wt% (55.7 wt% on average), the oxidized Mo 
ranges from 7.75 to 40.6 wt% (25.7 wt% on average), and the carbonate- 
phase Mo ranges from 3.52 to 21.0 wt% (13.6 wt% on average). For the 
three carbonate samples from the Meishan section with high δ98/95Mo 
values (+1.03‰ to +1.41‰; samples B-24-9, B-27-1, and B-27-2; see 
Table 4), the carbonate-phase Mo ranges from 3.52 to 10.2 wt% (6.03 wt 
% on average), the oxidized Mo ranges from 7.75 to 13.9 wt% (11.3 wt% 
on average), and the sulfided Mo ranges from 67.5 to 80.8 wt% (75.2 wt 
% on average). 

4.1.2. Dajiang section 
For the Dajiang section, the sulfided Mo of the carbonate samples 

ranges from 24.9 to 71.7 wt% (45.3 wt% on average), the oxidized Mo 
from 8.50 to 56.8 wt% (34.6 wt% on average), and the carbonate-phase 
Mo from 12.2 to 23.8 wt% (18.4 wt% on average). The five Dajiang 
section carbonate samples with high δ98/95Mo values (+1.32‰ to 

+1.56‰; samples TDJ-1-1, TDJ-1-2, TDJ-1-3, TDJ-2, and TDJ-3; see 
Table 5) contain carbonate-phase Mo of 12.2–19.2 wt% (16.1 wt% on 
average), oxidized Mo of 8.50–16.2 wt% (14.4 wt% on average), and 
sulfided Mo of 64.2–71.7 wt% (68.4 wt% on average). 

4.2. Mo isotopes and major elements 

4.2.1. Meishan section 
The δ98/95Mo values and Mo, Al, CaCO3, and MgCO3 contents and 

Mn/Sr ratios of the Meishan section samples are reported in Table 4 and 
Fig. 4. 

Carbonate samples: The ranges of Mo, Al, CaCO3, and MgCO3 
contents for the 24 carbonate samples are 0.07–7.68 μg/g, 0.22%– 
6.23%, 18.1%–86.1%, and 0.83%–17.3%, respectively. The Mn/Sr ra-
tios of the carbonate samples range from 0.05 to 4.13. Some of these 
samples are from Beds 23–27, which have Mn/Sr ratios of 0.05–1.56. 
The δ98/95Mo values of all the carbonate samples vary from − 0.13‰ to 
+1.41‰ (Table 4). From Bed 23 to the middle of Bed 24, the δ98/95Mo 
values decrease slowly from +0.86‰ to +0.34‰. Then, the δ98/95Mo 
values increase slightly and then abruptly to a maximum of +1.41‰ at 
the top of Bed 24. Above Bed 27, the δ98/95Mo values decrease to a 
minimum of − 0.13‰ in Bed 29; they remain below +0.56‰ until Bed 
32 (Fig. 4a). 

Claystone samples: The δ98/95Mo values of the four claystone 
samples vary from − 0.02‰ to +1.38‰. The δ98/95Mo value of claystone 
sample B-25-1 is +1.38‰, and the δ98/95Mo values of the other samples 
vary from − 0.02‰ to +0.39‰ (+0.22‰ on average, approximating to 
the upper crustal mean value) (Table 4). The Mo, Al, CaCO3, and MgCO3 
contents are 0.55–5.98 μg/g, 8.10%–10.7%, 2.78%–10.3%, and 5.31%– 
6.49%, respectively. Previous studies suggested these claystones were 
deposited directly into the ocean as eruptive material during a period of 
active volcanism (e.g., Yang et al., 1993; Yin, 1996; Cao and Zheng, 
2009). We assume that the sample with the minimum Mo contents and 
δ98/95Mo value of ~0 (B-28-1: Mo content of 0.55 μg/g and δ98/95Mo of 
− 0.02‰) represents the approximate Mo isotope composition of the 
primary eruptive materials, whereas the sample with the maximum Mo 
content and maximum δ98/95Mo value (B-25-1: Mo content of 5.98 μg/g, 
~11 times that of B-28-1, and δ98/95Mo of +1.38‰) may record the Mo 
isotope composition of coeval ancient seawater. 

4.2.2. Dajiang section 
Carbonates: The Mo, Al, CaCO3, and MgCO3 contents of the 24 

carbonate samples are 0.12–2.67 μg/g, 0.01%–0.33%, 60.0%–92.3%, 
and 0.91%–33.6%, respectively, and the total carbonate (CaCO3 +

MgCO3) contents are 88.7%–99.5%. The Mn/Sr ratios of the carbonate 
samples are 0.16–0.92 (Table 5). The δ98/95Mo values of the carbonate 
samples from the Dajiang section vary from − 0.20‰ to +1.56‰ 
(Table 5) and are shown in Fig. 5a. The δ98/95Mo values of the samples 
below the mass extinction boundary are lower (average of +0.19‰) 
relative to the δ98/95Mo values of the five samples just above the 
boundary (average of +1.44‰); above the boundary the δ98/95Mo values 
decrease abruptly and return to pre-extinction values, followed by a 
slight increase (sample TDJ-7, δ98/95Mo = +0.83‰). Finally, the δ98/ 

95Mo values decrease again and remain at pre-extinction levels. 

5. Discussion 

5.1. Carbonate Mo isotope compositions and implications for the paleo- 
ocean environment 

Voegelin et al. (2010) investigated black shale and carbonate Mo 
isotope compositions of samples from a late Archean drill core and found 
that both sample types had consistent δ98/95Mo variation trends. Bura- 
Nakić et al. (2020) studied the Mo isotope compositions of anoxic 
carbonate-rich sediments from a semi-enclosed karstic marine lake on 
the Island of Mljet in the Adriatic Sea and found that samples from a core 

Table 1 
Molybdenum chemical purification procedure.  

Process Reagent Volume/mL 

Column #1: 5 mL Dowex AG 1 − X8 (100–200 mesh) 
Clean 1 mol/L HCl 40 
Condition 6 mol/L HCl 20 
Load sample Sample solution 3–8 
Wash 6 mol/L HCl 40 
Collect Mo 1 mol/L HCl 45 
Collect Mo 5 mol/L HNO3 30  

Column #2: 5 mL Dowex AG 50 W − X8 (200–400 mesh) 
Condition 1.4 mol/L HCl 30 
Load sample Sample solution ≤3 
Collect Mo 1.4 mol/L HCl 11  

Table 2 
The δ98/95Mo values of Mo reference materials.  

Mo Reference Material δ98/95Mo (‰) (2sd, 
n = 6) 
This Study 

δ98/95Mo (‰) (2sd) 
Previous Studies 

NOD-P-1 − 0.65 ± 0.08 − 0.63* Barling et al. 
(2001)   

− 0.66 ±
0.05 

Li et al. (2015b) 

SCo-1 − 0.25 ± 0.09 − 0.24 ±
0.06 

Li et al. (2015b) 

SC + 1 of Sigma- 
Aldrich Mo 

+1.79 ± 0.10 +1.67 ±
0.41 

Wen et al. 
(2010)   

+1.84 ±
0.09 

Liu et al. (2016) 

SC-1 of Sigma-Aldrich 
Mo 

− 1.40 ± 0.07 − 1.38 ±
0.29 

Wen et al. 
(2010)   

− 1.42 ±
0.06 

Liu et al. (2016) 

*δ98/95Mo was calculated from δ97/95Mo. 
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obtained at 30 m water depth had δ98/95Mo values between +1.38 to 
+1.78‰ (+1.64‰ on average; n = 16; samples from 5 to 39 cm below 
the sediment surface). In that study, only the uppermost sample (from 1 
cm depth) had a lower δ98Mo value (+1.02‰); these results were 
consistent with the variation of Mo isotope compositions from open- 
ocean anoxic sediments (Poulson et al., 2006). However, the mecha-
nism controlling the Mo isotope compositions is still unclear. 

In the modern ocean, under oxic conditions, lighter Mo isotopes tend 
to be absorbed by Fe-Mn oxides, which results in the enrichment of 
heavier Mo isotopes in seawater. In contrast, under anoxic to euxinic 
conditions, seawater Mo precipitates rapidly into the sediments in the 
form of Mo sulfide under high H2S concentrations; during this precipi-
tation reaction, Mo isotopes are weakly fractionated (e.g., Barling et al., 
2001; Siebert et al., 2003; Barling and Anbar, 2004; Poulson-Brucker 
and McManus, 2009). These processes are the basis for using Mo isotope 
compositions to trace oceanic paleo-redox conditions (e.g., Siebert et al., 
2003; Arnold et al., 2004; Kendall et al., 2009; Voegelin et al., 2009; 
Duan et al., 2010). Under oxic conditions, the Mo absorbed by the Fe-Mn 
oxides is preserved in the form of the oxides in the sediments (pre-
sumably MoO3; Tossell, 2005; Poulson et al., 2006; Algeo and Tribo-
villard, 2009; Goldberg et al., 2009), whereas under reducing 
conditions, Mo is preserved in the form of the sulfides in sediments (e.g., 
Helz et al., 1996; Erickson and Helz, 2000; Tossell, 2005; Poulson et al., 
2006). Therefore, determining the contents of the carbonate, oxidized, 
and sulfide phases of the Mo in the sediments is essential when studying 
the Mo isotope compositions of marine carbonates. 

The relative proportions of different Mo forms in carbonates are 
likely to change during late diagenesis. Huang et al. (2008) studied the 
Sr isotope composition of marine carbonates collected from the Zhon-
gliang Mountain PTB sections (Chongqing, Southwestern China) and 
determined that carbonates with low Mn/Sr ratios (<2) were not 
significantly altered by diagenesis and have retained the geochemical 
signature from the original seawater. All of the carbonate samples from 
the Dajiang section and the carbonate samples from Beds 23–27 in the 
Meishan section have Mn/Sr ratios of <2 (Tables 4 and 5); thus, late 
diagenesis had a limited influence on the Mo isotopic information of 
these samples. 

The two sections examined here yielded samples with relatively 
higher δ98/95Mo values (+1.03‰ to +1.56‰) and relatively lower δ98/ 

95Mo values (− 0.08‰ to +0.88‰); the carbonate-phase Mo contents are 
low (average of 13.6% for the Meishan section and 18.4% for the 
Dajiang section), indicating that the oxidized and sulfided Mo contents 
are the dominant forms of Mo in the samples (Table 3; Fig. 2). Moreover, 
the oxidized Mo contents are negatively correlated with δ98/95Mo 
values, and sulfided Mo contents are positively correlated with δ98/95Mo 
values (Fig. 3). The ratio between the oxidized and sulfided Mo contents 
in the carbonate samples may reflect the redox state of the seawater to 
some extent. When seawater gradually becomes anoxic, the contents of 

oxidized Mo in carbonate sediments gradually decrease while the con-
tents of sulfided Mo gradually increase, leading to a gradual increase in 
the δ98/95Mo values of the carbonate sediments. We suggest that the Mo 
isotope data of the carbonates of this study reflect the three depositional 
forms of Mo; i.e., the Mo preserved in the carbonate sediments in the 
form of pore water or inclusions, the oxidized Mo absorbed by Fe-Mn 
oxides, and the sulfided Mo. The Mo isotopic signature is indicative of 
the dominant accumulation mechanism of authigenic Mo. Thus, the 
mechanism by which Mo isotopes are recorded in marine carbonate 
sediments may be similar to that in other open-ocean sediments, such as 
shales. 

5.2. δ98/95Mo and oceanic paleo-redox conditions 

5.2.1. Variations in δ98/95Mo and implications 
The application of the Mo isotopic system to the reconstruction of 

oceanic paleo-redox conditions relies on mass balance between the oxic 
and reducing Mo sinks (Arnold et al., 2004; Poulson et al., 2006). 
Modern marine sediments record two important Mo isotopic fraction-
ations: Fe-Mn oxide absorbing Mo under oxic conditions (about − 3‰; 
Barling et al., 2001; Siebert et al., 2003; Poulson et al., 2006; Wasylenki 
et al., 2008) and Mo isotopic fractionation caused by the generation of 
thiomolybdate in seawater under anoxic conditions. 

Under anoxic conditions, the H2S concentration is a geochemical 
switch and an important control on Mo isotopic fractionation. At H2S 
concentrations of >100 μmol/L, Mo isotopic fractionation is negligible, 
while at H2S concentrations of <100 μmol/L, Mo isotopes are weakly 
fractionated (about − 0.7‰) (Zheng et al., 2000; Siebert et al., 2003; 
Arnold et al., 2004; Nägler et al., 2005; Poulson et al., 2006; Neubert 
et al., 2008; Kendall et al., 2017). Under suboxic conditions, the recor-
ded δ98/95Mo values of marine sediments are between those of Fe-Mn 
oxides and anoxic sediments (Siebert et al., 2003, 2006; Arnold et al., 
2004; Poulson et al., 2006; Neubert et al., 2008; Poulson-Brucker and 
McManus, 2009). Thus, higher δ98/95Mo values in sediments indicate a 
more reducing precipitation environment, which is consistent with the 
pattern of redox–δ98/95Mo covariation in modern marine environments, 
in which the highest δ98/95Mo values are found in the most euxinic facies 
(e.g., Poulson et al., 2006; Siebert et al., 2006; Poulson-Brucker and 
McManus, 2009; Herrmann et al., 2012). 

From the late Permian to the early Triassic, the δ98/95Mo values of 
seawater were + 2.23‰ to +2.40‰ (Zhou et al., 2012; Proemse et al., 
2013; Ruebsam et al., 2017; Chen et al., 2019), similar to modern 
seawater (+2.22‰ to +2.50‰; +2.34‰ on average) (Barling et al., 
2001; Siebert et al., 2003; Arnold et al., 2004), suggesting that the Mo 
isotopic fractionation model for the modern ocean can be used to eval-
uate Mo isotopic fractionation in the paleo-ocean during the PTB. 

Table 3 
Carbonate-phase Mo, oxidized Mo, and sulfided Mo contents of each sample obtained from the sequential extraction procedure.  

Meishan section Dajiang section 

Samples carbonate-phase Mo (%) oxidized Mo (%) sulfided Mo (%) Samples carbonate-phase Mo (%) oxidized Mo (%) sulfided Mo (%) 

B-27-2 4.38 7.75 80.8 TDJ-7 18.3 38.1 37.8 
B-27-1 3.52 12.2 77.4 TDJ-6 16.5 56.8 25.1 
B-24-9 10.2 13.9 67.5 TDJ-4 17.5 50.1 28.2 
B-24-8 21.0 18.6 55.8 TDJ-3 12.2 15.5 70.6 
B-24-7 15.1 28.2 53.2 TDJ-2 15.4 16.2 67.3 
B-24-6 19.9 30.8 45.7 TDJ-1-3 14.7 16.1 68.2 
B-24-5 17.6 30.1 48.8 TDJ-1-2 18.8 8.50 71.7 
B-24-4 11.8 40.6 42.3 TDJ-1-1 19.2 15.7 64.2 
B-24-3 11.2 40.2 44.4 PDJ-0 23.8 42.3 32.9 
B-24-2 18.5 29.2 47.7 PDJ-1 20.8 42.2 36.0 
B-24-1 16.5 31.0 48.8 PDJ-2 23.0 50.3 25.7     

PDJ-3 17.3 45.5 36.2     
PDJ-4 21.9 52.2 24.9  
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5.2.2. δ98/95Mo and oceanic paleo-redox conditions of the Meishan section 
The Al/Mo ratios of the samples above the PTB in the Meishan sec-

tion (samples B-27-3 to B-32-3) are so high (Table 4) that the authigenic 
Mo contents are extremely low or negative when Al is used to recalculate 
the δ98/95Mo values using the method of Voegelin et al. (2009). 
Furthermore, the δ98/95Mo values of these samples vary from − 0.13‰ to 

+0.56‰ (+0.27‰ on average), which is close to the δ98/95Mo of 
terrigenous detritus (~0.0‰; Siebert et al., 2003; Poulson et al., 2006; 
Voegelin et al., 2009). Given that we cannot determine whether the Mo 
in these samples is from terrigenous detritus or ancient seawater, these 
samples are not considered further in this study. Two samples below the 
PTB (B-27-2 from Bed 27b and B-27-1 from Bed 27a) have δ98/95Mo 

Fig. 2. δ98/95Mo values and the carbonate-phase Mo, oxidized Mo, and sulfided Mo contents of the samples. Estimated δ98/95Mo values of ancient seawater (δ98/ 

95Moestimated values of ancient seawater) and the calculation method are shown in Supplementary Table S1. 

Y. Zhang et al.                                                                                                                                                                                                                                   



Chemical Geology 575 (2021) 120259

8

values of +1.03‰ and + 1.17‰, respectively. Their authigenic Mo 
contents are negative when Al is used to recalculate δ98/95Mo values; 
however, their δ98/95Mo values are higher than those of terrigenous 
detritus. We conclude that authigenic Mo dominated the δ98/95Mo 
values of these two samples, and that the δ98/95Mo values of the authi-
genic Mo should be higher than the acquired values. 

From Bed 23 to the middle of Bed 24 in the Meishan section, the δ98/ 

95Mocorr.Al values gradually decrease from +0.89‰ to +0.35‰, while 
from the middle of Bed 24 to Bed 25, the δ98/95Mocorr.Al values gradually 
increase from +0.35‰ to +1.78‰ (Fig. 4a). Based on these results and 

the hypothesis discussed above, these Mo isotopic variations indicate 
that the oceanic paleo-redox conditions gradually became more oxic 
from Bed 23 to the middle of Bed 24, and then gradually transitioned 
toward a lack of oxygen from the middle of Bed 24 to Bed 25. The δ98/ 

95Mocorr.Al values from Bed 23 to the top of Bed 24 (B-23-7 to B-24-8, 
interval 1 in Fig. 4a) vary from +0.35‰ to +0.89‰ (+0.65‰ on 
average), which fall within the reported δ98/95Mo range of suboxic 
sediments (− 0.5‰ to +1.3‰; Poulson et al., 2006; Siebert et al., 2006), 
suggesting a suboxic paleo-ocean environment during this period. The 
δ98/95Mocorr.Al values from the uppermost part of Bed 24e (B-24-9) to 

Fig. 3. Relationship between δ98/95Mo values and oxide- and sulfide-associated Mo contents of the carbonate samples.  

Table 4 
Molybdenum isotope compositions and major elemental contents (Mo, Al, CaCO3, MgCO3, and Mn/Sr) of the Meishan section samples.  

Bed no. Samples Thickness 
(cm) 

Lithology δ98/95Mo (‰) 
(2SD, N = 3) 

δ98/95Mocorr. 

Al (‰) 
Mo 
(μg/g) 

Al 
(%) 

CaCO3 

(%) 
MgCO3 

(%) 
Ca +
Mg (%) 

Mn/ 
Sr 

Al/Mo 
(×104) 

32 B-32-3 20 calcareous 
mudstone 

+0.56 ± 0.14  0.37 6.23 18.1 5.27 23.4 2.76 17 
B-32-2 20 +0.39 ± 0.06  0.54 5.90 19.5 10.4 29.9 4.01 11 
B-32-1 20 muddy 

limestone 
+0.37 ± 0.06  0.30 5.22 26.9 12.5 39.4 4.13 17 

31 B-31–2 5 claystone +0.39 ± 0.11  1.90 10.4 3.78 5.38 9.15 0.39 5.5 
B-31–1 4 +0.29 ± 0.04  1.56 10.7 2.78 5.65 8.43 0.97 6.9 

30 B-30-3 18 muddy 
limestone 

+0.43 ± 0.05  0.07 3.24 35.8 17.3 53.1 2.70 46 
B-30-2 18 +0.12 ± 0.04  0.22 4.27 29.8 16.8 46.6 2.98 19 
B-30-1 18 +0.08 ± 0.03  0.21 5.02 21.8 12.8 34.6 3.01 24 

29 B-29-1 20 muddy 
limestone 

− 0.13 ± 0.09  0.61 6.15 19.1 11.6 30.7 2.98 10 

28 B-28-1 6 claystone − 0.02 ± 0.10  0.55 8.10 10.3 6.49 18.8 2.28 15 
27 27d B-27-4 4 limestone +0.32 ± 0.02  0.35 2.57 49.1 8.19 57.3 1.56 7.3 

27c B-27-3 4 +0.49 ± 0.05  0.37 2.09 43.8 13.8 57.6 1.46 5.7 
27b B-27-2 4 +1.03 ± 0.06  0.21 1.96 50.1 12.2 62.3 1.54 9.3 
27a B-27-1 4 +1.17 ± 0.05  0.21 2.21 53.0 10.1 63.1 1.56 11 

25 B-25-1 4 claystone +1.38 ± 0.04 +1.78 5.98 10.1 4.18 5.31 9.48 0.24 1.7 
24 24e B-24-9 3 limestone +1.41 ± 0.08 +1.56 2.46 1.70 59.9 1.67 61.6 1.08 0.69 

B-24-8 7 +0.88 ± 0.08 +0.89 2.17 0.24 85.6 1.53 87.1 0.56 0.11 
24d B-24-7 4 limestone +0.63 ± 0.07 +0.69 1.08 0.73 61.4 0.83 62.2 0.69 0.68 

B-24-6 6 +0.48 ± 0.08 +0.51 0.88 0.36 78.2 1.28 79.5 0.39 0.41 
B-24-5 10 +0.42 ± 0.02 +0.43 1.11 0.24 82.7 0.97 83.7 0.19 0.22 
B-24-4 6 +0.34 ± 0.07 +0.35 7.68 0.89 62.0 1.01 63.0 0.36 0.12 

24c B-24-3 10 limestone +0.38 ± 0.06 +0.39 2.99 0.58 71.1 0.97 72.1 0.24 0.19 
B-24-2 11 +0.58 ± 0.08 +0.59 2.38 0.40 77.2 1.53 78.7 0.12 0.17 

24b,24a B-24-1 23 limestone +0.79 ± 0.11 +0.81 1.47 0.28 80.3 1.32 81.6 0.09 0.19 
23 B-23-10 4 limestone +0.77 ± 0.03 +0.79 3.95 0.60 58.8 1.04 59.8 0.16 0.15 

B-23-9 7 +0.77 ± 0.11 +0.80 1.75 0.53 80.1 1.84 81.9 0.06 0.30 
B-23-8 15 +0.67 ± 0.02 +0.70 1.33 0.42 84.3 1.77 86.0 0.06 0.32 
B-23-7 11 +0.86 ± 0.06 +0.89 0.92 0.22 86.1 1.67 87.8 0.05 0.24 

The corrected δ98/95Mo values were calculated using the formula δ98/95Moauth = [(δ98/95Motot × Motot – δ98/95Modet × Modet)/Moauth], in which the detrital Mo 
concentration (Modet) was Modet = [(Mo/Al)crust×Altot] and the authigenic Mo concentration was Moauth = [Motot – Modet]. We applied a detritus correction assuming a 
Mo concentration of 1.1 μg/g, an upper crustal Al2O3 concentration of 15.4 wt% (all values from Rudnick and Gao, 2003), and a Mo isotopic composition of 0.0‰ as 
proposed by Voegelin et al. (2009). For the samples from Bed 27 to Bed 32, due to their low Mo concentrations (far less than the upper crustal mean value which is 
about 1.1 μg/g) and high Al concentrations, the recalculated authigenic Mo concentrations are very low or even negative using the recalculation method of Al 
mentioned, so we did not recalculate the corrected δ98/95Mo values of these samples. Ca + Mg: CaCO3 (%) + MgCO3 (%). The Al and Mn/Sr data are from Zhang et al. 
(2018). 
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Bed 25 vary from +1.56‰ to +1.78‰ (+1.67‰ on average), which is 
consistent with the δ98/95Mo values of open-ocean anoxic sediments 
(approximately +1.6‰) reported by Poulson et al. (2006). Furthermore, 

the δ98/95Mocorr.Al value (+1.78‰) of Bed 25 is consistent with the 
maximum δ98/95Mo value (+1.76‰) of the upper Permian Thuringian 
Basin sediments (Ruebsam et al., 2017), which formed in a semi- 

Table 5 
Molybdenum isotope composition and major elemental contents (Mo, Al, CaCO3, MgCO3, and Mn/Sr) of the Dajiang section samples.  

Samples Position (cm) Lithology δ98/95Mo (‰) (2SD, N = 3) δ98/95Mocorr.Al (‰) Mo (μg/g) Al (%) CaCO3 (%) MgCO3 (%) Ca + Mg (%) Mn/Sr 

TDJ-15 1372 microbialite − 0.02 ± 0.06 − 0.03 0.14 0.15 82.3 6.37 88.7 0.68 
TDJ-14 1272 − 0.20 ± 0.07 − 0.25 0.22 0.33 77.5 12.3 89.8 0.92 
TDJ-12 1172 +0.12 ± 0.07 +0.14 0.34 0.22 73.5 17.5 91.0 0.76 
TDJ-11 822 +0.37 ± 0.08 +0.45 0.25 0.32 60.0 33.6 93.6 0.75 
TDJ-10 472 +0.05 ± 0.07 +0.05 0.16 0.09 81.8 9.80 91.6 0.33 
TDJ-9 312 +0.09 ± 0.09 +0.09 0.23 0.01 83.3 10.3 93.6 0.32 
TDJ-8 192 +0.65 ± 0.06 +0.66 0.26 0.03 90.0 4.17 94.2 0.21 
TDJ-7 142 +0.83 ± 0.12 +0.83 2.67 0.15 87.0 3.01 90.0 0.26 
TDJ-6 102 − 0.08 ± 0.06 − 0.08 0.12 0.01 90.8 1.23 92.0 0.27 
TDJ-4 52 +0.25 ± 0.11 +0.26 0.13 0.01 89.5 1.16 90.7 0.24 
TDJ-3 32 +1.45 ± 0.04 +1.49 0.75 0.16 89.0 1.75 90.8 0.27 
TDJ-2 22 +1.42 ± 0.14 +1.55 0.23 0.15 88.5 3.99 92.5 0.16 
TDJ-1-3 12 +1.46 ± 0.12 +1.62 0.22 0.16 87.5 12.0 99.5 0.22 
TDJ-1-2 8 +1.56 ± 0.09 +1.63 0.21 0.06 81.0 12.9 93.9 0.35 
TDJ-1-1 4 +1.32 ± 0.13 +1.38 0.20 0.06 80.5 15.3 95.8 0.35 
PDJ-0 − 2.5 packstone +0.27 ± 0.11 +0.28 0.18 0.05 92.3 1.09 93.4 0.17 
PDJ-1 − 5 +0.45 ± 0.12 +0.46 0.13 0.03 89.3 1.16 90.5 0.20 
PDJ-2 − 15 +0.22 ± 0.12 +0.23 0.16 0.04 91.3 1.05 92.4 0.19 
PDJ-3 − 25 +0.30 ± 0.03 +0.31 0.15 0.04 91.0 1.19 92.2 0.22 
PDJ-4 − 35 +0.15 ± 0.12 +0.15 0.16 0.02 89.5 0.91 90.4 0.25 
PDJ-5 − 80 +0.40 ± 0.08 +0.40 0.27 0.02 91.8 1.65 93.5 0.29 
PDJ-7 − 180 − 0.05 ± 0.03 − 0.05 0.21 0.01 90.0 1.05 91.1 0.36 
PDJ-8 − 230 − 0.04 ± 0.05 − 0.04 0.12 0.01 86.5 4.59 91.1 0.48 
PDJ-10 − 550 − 0.01 ± 0.02 − 0.01 0.13 0.02 87.0 2.63 89.6 0.32 

Ca + Mg: CaCO3 (%) + MgCO3 (%). 

Fig. 4. Stratigraphic record of δ98/95Mo values and Mo contents in the Meishan section. (a) Measured δ98/95Mo values (blue squares) and Al-corrected δ98/95Mo 
values (grey circles). The lines marked ME1 and ME2 indicate the starting horizons of the two episodes of mass extinction events (Song et al., 2013). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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enclosed intracontinental basin with a narrow connection to the global 
ocean (Wuchiapingian; ca. 256 Ma) (e.g., Vaughan et al., 1989; Grice 
et al., 1997; Ruebsam et al., 2017) and are characterized by typical 
anoxic deposition in an open marine environment (Ruebsam et al., 
2017). Therefore, we suggest that the paleo-ocean was anoxic during the 
deposition of the uppermost part of Bed 24e to Bed 25 in the Meishan 
section. This variation in redox conditions, reflected by Mo isotopes, is 
consistent with the results of studies of pyrite framboids from the same 
section (Shen et al., 2007; Chen et al., 2015). 

5.2.3. δ98/95Mo and oceanic paleo-redox conditions of the Dajiang section 
The variation in the δ98/95Mocorr.Al values of the Dajiang section are 

reported in Fig. 5a. The samples below the mass extinction boundary 
have lower δ98/95Mocorr.Al values and little variability (from − 0.05‰ to 
+0.46‰, +0.19‰ on average; interval 1 in Fig. 5a), while the δ98/ 

95Mocorr.Al values of five samples above and near the mass extinction 
boundary increase abruptly (from +1.38‰ to +1.63‰; +1.53‰ on 
average; interval 2 in Fig. 5a). This trend indicates that ocean anoxia 
occurred suddenly, which is consistent with the onset of the mass 
extinction event. 

In general, the variation in δ98/95Mo values in the Dajiang section 
(Fig. 5a) is consistent with that in the Meishan section (Fig. 4a). That is, 
before the mass extinction event, the δ98/95Mo values of both sections 
were relatively lower (interval 1 in Figs. 4a and 5a), and the values were 
higher during the relatively short interval coinciding with the mass 
extinction (interval 2 in Figs. 4a and 5a). The values of both sections 
decreased after the mass extinction event and returned to pre-extinction 
values (interval 3 in Figs. 4a and 5a). 

5.3. Changing ocean redox conditions during the Permian–Triassic 
transition 

In the two sections studies here, the δ98/95Mo values of the bulk 
carbonate samples covary with the oxidized and sulfided Mo contents. In 
the portion of the section where the δ98/95Mo values increase gradually, 
the contents of oxidized Mo decrease gradually and the contents of 
sulfided Mo increase gradually. In contrast, when the values of δ98/95Mo 

decrease gradually, the contents of oxidized Mo increase gradually and 
the contents of sulfided Mo decrease gradually. This covariance might 
indicate that the Mo isotopic signal of bulk carbonate samples records 
the overall redox state of the ocean. 

For the Dajiang section, which was deposited on a shallow platform, 
δ98/95Mo values indicate that oceanic anoxia was nearly coincident with 
the mass extinction event. For the Meishan section, which was deposited 
on a relatively deep-water platform-margin slope, Song et al. (2013) 
divided the mass extinction event into two episodes: the first episode 
(main episode) began at the bottom of Bed 25 and the second episode 
began at the top of Bed 28. According to this division, the δ98/95Mo 
values indicate that ocean anoxia slightly preceded the mass extinction 
event in the Meishan section. 

The δ98/95Mo values of both sections decreased after the mass 
extinction event and returned to pre-extinction values (interval 3 in 
Figs. 4a and 5a). In the Meishan section, the high Al/Mo ratios of some 
samples mean we cannot determine if the Mo has a terrigenous detrital or 
authigenic origin, whereas for the Dajiang section the Mo is primarily 
authigenic Mo. Local and global marine redox conditions effect the δ98/ 

95Mo value of sediments (Barling and Anbar, 2004; Anbar and Rouxel, 
2007; Kendall et al., 2017). Prior to anoxic events, the paleo-ocean would 
have been oxidized, and if anoxia was global in scale the proportion of 
ancient seawater Mo removed to anoxic versus oxic sinks would have 
changed dramatically as the oxic sink fluxes of ancient seawater Mo 
(mainly Mo in seawater adsorbed by Fe-Mn oxides) decreased and the 
anoxic sink fluxes of seawater Mo increased (Barling and Anbar, 2004; 
Anbar and Rouxel, 2007; Kendall et al., 2017; Chen et al., 2019). This 
would have led to a gradual decrease in the δ98/95Mo values of ancient 
seawater (Chen et al., 2019). Therefore, there may be two reasons why 
the δ98/95Mo values of the Dajiang section returned to pre-extinction 
values after the mass extinction event (interval 3 in Fig. 5a): 1) the 
ocean gradually returned to its original oxidation state after a relatively 
short period of anoxia; or 2) long-term ocean anoxia led to a gradual 
decrease in the amount of Mo adsorbed by Fe-Mn oxides, eventually 
leading to a decrease in the δ98/95Mo value of seawater. The estimated 
δ98/95Mo values of ancient seawater do not show a decreasing trend 
during the anoxic event in either section (Fig. 2), and in the Dajiang 

Fig. 5. Stratigraphic record of δ98/95Mo values and Mo contents in the Dajiang section. (a) Measured δ98/95Mo values (blue squares) and Al-corrected δ98/95Mo values 
(grey circles). The lines marked ME indicate the starting horizons of the mass extinction events (Ezaki et al., 2003; Jiang et al., 2014; Song et al., 2014). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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section, as the δ98/95Mo values of bulk carbonate samples return to the 
pre-extinction level, the δ98/95Mo values of corresponding ancient 
seawater are also roughly the same as those before the extinction 
(Fig. 2b). Previous studies have shown that some sections do not record 
anoxia during the end-Permian extinction event (Proemse et al., 2013; 
Xiang et al., 2016); and based on the model, ~18% of the paleo-ocean 
was anoxic during the main episode of the extinction event, with 
anoxia mainly occurring in continental shelf areas (Zhang et al., 2020). 
We therefore infer that although a large proportion of ancient seawater 
was anoxic at the PTB, the whole ocean was still only “partially” anoxic, 
and therefore ocean anoxia may have had little effect on the δ98/95Mo 
value of ancient seawater. Hence, a decrease in the δ98/95Mo values of 
carbonate samples after the extinction event may imply a gradual return 
of the ocean to its earlier oxidation state. 

In the Dajiang section, the total thickness of the five samples whose 
δ98/95Mo values increase abruptly is 32 cm, which implies that oceanic 
anoxia lasted for a short time. The layer at ~15 m above the extinction 
boundary falls within the H. parvus zone (Jiang et al., 2014). High- 
precision zircon U-Pb dating of the Meishan section demonstrates that 
this zone lasted for <0.061 Myr (Burgess et al., 2014), indicating that 
the oceanic anoxia lasted for <0.061 Myr. 

6. Conclusions  

1. The Mo isotopic signature of carbonates deposited in open-ocean 
settings reflects the three types of Mo precipitation that occur in 
ancient seawater; i.e., Mo preserved in carbonate sediments in the 
form of pore water or inclusions, absorbed oxidized Mo, and sulfided 
Mo. These data reveal the dominant accumulation mechanism of 
authigenic Mo. We suggest that marine carbonate sediments can 
record the paleo-ocean Mo isotopic signal, and the mechanism is 
similar to that of other open-ocean sediments (e.g., shales), with 
higher δ98/95Mo values representing a more reducing sedimentary 
environment. 

2. Variations in the δ98/95Mo values of the Meishan and Dajiang sec-
tions indicate that during the Permian–Triassic transition, oceanic 
anoxia coincided with or slightly predated the mass extinction event 
and lasted for a short time, likely <0.061 Myr. 
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